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1. Introduction

The topic of variable Lebesgue spaces is a new chapter of mathematics and it is
studied intensively nowadays. Instead of the classical L,-norm, the variable L,.)-norm

is defined by
p(x)
11,y = inf )\>O:/ de <1
]Rd

and the variable Ly, (.) spaces contains all measurable functions f, for which || f[[,, <

(@)

oo. The variable Lebesgue spaces have a lot of common property with the classical
Lebesgue spaces (see Kovacik and Rékosnik [12], Cruz-Uribe and Fiorenza [4], Dien-
ing, H&sto and Ruzicka [6], Cruz-Uribe, Firorenza and Neugebauer [3], Cruz-Uribe,
Fiorenza, Martell and Pérez [2]).

The so called #-summation method is studied intensively in the literature (see
e.g. Butzer and Nessel [1], Trigub and Belinsky [15], Gat [9], Goginava [10], Simon
[14] and Weisz [17, 18]). This summability is generated by a single function ¢ and
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includes the well known Fejér, Riesz, Weierstrass, Abel, etc. summability methods.
The #-summation is defined by

o f(x) = fz —t)TO(Tt) dt.
Rd
Feichtinger and Weisz [7, 8, 16] have proved that the f-means o9 f converge to f
almost everywhere and in norm as T' — oo, whenever f is in the Lp(Rd) space or in a
Wiener amalgam space. The points of the set of almost everywhere convergence are
characterized as the Lebesgue points.

Some similar results are known in the variable Lebesgue spaces (see e.g. Cruz-
Uribe and Fiorenza [4]). Under some conditions on the exponent function p(-) and 6,
the -means of f converge to f almost everywhere and in norm for all f € Lp(i)(Rd)
as T — oo.

The continuous wavelet transform of f with respect to a wavelet g is defined by
Wyf(x,s) = {f,T:Dsg) (x € R% s € R, s # 0), where Dy is the dilation operator and
T, is the translation operator. The inversion formula holds for all f € Ly(R%) (in case
g and v are suitable):

o0 dxds
/0 | Wol (@ 8)Te Doy T = Conf,

where the equality is understood in a vector-valued weak sense (see Daubechies [5]
and Grochenig [11]).

Recently Li and Sun [13] have proved that if g and 7 are radial, both have a
radial majorant ¢ such that ¢(-)In(2+|-[) € L1(R%) and [.(g" * 7)(x) dz = 0, then
for any f € L,(R?) (1 <p < 00)

T
) dxds ,
SﬂOl_i%l“ﬂoo/S y Wy f(x,s)TpDsy s Cof (1.1)

at every Lebesgue point of f, where Cj  is a constant depending on g and . If
1 <p<oo,orifl<p<ooandT = oo, then the convergence holds in the L,(R%)-
norm for all f € L,(R?). Under some other conditions Weisz [19] has proved similar
results.

In this paper we will investigate the norm and almost everywhere convergence
of (1.1) in variable Lebesgue spaces. We lead back the problem to the summability of
Fourier transforms, more exactly, we show that the integral on the left hand side of
(1.1) can be formulated as Ule/sf — J?/Tf, where 6 is a given function depending on
g and 7.

2. #-summability on the classical Lebesgue spaces

Let us fixd > 1,d € N. For aset Y # () let Y? be its Cartesian product Y x...xY
taken with itself d-times. The space L,(R?) equipped with the norm

ipe= ([ sera)” aspse
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is the classical Lebesgue space. We use the notation |I| for the Lebesgue measure of
the set I. The set of locally integrable functions is denoted by L{°¢(R?).

A measurable function f belongs to the Wiener amalgam space W (L, {,)(R)
(1 <p,q<o0)if

1/q

1w, = Zd G+ RNT 10,1y <0
kez

with the usual modification for ¢ = co. Note that for all 1 < p < oo, W (L, £,)(R?) =
Ly(RY) and L,(RY) € W(Ly, £oo)(RY).

Let 0 € Li(R?) be a radial function. The #-means of f € W(Ly,{s)(R?) are
defined by

A f(e)i= (1 200)@) = [ | 1o = 002(0)
where
Or(x) :=T%(Tz)  (z€RLT >0).

