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1. Introduction

The topic of variable Lebesgue spaces is a new chapter of mathematics and it is
studied intensively nowadays. Instead of the classical Lp-norm, the variable Lp(·)-norm
is defined by

‖f‖p(·) := inf

{
λ > 0 :

∫
Rd

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
and the variable Lp(·) spaces contains all measurable functions f , for which ‖f‖p(·) <
∞. The variable Lebesgue spaces have a lot of common property with the classical
Lebesgue spaces (see Kováčik and Rákosńık [12], Cruz-Uribe and Fiorenza [4], Dien-
ing, Hästö and Růžička [6], Cruz-Uribe, Firorenza and Neugebauer [3], Cruz-Uribe,
Fiorenza, Martell and Pérez [2]).

The so called θ-summation method is studied intensively in the literature (see
e.g. Butzer and Nessel [1], Trigub and Belinsky [15], Gát [9], Goginava [10], Simon
[14] and Weisz [17, 18]). This summability is generated by a single function θ and
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includes the well known Fejér, Riesz, Weierstrass, Abel, etc. summability methods.
The θ-summation is defined by

σθT f(x) =

∫
Rd

f(x− t)T dθ(Tt) dt.

Feichtinger and Weisz [7, 8, 16] have proved that the θ-means σθT f converge to f
almost everywhere and in norm as T →∞, whenever f is in the Lp(Rd) space or in a
Wiener amalgam space. The points of the set of almost everywhere convergence are
characterized as the Lebesgue points.

Some similar results are known in the variable Lebesgue spaces (see e.g. Cruz-
Uribe and Fiorenza [4]). Under some conditions on the exponent function p(·) and θ,
the θ-means of f converge to f almost everywhere and in norm for all f ∈ Lp(·)(Rd)
as T →∞.

The continuous wavelet transform of f with respect to a wavelet g is defined by
Wgf(x, s) = 〈f, TxDsg〉 (x ∈ Rd, s ∈ R, s 6= 0), where Ds is the dilation operator and
Tx is the translation operator. The inversion formula holds for all f ∈ L2(Rd) (in case
g and γ are suitable): ∫ ∞

0

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= Cg,γf,

where the equality is understood in a vector-valued weak sense (see Daubechies [5]
and Gröchenig [11]).

Recently Li and Sun [13] have proved that if g and γ are radial, both have a
radial majorant ϕ such that ϕ(·) ln(2 + | · |) ∈ L1(Rd) and

∫
Rd(g∗ ∗ γ)(x) dx = 0, then

for any f ∈ Lp(Rd) (1 ≤ p <∞)

lim
S→0+,T→∞

∫ T

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= C ′g,γf (1.1)

at every Lebesgue point of f , where C ′g,γ is a constant depending on g and γ. If

1 < p < ∞, or if 1 ≤ p < ∞ and T = ∞, then the convergence holds in the Lp(Rd)-
norm for all f ∈ Lp(Rd). Under some other conditions Weisz [19] has proved similar
results.

In this paper we will investigate the norm and almost everywhere convergence
of (1.1) in variable Lebesgue spaces. We lead back the problem to the summability of
Fourier transforms, more exactly, we show that the integral on the left hand side of
(1.1) can be formulated as σθ1/Sf − σ

θ
1/T f , where θ is a given function depending on

g and γ.

2. θ-summability on the classical Lebesgue spaces

Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Yd be its Cartesian product Y×. . .×Y
taken with itself d-times. The space Lp(Rd) equipped with the norm

‖f‖p :=

(∫
Rd

|f(x)|p dx
)1/p

(1 ≤ p ≤ ∞),
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is the classical Lebesgue space. We use the notation |I| for the Lebesgue measure of
the set I. The set of locally integrable functions is denoted by Lloc1 (Rd).

