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Bilateral inequalities for harmonic, geometric and
Holder means

Mira-Cristiana Anisiu and Valeriu Anisiu

Abstract. For 0 < a < b, the harmonic, geometric and Holder means satisfy H <
G < Q. They are special cases (p = —1,0,2) of power means M,. We consider
the following problem: find all , 8 € R for which the bilateral inequalities

aH(a, b) + (1 - CM)Q(CL, b) < G(av b) < ﬁH(a’a b) + (1 - ﬁ)Q(aa b)
hold V 0 < a < b. Then we replace in the bilateral inequalities the mean @ by
Mp, p > 0 and address the same problem.
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1. Introduction

We consider bivariate means m : R2 — R which are symmetric (m (b,a) =
m (a,b) for all a,b > 0) and homogeneous (m (Aa, \b) = Am (a, b) for all a,b, A > 0).

For two means my and ms we write m; < mg if and only if my (a,b) < ms (a,b)
for every a,b > 0, and m; < mgy if and only if m; (a,b) < ms (a,b) for all a,b > 0
with a # b.

Since we are dealing with strict inequalities, we may and shall assume in the
following that 0 < a < b.

We consider the bivariate means

b 2ab 2 42\ /2
Alah) = "2 Glap) = Vaby Hah)= 22 Q(mb)—(a . ) (L)
(L‘z"bp)l/p, for p # 0
My(a,b) = (1.2)
Vab, for p=0,

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science
(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.



464 Mira-Cristiana Anisiu and Valeriu Anisiu

which are known as the arithmetic, geometric, harmonic, Hélder and power means,
respectively. Properties and comparison of standard means can be found in [3].
The means from (1.1) are comparable:

min < H < G < A < @ < max,

where min and max are the trivial means given by (a,b) — min (a, b) and (a, b) — max
(a,b). The power means are monotonic in p, and M_; = H, My = G, M; = A, and
My = Q.

Recently, many bilateral inequalities between means have been proved ([1], [2],
[4], [5], [6]). We mention one of them, which was the starting point for this paper,
and refers to the means G, A and Q.

Theorem 1.1. [2] The double inequality
aG(a,b) + (1 — a)Q(a,b) < A(a,b) < fG(a,b) + (1 — B)Q(a,b), VO <a<b
holds if and only if a > 1/2 and f < 1 —+/2/2.

In what follows we shall prove a similar result for the means H, G and Q.
Afterwards we consider the more general case of the means H, G and M,, p > 0. We
show that for p = 5/2 the auxiliary function f is still monotone and we formulate an
open problem.

2. Main result

For 0 < a < b, the geometric, harmonic and Hélder means satisfy H < G < Q.
We shall find all the values of o and 3 in order that the geometric mean to be strictly
between the combination of H and @) with parameters «, respectively 5. Due to the
homogeneity of all the means considered here, we may denote t = b/a, t > 1, and
write in the following m(t) instead of m(1,t) = (1/a)m(a,b). For any three means
m1 < mg < mg, the double inequality

ami(t) + (1 — a)ms(t) < ma(t) < Bmi(t) + (1 — B)ms(t) (2.1)

is equivalent to
B<f(t) <a, (22)

where
ft) = === (2:3)
We shall prove the following result.
Theorem 2.1. The double inequality
aH(@t)+ (1 —a)Q(t) < G(t) < BH(t) + (1 — B)Q(t), Vt>1
holds if and only if « > 1 and B < 2/3. The function
f — Q1 =GO

Q(t) — H(t)
is strictly increasing on (1,00).
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Proof. The function f; is given by

(2t +2)1/2 —261/2)(t + 1)
(22 4+ 2)1/2t 4 (282 + 2)1/2 — 4t

ft) =

We substitute t = 52, s > 1 and get

((25* +2)1/2 — 25)(s® + 1)
(25% 4 2)1/252 4 (2% + 2)1/2 — 452

fi(s?) =
The numerator of the derivative of this expression is
4 (s® — 457 + 250 4+ 2(25% + 2)1/25% — 2(25% + 2)1/25% — 252 + 45 — 1)
=4(s2 = 1)(s® — 45° + 35 — 453 + 352 — 45 + 1 + 2(25* 4+ 2)1/25?)
and the denominator is obviously positive. We shall prove that
g1(s) = 85 — 45° 4+ 3s% — 453 + 352 —4s + 1 + 2(25* + 2)1/25?
is positive for s > 1, hence f; is strictly increasing. We write g1(s) = 0 as
$0 — 4% 4 3s% —45% + 357 —4s + 1 = —2(2s* 4+ 2)1/252, (2.5)
square both sides and get
(5% — 45" —45° + 65 —4s® —4s +1)(s = 1)* = 0.
Denoting by hi(s) = % — 457 — 4% + 65* — 453 — 45 + 1 we get
hi(s+4) = %+ 2857 +3365° + 223655 4 88865 + 209565 + 266405% + 126045 — 2831,

which has only one change of sign. We apply Descartes’ rule of signs for hi(s+4) and
we obtain that the polynomial hq(s) has a single root greater than 4. We denote by
k1(s) the 6th degree polynomial in the left hand side of (2.5) and get

ki(s +4) = 8% 4 20s° + 163s* + 6845 + 1523s% + 1620s + 545. (2.6)