It is known that 6(t) = Xp(0,1)(t) implies ol f = srf, where st f is the Dirichlet

integral of the Fourier transform of f,

spf(z) == / Flu)e?™ v dy (T >0)
{llull2<T}
and
B(a,6) == {zx € R : ||z — a2 < 6}.

Similarly, if () = F(t), where F(t) = max(1 — ||t]|2,0), then we obtain the Fejér
means of f.
The classical Hardy-Littlewood maximal operator is defined by

1
M(f)(z) = iggm/QlfldA,

where f € LY¢(R?) and the supremum is taken over all cube @ C RY with sides
parallel to the axes. It is known that

IMfl, < ClFl, (2.1)
for all f € L,(R?) (1 <p < o) and

sup tA (;BERd : M f(x) >t) <C|flL
>0

for all f € Li(R?).
A point z € R? is called a Lebesgue point of f € L¢(RY) if

. 1 B
i, <|B<oh>| sy T T d“) -0

It is known that if f € W (L1, 4s)(R?) (1 < p < o0), then almost every z € R is a
Lebesgue point of f (see Feichtinger and Weisz [7, 8]).
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We say that 7 is a radial majorant of f if n is radial, non-increasing as a
function on (0,00), non-negative, bounded, |f| < 1 and n € L;(R%). If in addition
n(-)In(]- | +2) € L1(RY), then we say that 7 is a radial log-majorant of f.

The following results were proved in Feichtinger and Weisz [7] and [8].

Theorem 2.1. Suppose that 0 has a radial majorant . Then for all T > 0
lo7f(@)] < ClnlhiMf(z)  (z €RY).

Theorem 2.2. Suppose that 0 has a radial majorant. Then
(i) for all f € W(Ly, o) (R?)
Jim off@) = [ 6)dy- (o)
— 00 R4
at each Lebesque points of f.
(ii) for all f € L,(R?) (1 <p < o0)

lim o%f(z)=0

T—)0+
for all x € RY.

Proof. The proof of the first statement can be found in Feichtinger and Weisz [8].

Consider (ii). Since § has a radial majorant, § € L;(R?) N L., (R?). Therefore
0 € L,(R?) (1 < p < o0). Let g the conjugate exponent of p i.e., 1/p+1/q = 1. Using
Holder’s inequality

@] < T [ 1= nller)

7 ( | |0(Tt)|‘1dt>1/q (/}R F(z— ) dt)l/p

<
d i\
= ([ rrar) s,
Rd
TV )0 |1 £1, — 0,
as T — 04, because of d(1 — 1/q) > 0. O

Almost every point is a Lebesgue point of f € W (L1, £ )(R?), so (i) holds almost
everywhere.
The next Theorem can be found in Feichtinger and Weisz [7].

Theorem 2.3. Suppose that § € Li(RY). Then
(i) for all f € Ly(RY) (1 <p < o0)
lim off = O(x)dx - f in the L,(R?)-norm.

T— o0 R4
(ii) If in addition 0 has a radial majorant, then for all f € L,(R%)
(I1<p<oo)

. 0 ¢ _ : dy_
TILH& orf=0 in the Ly(R®)-norm.
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Proof. For the proof of (i) see Feichtinger and Weisz [7].
(ii) follows from Theorem 2.2 (ii), Theorem 2.1, (2.1) and Lebesgue dominated
convergence theorem. O

The next lemma can be found in Li and Sun [13].

Lemma 2.4. If g and « have radial log-majorants, then (g *~)In(|-|) € L1(RY) and
(gl * [+1) In(] - [) € Ly (RY).

3. f-summability on the variable Lebesgue spaces

For the variable Lebesgue spaces we can state similar theorems. A function p(-)
belongs to P(R?) if p : RY — [1,00] and p(-) is measurable. Then we say that p(-) is
an exponent function. Let

p_ = inf{p(z) : * € RY} and  p, :=sup{p(z): 2 € R}
Set
Qoo = {x € R : p(z) = 0}

The modular generated by p(-) € P(R?) is defined by

0p() (f) == / 1F@)PD dz + £l -
RN\Qo

where f is a measurable function. A measurable function f belongs to the L,)(R?)
space if there exists A > 0 such that o) (f/A) < oo. We can see that the modular
Op(.) is not a norm. Define the Lp(.)(Rd)—norm by

1f1lpy = inf{A >0 0p() (J;) < 1}.