A measurable function f belongs to the Wiener amalgam space W (Lp, `q)(Rd)
(1 ≤ p, q ≤ ∞) if

‖f‖W (Lp,`q) :=

∑
k∈Zd

‖f(·+ k)‖qLp[0,1)d

1/q

<∞

with the usual modification for q =∞. Note that for all 1 ≤ p ≤ ∞, W (Lp, `p)(Rd) =
Lp(Rd) and Lp(Rd) ⊂W (L1, `∞)(Rd).

Let θ ∈ L1(Rd) be a radial function. The θ-means of f ∈ W (L1, `∞)(Rd) are
defined by

σθT f(x) := (f ∗ θT )(x) =

∫
Rd

f(x− t)θT (t) dt,

where

θT (x) := T dθ(Tx) (x ∈ Rd, T > 0).

It is known that θ(t) = χ̂B(0,1)(t) implies σθT f = sT f , where sT f is the Dirichlet
integral of the Fourier transform of f ,

sT f(x) :=

∫
{‖u‖2<T}

f̂(u)e2πıx·u du (T > 0)

and

B(a, δ) := {x ∈ Rd : ‖x− a‖2 < δ}.
Similarly, if θ(t) = F̂ (t), where F (t) = max(1 − ‖t‖2, 0), then we obtain the Fejér
means of f .

The classical Hardy-Littlewood maximal operator is defined by

M(f)(x) := sup
x∈Q

1

|Q|

∫
Q

|f | dλ,

where f ∈ Lloc1 (Rd) and the supremum is taken over all cube Q ⊂ Rd with sides
parallel to the axes. It is known that

‖Mf‖p ≤ C ‖f‖p (2.1)

for all f ∈ Lp(Rd) (1 < p ≤ ∞) and

sup
t>0

tλ
(
x ∈ Rd : Mf(x) > t

)
≤ C ‖f‖1

for all f ∈ L1(Rd).
A point x ∈ Rd is called a Lebesgue point of f ∈ Lloc1 (Rd) if

lim
h→0+

(
1

|B(0, h)|

∫
B(0,h)

|f(x+ u)− f(x)| du

)
= 0.

It is known that if f ∈ W (L1, `∞)(Rd) (1 ≤ p ≤ ∞), then almost every x ∈ Rd is a
Lebesgue point of f (see Feichtinger and Weisz [7, 8]).
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We say that η is a radial majorant of f if η is radial, non-increasing as a
function on (0,∞), non-negative, bounded, |f | ≤ η and η ∈ L1(Rd). If in addition
η(·) ln (| · |+ 2) ∈ L1(Rd), then we say that η is a radial log-majorant of f .

The following results were proved in Feichtinger and Weisz [7] and [8].

Theorem 2.1. Suppose that θ has a radial majorant η. Then for all T > 0

|σθT f(x)| ≤ C‖η‖1Mf(x) (x ∈ Rd).

Theorem 2.2. Suppose that θ has a radial majorant. Then

(i) for all f ∈W (L1, `∞)(Rd)

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x)

at each Lebesgue points of f .
(ii) for all f ∈ Lp(Rd) (1 ≤ p <∞)

lim
T→0+

σθT f(x) = 0

for all x ∈ Rd.

Proof. The proof of the first statement can be found in Feichtinger and Weisz [8].
Consider (ii). Since θ has a radial majorant, θ ∈ L1(Rd) ∩ L∞(Rd). Therefore

θ ∈ Lp(Rd) (1 ≤ p ≤ ∞). Let q the conjugate exponent of p i.e., 1/p+ 1/q = 1. Using
Hölder’s inequality∣∣σθT f(x)

∣∣ ≤ T d
∫
Rd

|f(x− t)| |θ(Tt)| dt

≤ T d
(∫

Rd

|θ(Tt)|q dt
)1/q (∫

Rd

|f(x− t)|p dt
)1/p

= T d
(∫

Rd

|θ(y)|qT−d dy
)1/q

‖f‖p

= T d(1−1/q)‖θ‖q ‖f‖p → 0,

as T → 0+, because of d(1− 1/q) > 0. �

Almost every point is a Lebesgue point of f ∈W (L1, `∞)(Rd), so (i) holds almost
everywhere.