Then the polynomial (2.6) is positive on s > 4, hence g1(s) = 0 has no solutions on
s > 1. It follows that f; is strictly increasing on (1, 00). Since limy—,1 f1(t) = 2/3 and
lim;_, o f1(¢) = 1, the theorem is proved. O

We try to see if a similar result can be obtained by taking instead of My = @
another power mean. For p = 5/2 we can prove

Theorem 2.2. The double inequality
holds if and only if « > 1 and 8 < 5/7. The function

_ Mspa(t) — G(t)

L) =31 s =B

is strictly increasing on (1,00).
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Proof. We have

145/2 4 1\2/5 _ 41/2

to/° + t
Py = BB (2.)

(3152 +3)%° = &5
By substituting t = s%, s > 1 we get
((16s° 4 16)%/° — 4s)(s> + 1)
(82 +1)(16s° +16)%/5 — 8s2
We differentiate the above function and obtain its numerator

32(s —1)(25% — 657 — 2% — 25° — 25% — 252 — 65+ 2+ 5% (s + 1) (165> 4 16)/%),

fa(s?) =

the denominator being positive. We denote
ga(s) = 255 — 657 — 255 — 25° — 26% — 252 — 65+ 2+ 52 (s + 1) (165° + 16)?/°
and we write g2(s) = 0 as
2(s® —3sT — 50 — 55— 3 — 52 —3s+1)
s2(s+1)
We apply the 5th power to both sides of (2.8) and get ha(s) = 0, where
ha(s) = 30 — 10?9 + 2552 + 205%7 — 50526 — 19652° — 15052* + 32052
41305522 + 2090s%! + 2439520 4 23205 + 255058 + 346057 4 476056
+5240s'5 + 47605 + 346053 + 25505'2 + 232051 4 2439s'% + 20905°
+13055% 4 32057 — 1505% — 1965° — 50s* + 2053 + 2552 — 105 + 1.

= —(165° + 16)%/. (2.8)

Using the Sturm sequence, we obtain that hs(s) has no roots in (1,00). It follows
that ha(s) > 0 on (1,00), and the derivative of fo(t) is positive on this interval, hence
fa(t) is strictly increasing. Since limg—1 fo(t) = 5/7, limy o0 fo(t) = 1, the theorem
is proved. O

Remark 2.3. We can consider the function
M,(t) — Gt
fS(t) — MP( ) H( )
p(t) — H(t)
for arbitrary p > 0. It is easy to check that lim;_,; f3(¢) = p/(p+1) and lim;—, o, f3(t) =
1. It remains to study the monotonicity of f3. In the following theorem we prove that,
for p > 5/2, the function f3 is not monotone on (1, c0).

Theorem 2.4. For p > 5/2, the infimum of the function fs on (1,00) satisfies the
imequality

. p
Inf fs(t) < 1

Proof. Let p > 5/2. The function f3 is given by
1 1
G 5)1/1ﬂ —1/2

f3(t)* )
o+ 2
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and after the substitution ¢ = s2, s > 1 we get

(57 +PV? — 5)(s* +1)

2\ _
f3(s%) = (32 + 1) (252 1 D)1/ — 252"

The Taylor series for sop = 1 reads

p_ p2p—5) (s—1)2 + M(s— 1)? +O((s — 1)*), for s — 1

p+1 12(p+1) 12(p+1)
and its derivative will be
p(2p —5) 2
———(s—=1)+ O((s — 1)7).
Sty s DOl 1)
It follows that the derivative is negative at least for s > 1 close to 1, hence f5 decreases
and inf f3(t) <p/(p+1). O

Based on the results in theorems 2.1 and 2.2, we formulate the following
Open problem. Prove that the function f3 is strictly increasing on (1,00) for each
p € (0,5/2]. Then, for each p € (0,5/2], the double inequality

aH(t) + (1 —a)M,(t) < G(t) < BH(t) + (1 — B)My(t), Vt > 1
will be true if and only if « > 1 and 8 < p/(p + 1).
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