Then || - ||,y is a norm and the space (Ly¢.)(R?), | - [l5(.)) is a normed space. In case
p(-) = p is a constant, then we get back the usual L,(R?) spaces.

We say that r(-) is locally log-Hélder continuous if there exists a constant Cj
such that for all z,y € R%, 0 < ||z — y|l2 < 1/2,

Co
Ir(z) —r(y)| < “log(z — yll2)°

We denote this set by LHy(R?).
We say that r(-) is log-Holder continuous at infinity if there exist constants Coo
and ro such that for all z € R?

Cwo
() = Too| < —— M.
1) =l = gt + ol
We write briefly 7(-) € LH,(R?). Let

LH(R?) := LHy(R%) N LH(RY).

The following two results were proved in Cruz-Uribe and Fiorenza [4, p.27, p.35].



502 Kristéf Szarvas and Ferenc Weisz

Theorem 3.1 (Hélder’s inequality). Let p(-) € P(R?), 1/p(z) + 1/q(z) = 1. Then for
all f € Lyy(R?Y) and g € Ly (RY), fg € L1(R?) and

[ @gta)lde < Cos 1l sl

Lemma 3.2. Ifp(-) € P(R?) and K C RY, |K| < 0o, then xx € Ly (R?) and
Ixxllpe) < K]+ 1.
We need also the next statement.
Theorem 3.3. If p(-) € P(R?), then L,y C W (L1, loc)(R?).

Proof. Let f € Lp(.)(Rd) and ¢(-) the conjugate function of p(-). Then by Theorem
3.1 and Lemma 3.2,

/[ o [f @)l de < Cpiy 1F ey Ixmamanllacy < 2Cp0 Iy »

for n = (ny,...,nq) € 2%, where n+1= (ny +1,...,nq+ 1). Hence

1w 2y o) < 260 11y < o0,
which implies the theorem. O

The following three theorems can be found in Cruz-Uribe and Fiorenza [4, p.56,
p.44, p.42]

Theorem 3.4. Ifp(-) € P(R?), p; < oo, then the set of bounded functions with compact
support is dense in Ly, (R?).

Theorem 3.5. If p € P(R?) and py (R?\ Q) < oo, then the following properties are
equivalent:

(i) convergence in norm,
(ii) convergence in modular.

Theorem 3.6. If p(-) € P(R?), then

Ly()(RY) C Ly, (RY) + L,_(R),
i.e., for all f € Ly (R?) there exist fi € L,_(R) and f2 € L, (R) such that f =
f1+ fa.

The next theorem says that 0’% f(z) converges at every Lebesgue point.

Theorem 3.7. If p(-) € P(R?) and 0 has a radial majorant, then
(i) for all Lebesgue points of f € Lp(,)(Rd),

Jim off@) = [ 6(0)dy- fo).
—00 R4
(ii) If in addition p; < oo, then

lim off(z) =0

T—04

for all f € Lyy(R?) and for all z € RY.
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Proof. To prove (i), let f € Lp(,)(Rd) and z € R? be a Lebesgue point of f. Using
Theorem 3.3, we have f € W (L1, lo)(RY). By Theorem 2.2 we get that
lim 0% f(z / O(y)dy - f(x).

T—o0

Consider (ii). Let f € Ly.y(R?) and = € R? arbitrary. Then by Theorem 3.6
there exist f1 € L, (R%) and f> € Ly, (R4) such that f = f; + f2. Since p; < oo we
can use Theorem 2.2 to obtain

: 0 _ o 0 : 0 _
A orf(z) = A orfi() + A orfa(z) =0,
which proves the theorem. O
Of course, the convergence in (i) holds almost everywhere (see also Cruz-Uribe

and Fiorenza [4, p.197]). The first and the second statement of the next theorem can
be found in Cruz-Uribe and Fiorenza [4, p.199].

Theorem 3.8. Let p(-) € P(R?), py < oo, 1/p(z) + 1/q(z) = 1. If 6 has a radial
magorant and the mazimal operator is bounded on Lgy(.y(R?), then for all f € Ly.)(R?)

(i)
||U%pr(.) <C ||f||p(4) (T >0). (3.1)
(i)
lim o9 f :/ O(z)dx - f in the L,y (R?)-norm.
R4

T—o00
(iii) If in addition p_ > 1, then

. d a
Thﬁer o0 f =0 in the Ly (R?)-norm

for all f € Ly)(RY).