The next Theorem can be found in Feichtinger and Weisz [7].

Theorem 2.3. Suppose that θ ∈ L1(Rd). Then

(i) for all f ∈ Lp(Rd) (1 ≤ p <∞)

lim
T→∞

σθT f =

∫
Rd

θ(x) dx · f in the Lp(Rd)-norm.

(ii) If in addition θ has a radial majorant, then for all f ∈ Lp(Rd)
(1 < p <∞)

lim
T→0+

σθT f = 0 in the Lp(Rd)-norm.
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Proof. For the proof of (i) see Feichtinger and Weisz [7].
(ii) follows from Theorem 2.2 (ii), Theorem 2.1, (2.1) and Lebesgue dominated

convergence theorem. �

The next lemma can be found in Li and Sun [13].

Lemma 2.4. If g and γ have radial log-majorants, then (g ∗ γ) ln(| · |) ∈ L1(Rd) and
(|g| ∗ |γ|) ln(| · |) ∈ L1(Rd).

3. θ-summability on the variable Lebesgue spaces

For the variable Lebesgue spaces we can state similar theorems. A function p(·)
belongs to P(Rd) if p : Rd → [1,∞] and p(·) is measurable. Then we say that p(·) is
an exponent function. Let

p− := inf{p(x) : x ∈ Rd} and p+ := sup{p(x) : x ∈ Rd}.

Set

Ω∞ := {x ∈ Rd : p(x) =∞}.
The modular generated by p(·) ∈ P(Rd) is defined by

%p(·)(f) :=

∫
Rd\Ω∞

|f(x)|p(x)
dx+ ‖f‖L∞(Ω∞) ,

where f is a measurable function. A measurable function f belongs to the Lp(·)(Rd)
space if there exists λ > 0 such that %p(·) (f/λ) < ∞. We can see that the modular

%p(·) is not a norm. Define the Lp(·)(Rd)-norm by

‖f‖p(·) := inf

{
λ > 0 : %p(·)

(
f

λ

)
≤ 1

}
.

Then ‖ · ‖p(·) is a norm and the space (Lp(·)(Rd), ‖ · ‖p(·)) is a normed space. In case

p(·) = p is a constant, then we get back the usual Lp(Rd) spaces.
We say that r(·) is locally log-Hölder continuous if there exists a constant C0

such that for all x, y ∈ Rd, 0 < ‖x− y‖2 < 1/2,

|r(x)− r(y)| ≤ C0

− log(‖x− y‖2)
.

We denote this set by LH0(Rd).
We say that r(·) is log-Hölder continuous at infinity if there exist constants C∞

and r∞ such that for all x ∈ Rd

|r(x)− r∞| ≤
C∞

log(e+ ‖x‖2)
.

We write briefly r(·) ∈ LH∞(Rd). Let

LH(Rd) := LH0(Rd) ∩ LH∞(Rd).

The following two results were proved in Cruz-Uribe and Fiorenza [4, p.27, p.35].
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Theorem 3.1 (Hölder’s inequality). Let p(·) ∈ P(Rd), 1/p(x) + 1/q(x) = 1. Then for
all f ∈ Lp(·)(Rd) and g ∈ Lq(·)(Rd), fg ∈ L1(Rd) and∫

Rd

|f(x)g(x)| dx ≤ Cp(·) ‖f‖p(·) ‖g‖q(·).

Lemma 3.2. If p(·) ∈ P(Rd) and K ⊂ Rd, |K| <∞, then χK ∈ Lp(·)(Rd) and

‖χK‖p(·) ≤ |K|+ 1.

We need also the next statement.

Theorem 3.3. If p(·) ∈ P(Rd), then Lp(·) ⊂W (L1, `∞)(Rd).