Proof. To prove (iii), fix € > 0. By Theorem 3.4 there exists a bounded function g
with compact support, such that || f — ng(.) < e. Using (3.1) we have

HU%pr(.) < |lo%(f - g)Hp(.) + Hagng(_) <Ce+ ||U%9||p(.)-
So it is enough to show that

i odoll,, =0

Since p; < 0o, then by Theorem 3.5 we have to show that
li f.9(x)[P® dz = 0.
A ) |lo7g(@)[P dx =0

Let ()
g(x
go(z) = ———.
101111lg1lo0
Then [|goloc < 1//|0][1 and

|o790(x)] = (g0 % 07) ()] < llgolloc 107111 = llgolloc 1011 < 1.
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Therefore

; 0 p(x)
Jim [ loka(o)P® da

lim / (1611119100 ) |0 go (2) ") dx
T4)0+ Rd

IA

(19111 [lglloc +1)P+ lim / |0%-g0(@)[P~ da.
T—>0+ Rd
Here 1 < p_ < oo and go € L,_(R?), therefore by Theorem 2.3 we get that

lim [ |ofgo(z)[P~ dz =0,
T*}O+ Rd

which proves the theorem. O

The next theorem about the boundedness of the classical Hardy-Littlewood max-
imal operator in variable Lebesgue spaces can be found in Cruz-Uribe and Fiorenza

[4, p.89].
Theorem 3.9. Let p(-) € P(R?) and 1/p(-) € LH(R?).
(i) Then for all f € Lyy(RY) and t >0
HtX{xe]Rd:Mf(w)>t}||p(,) <Ol
(ii) If in addition p— > 1, then for all f € Ly (R?)
IM fllpy < ClElLe

Remark 3.10. If 1/p(-) € LH(R?) and p; < oo, then 1/¢(-) € LH(R?) and g_ > 1 so
the maximal operator is bounded on L., (R?). Therefore if 1/p(-) € LH(R?), p4 < o0
and 0 has a radial majorant, then the hypotheses of Theorem 3.8 remain true.

4. The continuous wavelet transform

The continuous wavelet transform of f with respect to a wavelet g is defined by

W, f(z,s) \d“/.f g1~ ) dt = {f,T. Dsg).

(r € R% s € R,s # 0) when the integral does exist. We suppose that
9,7 € La(R?) and

RN ~ ds
| el S < o

for almost w € R? with ||w||o = 1. If
oL ds
Cpor = [ BlswPitsw) T
0 S
is independent of w, then the inversion formula holds for all f € Ly(R):

o dzds
/0 ha Wy f(z, )T Dsy prs A [



Continuous wavelet transform in variable Lebesgue spaces 505

where the equality is understood in a vector-valued weak sense. Consider the operators

> dxds
= W, T,Dyy 2
pst = [ [ Watt@omDa S

and

T
dxds
pS,Tf ZZA /Rd ng(x,s)Txst Sdﬁ,

where 0 < S < T < . Let

Chyi= = [ (6" + @)l d,

where ¢g*(z) = g(—=x) is the involution operator. If g and  both have radial log-
majorants, then Cy  is finite by Lemma 2.4.

Li and Sun [13] proved that if g and v radial, [.(g* * v)(z)dz = 0, and both
have a radial log-majorant, then for any f € L,(R?) (1 < p < 00)
. _ . _ /
lim pS’,Tf((E) - Sli%lJr pSf(x) - Cg,'yf(x)

S—04,T—o00

at every Lebesgue point of f. Moreover, if 1 < p < oo, then the convergence holds in
the L,(R%)-norm for all f € L,(R%). If p = 1, then

SlLIg1+ psf=Cy f in the L;(R?)-norm
for all f € Li(R?). Under some similar conditions Weisz [19] proved similar results.
In this paper we investigate the same questions on the variable Lebesgue spaces and

we will prove similar theorems. Of course, Cy , = C;ﬁ under some conditions (see Li
and Sun [13]).

5. Convergence of o5 and pg

We will denote the surface area of the unit ball in R? by wq—1. The next theorem
plays central role in this chapter. Under some conditions we lead back ogf to a 6-
summation.

Theorem 5.1. Suppose that g, v have radial log-majorants and
[ g s =o.
Rd
If p(-) € P(R?) and p; < oo, then for all f € Ly (RY)

osf =0l sf (S>0),

where 0 is defined later in the proof.
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Proof. Let y € R? be arbitrary and decompose ogf(y)

0sf(y) = /W/RL/ < S NE
e (2 (25
e Lo (S (5
L L () e

= I- II+III.

) dzdtds

We can write I and I as a convolution, similarly as in Li and Sun [13]:

I'=(f*pis)(Y),

e t 1
o(t) 12/1 H (u) WXB(O,l)(t) du

and H := g* % . Since 7 has radial log-majorant, v € L., (R?%) and since g € L;(R?),
H € Loo(R?). Therefore if t € B(0, 1), then

where

>~ 1
PO < WAl [ e du=CllH o < .

If t ¢ B(0,1), then ¢(t) = 0. Thus C||H|l«XB(0,1) is & radial majorant of ¢.

IT = (f xv15)(y),

where

! t\ 1
(1) ::/0 H () WXRd\B(O,l)(t) du.

u

Let G := |g| * |y|. Then H < G, and since g, v have radial log-majorants, Lemma
2.4 implies that H, G have radial log-majorants, too. Since G is radial, there exists 7
such that G(z) = n(||z||2). If t € B(0,1), then ¥(¢) = 0. If t € R%\ B(0,1), then

)l < /01 € (i) ey du = /01 " (”11'2> ey d
- ) : 1) ds = (1)
and let
¢(t) /loo n(s)s?tds < inGnl <oo  (te B(0,1)).
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It is easy to see that |¢| < ¢, ¢ is radial, non-increasing on (0,00) and bounded.

Moreover,
/ CHydt = / ) dt+/ C(t) dt
R B(0,1) R\ B(0,1)
1 o0
= C+/ —d/ n(s)s? ! dsdt
ra\B(0,1) IE15 /e
o0 1 (o]
< C’—l—wd_l/ ;/ 77(s)sd_1 dsdr
1 T

(o] S 1
= C—i—wd,l/ n(s)s?=t [ =drds
1 1 T

= C+/ G(t) In(|t]) dt < oo,
R\ B(0,1)

i.e., ¢ is integrable so ( is a radial majorant of ).
We will show that 171 = 0. To apply Fubini’s theorem we will verify that

/ /| Lo 5d+1f()|G< ) dtds < oo. (5.1)
ly—t|l2>
Since G is radial

ly — t[2
dsdt
/ly—t|2>s 2 / st ( 5
= / f |/ n(uw)u®"t dudt
uy t\|2>s lly —tlg tII

£ ()]

Wq ly—t||2>S ||y7t||g

By Theorem 3.1

1
O — < Gy 11 H oo
/m_mzs P PO RO |1y =g = 12253

where 1/p(x) +1/q(z) =1 (x € RY). Let \ := 1/S%. Then

1 1 1\ 1\
- < — =1 and () < () .
My =g — AS¢ Ally =13 Ally = tl13

If py < o0, then ¢ > 1 and

t —
/ (X{|yt|2>S}>q”dt - / ( 1 )q i@t
ma \ Ally —t[l4 = jy—dzs \ My —tllg

= Sde—/ %dt
ly—tlla>s ||y — t]|5"

oo
= wd_lqu‘/ w Y-t gy < .
s

)

q(+)
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Moreover,
To— t\|2X{Hy tl2>53 (1) 1
< — = 17
A — ASd
in other words,
2 X{lly— S
| Ty—g Xlly—-l2=>5} <1,
\ <
Lo (Q0)
where
Qoo = {2 €R?: g(2) = 00}
So
Hy— To—7g X{lly—-[l2>5}
Oq(-) X\ < o0
and

< o0.
a()
We get that (5.2) is ﬁnite so we can apply Fubini’s theorem. Since H is radial, there
exists v such that H(z) = v(||z||2) and

1 = / / d1+1H<y—’f) dtds
ly— t|\2>s s s
ly —t2
= f(t / u( dsdt
/Iy—tlzzs W), s s
1 o0
= / f(t)id/ v(uw)ud=t dudt
ly—tlozs "y =tz Jo
! / f(t) ! H (u) dudt
= T nd u) dudt =
wa—1 Sjy—tla>s " Iy — 13 Jre

1 / 1
= Jt) 57— / (9" *v)(u) dudt = 0.
Wa-1 Jyy—tf>s Ny —tl3 Jra
We have that

osf(y) = (f x175) W) — (f *1/s)(y) = (f * (p1/s — t1/s)) (y) =: O—f/Sf(y)a

where

1
o aX{lly—l2=8
H|y'g =

0(y) :== o(y) — ¥ (y).