Proof. Let f ∈ Lp(·)(Rd) and q(·) the conjugate function of p(·). Then by Theorem
3.1 and Lemma 3.2,∫

[n,n+1)

|f(x)| dx ≤ Cp(·) ‖f‖p(·) ‖χ[n,n+1)‖q(·) ≤ 2Cp(·) ‖f‖p(·) ,

for n = (n1, . . . , nd) ∈ Zd, where n+ 1 = (n1 + 1, . . . , nd + 1). Hence

‖f‖W (L1,`∞) ≤ 2Cp(·) ‖f‖p(·) <∞,
which implies the theorem. �

The following three theorems can be found in Cruz-Uribe and Fiorenza [4, p.56,
p.44, p.42]

Theorem 3.4. If p(·) ∈ P(Rd), p+ <∞, then the set of bounded functions with compact
support is dense in Lp(·)(Rd).

Theorem 3.5. If p ∈ P(Rd) and p+(Rd \ Ω∞) <∞, then the following properties are
equivalent:

(i) convergence in norm,
(ii) convergence in modular.

Theorem 3.6. If p(·) ∈ P(Rd), then

Lp(·)(Rd) ⊂ Lp+(Rd) + Lp−(Rd),

i.e., for all f ∈ Lp(·)(Rd) there exist f1 ∈ Lp−(R) and f2 ∈ Lp+(R) such that f =
f1 + f2.

The next theorem says that σθT f(x) converges at every Lebesgue point.

Theorem 3.7. If p(·) ∈ P(Rd) and θ has a radial majorant, then
(i) for all Lebesgue points of f ∈ Lp(·)(Rd),

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x).

(ii) If in addition p+ <∞, then

lim
T→0+

σθT f(x) = 0

for all f ∈ Lp(·)(Rd) and for all x ∈ Rd.
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Proof. To prove (i), let f ∈ Lp(·)(Rd) and x ∈ Rd be a Lebesgue point of f . Using

Theorem 3.3, we have f ∈W (L1, `∞)(Rd). By Theorem 2.2 we get that

lim
T→∞

σθT f(x) =

∫
Rd

θ(y) dy · f(x).

Consider (ii). Let f ∈ Lp(·)(Rd) and x ∈ Rd arbitrary. Then by Theorem 3.6

there exist f1 ∈ Lp−(Rd) and f2 ∈ Lp+(Rd) such that f = f1 + f2. Since p+ <∞ we
can use Theorem 2.2 to obtain

lim
T→0+

σθT f(x) = lim
T→0+

σθT f1(x) + lim
T→0+

σθT f2(x) = 0,

which proves the theorem. �

Of course, the convergence in (i) holds almost everywhere (see also Cruz-Uribe
and Fiorenza [4, p.197]). The first and the second statement of the next theorem can
be found in Cruz-Uribe and Fiorenza [4, p.199].

Theorem 3.8. Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. If θ has a radial
majorant and the maximal operator is bounded on Lq(·)(Rd), then for all f ∈ Lp(·)(Rd)

(i) ∥∥σθT f∥∥p(·) ≤ C ‖f‖p(·) (T > 0). (3.1)

(ii)

lim
T→∞

σθT f =

∫
Rd

θ(x) dx · f in the Lp(·)(Rd)-norm.

(iii) If in addition p− > 1, then

lim
T→0+

σθT f = 0 in the Lp(·)(Rd)-norm

for all f ∈ Lp(·)(Rd).

Proof. To prove (iii), fix ε > 0. By Theorem 3.4 there exists a bounded function g
with compact support, such that ‖f − g‖p(·) < ε. Using (3.1) we have∥∥σθT f∥∥p(·) ≤ ∥∥σθT (f − g)

∥∥
p(·) +

∥∥σθT g∥∥p(·) < Cε+
∥∥σθT g∥∥p(·) .

So it is enough to show that

lim
T→0+

∥∥σθT g∥∥p(·) = 0.

Since p+ <∞, then by Theorem 3.5 we have to show that

lim
T→0+

∫
Rd

|σθT g(x)|p(x) dx = 0.

Let

g0(x) :=
g(x)

‖θ‖1‖g‖∞
.

Then ‖g0‖∞ ≤ 1/‖θ‖1 and

|σθT g0(x)| = |(g0 ∗ θT )(x)| ≤ ‖g0‖∞‖θT ‖1 = ‖g0‖∞‖θ‖1 ≤ 1.
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Therefore

lim
T→0+

∫
Rd

|σθT g(x)|p(x) dx = lim
T→0+

∫
Rd

(‖θ‖1‖g‖∞)p(x)|σθT g0(x)|p(x) dx

≤ (‖θ‖1‖g‖∞ + 1)p+ lim
T→0+

∫
Rd

|σθT g0(x)|p− dx.

Here 1 < p− <∞ and g0 ∈ Lp−(Rd), therefore by Theorem 2.3 we get that

lim
T→0+

∫
Rd

|σθT g0(x)|p− dx = 0,

which proves the theorem. �

The next theorem about the boundedness of the classical Hardy-Littlewood max-
imal operator in variable Lebesgue spaces can be found in Cruz-Uribe and Fiorenza
[4, p.89].

Theorem 3.9. Let p(·) ∈ P(Rd) and 1/p(·) ∈ LH(Rd).

(i) Then for all f ∈ Lp(·)(Rd) and t > 0∥∥tχ{x∈Rd:Mf(x)>t}
∥∥
p(·) ≤ C ‖f‖p(·) .

(ii) If in addition p− > 1, then for all f ∈ Lp(·)(Rd)

‖Mf‖p(·) ≤ C ‖f‖p(·) .

Remark 3.10. If 1/p(·) ∈ LH(Rd) and p+ <∞, then 1/q(·) ∈ LH(Rd) and q− > 1 so
the maximal operator is bounded on Lq(·)(Rd). Therefore if 1/p(·) ∈ LH(Rd), p+ <∞
and θ has a radial majorant, then the hypotheses of Theorem 3.8 remain true.

4. The continuous wavelet transform

The continuous wavelet transform of f with respect to a wavelet g is defined by

Wgf(x, s) := |s|−d/2
∫
Rd

f(t)g(s−1(t− x)) dt = 〈f, TxDsg〉,

(x ∈ Rd, s ∈ R, s 6= 0) when the integral does exist. We suppose that
g, γ ∈ L2(Rd) and ∫ ∞

0

|ĝ(sω)||γ̂(sω)| ds
s
<∞

for almost ω ∈ Rd with ‖ω‖2 = 1. If

Cg,γ :=

∫ ∞
0

ĝ(sω)γ̂(sω)
ds

s

is independent of ω, then the inversion formula holds for all f ∈ L2(Rd):∫ ∞
0

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= Cg,γ · f,
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where the equality is understood in a vector-valued weak sense. Consider the operators

ρSf :=

∫ ∞
S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1

and

ρS,T f :=

∫ T

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
,

where 0 < S < T <∞. Let

C ′g,γ := −
∫
Rd

(g∗ ∗ γ)(x) ln (|x|) dx,

where g∗(x) = g(−x) is the involution operator. If g and γ both have radial log-
majorants, then C ′g,γ is finite by Lemma 2.4.