Since ¢ and 1 have radial majorants, 6 has, too. O

Using the previous theorem we can prove the convergence of osf and pgrf at
Lebesgue points, almost everywhere and in the Lp(,)(Rd)—norm.

Theorem 5.2. Suppose that g, v have radial log-majorants and
/ (9" *v)(z)dx = 0.
R4

If p(-) € P(RY), p4 < oo, then for all Lebesgue points of f € Ly (R%),
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i, 0sf(@) = Cyry - f(@)
(ii)
lim  os7f(x)=C, . - f(x).

S—04,T—00
Proof. By Theorem 5.1 and Theorem 3.7 we have
. T 0 . .
511{& osf(x) = shj& o1,sf(x) = g 0(y)dy - f(x),
i.e., it is enough to prove that

0(y)dy = Cy .,

Rd

Rdﬁ(y) dy = /Rd e(y) dy — /Rdi/J(y) dy

p(y) dy / / dudy
/Rd ) B(0,1) ud+l
= w rdfl 1/ — —1 dudr
= Wd-1l ud+1
= Wq— 1/ / td 1d1fd’l“
o T
= wd_l/ td=1 (t)/ — drdt
0 t T

- 7/ H(t)In(|t]) dt
B(0,1)

We have

Here

- / (g % 7) () In(|t]) dt
B(0,1)

and we have similarly that

Y(y)dy = / (g %) (8) In([t]) dt
Rd R4\ B(0,1)

i.e.

JLowar = = [ g e [ g ) a

RA\B(0,1)
= _ (g" *v)(t) In(|t]) dt = C'!/]ﬂ
Rd

To prove (ii), observe that

osrf(x) = osf(z) — orf(x).

509
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Then use Theorem 5.1 and Theorem 3.7 to get

. _ . _ . 0 _ / . _
sodimesrf@)= Jim osf(x) = lim of)rf(@) = Cj, - (@) =0,

which proves the theorem. O

Corollary 5.3. Suppose that g, v have radial log-majorants and
[ @ @ ds=o.
Rd

If p(-) € P(RY) and p4 < oo, then for all f € Ly (R?)
0 | |
Slg&r osf =Cy f a.e.
(i)
lim os,vf = Célmf a.e.

S—04,T—

Theorem 5.4. Suppose that g, v have radial log-majorants and

/ (g% xv)(z)dx =0.
Rd
Let p(-) € P(RY), py < oo, 1/p(x) + 1/q(x) = 1. If the mawimal operator is bounded
on Lyy(R?), then for all f € Ly (RY),
(i) ' / _ .
Slg&r osf=Cy. - f in the Ly.y(R®)-norm.
(ii) If in addition p— > 1, then for all f € L,.(R?)
lim ostf= C’;ﬁ - f in the Lp(.)(]Rd)—norm.

S—04,T—o0

Proof. To prove (i), use Theorem 5.1 and Theorem 3.8

lim pgf = SIE& af/sf = /]R'i O(x)dx - f in the L, (R%)-norm.

S—04

We have seen, that [;,0(z)dx = Cj .
We can prove (ii) similarly. Use Theorem 5.1 and Theorem 3.8 to obtain
li = 1li — i =C! -
o osrf = Jim osf = im erf=Cp,-f

in the L, (R%)-norm. The proof of the theorem is complete. O

By Remark 3.10 if we suppose that 1/p(-) € LH(R?) and p, < oo, then the
maximal operator is bonded on Lg(.)(R?). Therefore we have

Corollary 5.5. Suppose that g, v have radial log-majorants and
[ @ s @ds=o.
R4

If 1/p(-) € LH(R?), py < oo, then for all f € Lp(_)(Rd),
(1) Sli}r& 0sf =C) - f in the Ly (R?)-norm.



Continuous wavelet transform in variable Lebesgue spaces 511

(ii) If in addition p— > 1, then for all f € Lp(‘)(Rd)

lim  os7f=C,. - f in the Lyy(R?)-norm.

S—04,T—o0
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