Li and Sun [13] proved that if g and γ radial,
∫
Rd(g∗ ∗ γ)(x) dx = 0, and both

have a radial log-majorant, then for any f ∈ Lp(Rd) (1 ≤ p <∞)

lim
S→0+,T→∞

ρS,T f(x) = lim
S→0+

ρSf(x) = C ′g,γf(x)

at every Lebesgue point of f . Moreover, if 1 < p <∞, then the convergence holds in
the Lp(Rd)-norm for all f ∈ Lp(Rd). If p = 1, then

lim
S→0+

ρSf = C ′g,γf in the L1(Rd)-norm

for all f ∈ L1(Rd). Under some similar conditions Weisz [19] proved similar results.
In this paper we investigate the same questions on the variable Lebesgue spaces and
we will prove similar theorems. Of course, Cg,γ = C ′g,γ under some conditions (see Li
and Sun [13]).

5. Convergence of %S and %S,T

We will denote the surface area of the unit ball in Rd by ωd−1. The next theorem
plays central role in this chapter. Under some conditions we lead back %Sf to a θ-
summation.

Theorem 5.1. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ <∞, then for all f ∈ Lp(·)(Rd)

%Sf = σθ1/Sf (S > 0),

where θ is defined later in the proof.
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Proof. Let y ∈ Rd be arbitrary and decompose %Sf(y)

%Sf(y) =

∫ ∞
S

∫
Rd

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dtdxds

=

∫ ∞
S

∫
‖y−t‖2<S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

−
∫ S

0

∫
‖y−t‖2≥S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

+

∫ ∞
0

∫
‖y−t‖2≥S

1

s2d+1

∫
Rd

f(t)g

(
t− x
s

)
γ

(
y − x
s

)
dxdtds

=: I − II + III.

We can write I and II as a convolution, similarly as in Li and Sun [13]:

I = (f ∗ ϕ1/S)(y),

where

ϕ(t) :=

∫ ∞
1

H

(
t

u

)
1

ud+1
χB(0,1)(t) du

and H := g∗ ∗ γ. Since γ has radial log-majorant, γ ∈ L∞(Rd) and since g ∈ L1(Rd),
H ∈ L∞(Rd). Therefore if t ∈ B(0, 1), then

|ϕ(t)| ≤ ‖H‖∞
∫ ∞

1

1

ud+1
du = C‖H‖∞ <∞.

If t /∈ B(0, 1), then ϕ(t) = 0. Thus C‖H‖∞χB(0,1) is a radial majorant of ϕ.

II = (f ∗ ψ1/S)(y),

where

ψ(t) :=

∫ 1

0

H

(
t

u

)
1

ud+1
χRd\B(0,1)(t) du.

Let G := |g| ∗ |γ|. Then H ≤ G, and since g, γ have radial log-majorants, Lemma
2.4 implies that H, G have radial log-majorants, too. Since G is radial, there exists η
such that G(x) = η(‖x‖2). If t ∈ B(0, 1), then ψ(t) = 0. If t ∈ Rd \B(0, 1), then

|ψ(t)| ≤
∫ 1

0

G

(
t

u

)
1

ud+1
du =

∫ 1

0

η

(
‖t‖2
u

)
1

ud+1
du

=
1

‖t‖d2

∫ ∞
‖t‖2

η(s)sd−1 ds =: ζ(t)

and let

ζ(t) :=

∫ ∞
1

η(s)sd−1 ds ≤ 1

ωd−1
‖G‖1 <∞ (t ∈ B(0, 1)).
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It is easy to see that |ψ| ≤ ζ, ζ is radial, non-increasing on (0,∞) and bounded.
Moreover, ∫

Rd

ζ(t) dt =

∫
B(0,1)

ζ(t) dt+

∫
Rd\B(0,1)

ζ(t) dt

= C +

∫
Rd\B(0,1)

1

‖t‖d2

∫ ∞
‖t‖2

η(s)sd−1 dsdt

≤ C + ωd−1

∫ ∞
1

1

r

∫ ∞
r

η(s)sd−1 dsdr

= C + ωd−1

∫ ∞
1

η(s)sd−1

∫ s

1

1

r
drds

= C +

∫
Rd\B(0,1)

G(t) ln(|t|) dt <∞,

i.e., ζ is integrable so ζ is a radial majorant of ψ.
We will show that III = 0. To apply Fubini’s theorem we will verify that∫ ∞

0

∫
‖y−t‖2≥S

1

sd+1
|f(t)|G

(
y − t
s

)
dtds <∞. (5.1)

Since G is radial ∫
‖y−t‖2≥S

|f(t)|
∫ ∞

0

1

sd+1
η

(
‖y − t‖2

s

)
dsdt

=

∫
‖y−t‖2≥S

|f(t)|
∫ ∞

0

1

‖y − t‖d2
η(u)ud−1 dudt

=
1

ωd−1
‖G‖1

∫
‖y−t‖2≥S

|f(t)| 1

‖y − t‖d2
dt. (5.2)

By Theorem 3.1∫
‖y−t‖2≥S

|f(t)| 1

‖y − t‖d2
dt ≤ Cp(·) ‖f‖p(·)

∥∥∥∥ 1

‖y − ·‖d2
χ{‖y−·‖2≥S}

∥∥∥∥
q(·)

,

where 1/p(x) + 1/q(x) = 1 (x ∈ Rd). Let λ := 1/Sd. Then

1

λ‖y − t‖d2
≤ 1

λSd
= 1 and

(
1

λ‖y − t‖d2

)q(t)
≤
(

1

λ‖y − t‖d2

)q−
.

If p+ <∞, then q− > 1 and∫
Rd

(
χ{‖y−t‖2≥S}

λ‖y − t‖d2

)q(t)
dt ≤

∫
‖y−t‖2≥S

(
1

λ‖y − t‖d2

)q−
dt

= Sdq−
∫
‖y−t‖2≥S

1

‖y − t‖dq−2

dt

= ωd−1S
dq−

∫ ∞
S

u−dq−+d−1 du <∞.
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Moreover,
1

‖y−t‖d2
χ{‖y−t‖2≥S}(t)

λ
≤ 1

λSd
= 1,

in other words, ∥∥∥∥∥
1

‖y−·‖d2
χ{‖y−·‖2≥S}

λ

∥∥∥∥∥
L∞(Ω∞)

≤ 1,

where

Ω∞ = {x ∈ Rd : q(x) =∞}.
So

%q(·)

( 1
‖y−·‖d2

χ{‖y−·‖2≥S}

λ

)
<∞

and ∥∥∥∥ 1

‖y − ·‖d2
χ{‖y−·‖2≥S}

∥∥∥∥
q(·)

<∞.

We get that (5.2) is finite so we can apply Fubini’s theorem. Since H is radial, there
exists ν such that H(x) = ν(‖x‖2) and

III =

∫ ∞
0

∫
‖y−t‖2≥S

f(t)
1

sd+1
H

(
y − t
s

)
dtds

=

∫
‖y−t‖2≥S

f(t)

∫ ∞
0

1

sd+1
ν

(
‖y − t‖2

s

)
dsdt

=

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫ ∞
0

ν(u)ud−1 dudt

=
1

ωd−1

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫
Rd

H(u) dudt =

=
1

ωd−1

∫
‖y−t‖2≥S

f(t)
1

‖y − t‖d2

∫
Rd

(g∗ ∗ γ)(u) dudt = 0.

We have that

%Sf(y) = (f ∗ ϕ1/S)(y)− (f ∗ ψ1/S)(y) =
(
f ∗ (ϕ1/S − ψ1/S)

)
(y) =: σθ1/Sf(y),

where

θ(y) := ϕ(y)− ψ(y).

Since ϕ and ψ have radial majorants, θ has, too. �

Using the previous theorem we can prove the convergence of %Sf and %S,T f at
Lebesgue points, almost everywhere and in the Lp(·)(Rd)-norm.

Theorem 5.2. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd), p+ <∞, then for all Lebesgue points of f ∈ Lp(·)(Rd),
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(i)

lim
S→0+

%Sf(x) = C ′g,γ · f(x).

(ii)

lim
S→0+,T→∞

%S,T f(x) = C ′g,γ · f(x).

Proof. By Theorem 5.1 and Theorem 3.7 we have

lim
S→0+

%Sf(x) = lim
S→0+

σθ1/Sf(x) =

∫
Rd

θ(y) dy · f(x),

i.e., it is enough to prove that ∫
Rd

θ(y) dy = C ′g,γ .

We have ∫
Rd

θ(y) dy =

∫
Rd

ϕ(y) dy −
∫
Rd

ψ(y) dy.

Here ∫
Rd

ϕ(y) dy =

∫
B(0,1)

∫ ∞
1

H
(y
u

) 1

ud+1
dudy

= ωd−1

∫ 1

0

rd−1

∫ ∞
1

ν
( r
u

) 1

ud+1
dudr

= ωd−1

∫ 1

0

1

r

∫ r

0

ν(t)td−1 dtdr

= ωd−1

∫ 1

0

td−1ν(t)

∫ 1

t

1

r
drdt

= −
∫
B(0,1)

H(t) ln(|t|) dt

= −
∫
B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt

and we have similarly that∫
Rd

ψ(y) dy =

∫
Rd\B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt,

i.e. ∫
Rd

θ(y) dy = −
∫
B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt−
∫
Rd\B(0,1)

(g∗ ∗ γ)(t) ln(|t|) dt

= −
∫
Rd

(g∗ ∗ γ)(t) ln(|t|) dt = C ′g,γ .

To prove (ii), observe that

%S,T f(x) = %Sf(x)− %T f(x).
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Then use Theorem 5.1 and Theorem 3.7 to get

lim
S→0+,T→∞

%S,T f(x) = lim
S→0+

%Sf(x)− lim
T→∞

σθ1/T f(x) = C ′g,γ · f(x)− 0,

which proves the theorem. �

Corollary 5.3. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ <∞, then for all f ∈ Lp(·)(Rd)
(i)

lim
S→0+

%Sf = C ′g,γf a.e.

(ii)
lim

S→0+,T→∞
%S,T f = C ′g,γf a.e.

Theorem 5.4. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. If the maximal operator is bounded
on Lq(·)(Rd), then for all f ∈ Lp(·)(Rd),

(i)
lim
S→0+

%Sf = C ′g,γ · f in the Lp(·)(Rd)-norm.

(ii) If in addition p− > 1, then for all f ∈ Lp·(Rd)
lim

S→0+,T→∞
%S,T f = C ′g,γ · f in the Lp(·)(Rd)-norm.

Proof. To prove (i), use Theorem 5.1 and Theorem 3.8

lim
S→0+

%Sf = lim
S→0+

σθ1/Sf =

∫
Rd

θ(x) dx · f in the Lp(·)(Rd)-norm.

We have seen, that
∫
Rd θ(x) dx = C ′g,γ .

We can prove (ii) similarly. Use Theorem 5.1 and Theorem 3.8 to obtain

lim
S→0+,T→∞

%S,T f = lim
S→0+

%Sf − lim
T→∞

%T f = C ′g,γ · f

in the Lp(·)(Rd)-norm. The proof of the theorem is complete. �

By Remark 3.10 if we suppose that 1/p(·) ∈ LH(Rd) and p+ < ∞, then the
maximal operator is bonded on Lq(·)(Rd). Therefore we have

Corollary 5.5. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If 1/p(·) ∈ LH(Rd), p+ <∞, then for all f ∈ Lp(·)(Rd),

(i) lim
S→0+

%Sf = C ′g,γ · f in the Lp(·)(Rd)-norm.



Continuous wavelet transform in variable Lebesgue spaces 511

(ii) If in addition p− > 1, then for all f ∈ Lp(·)(Rd)

lim
S→0+,T→∞

%S,T f = C ′g,γ · f in the Lp(·)(Rd)-norm.
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