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Reconstructing graphs from a deck of all distinct
cards

Miklós Bartha and Amitesh S. Shuva

Abstract. The graph reconstruction conjecture is looked at from a new perspec-
tive. Given a graph G, three equivalence relations are considered on V (G): card
equivalence, automorphism equivalence, and the equivalence of having the same
behavior. A structural characterization of card equivalence in terms of automor-
phism equivalence is worked out. Relative degree-sequences of subgraphs of G

are introduced, and a new conjecture aiming at the reconstruction of G from
the multiset of relative degree-sequences of its induced subgraphs is formulated.
Finally, it is shown that graphs having a deck free from duplicate cards are re-
constructible.
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1. Introduction

For a graph G and vertex v ∈ V (G), G − v is the graph obtained from G by
deleting the vertex v and its incident edges. We call G− v a vertex-deleted subgraph
of G, or the card associated with vertex v in G. We do not distinguish between
isomorphic cards, though. The multiset of cards collected from G in this way is called
the deck of G, denoted D(G).

Perhaps the most well-known unsolved problem of graph theory asks whether
an arbitrary graph G having at least three vertices can be reconstructed in a unique
way (up to isomorphism) from its deck. The likely positive answer to this question
is commonly known as the Reconstruction Conjecture (R.C., for short), and it was
formulated by Kelly and Ulam as early as 1942. Ever since its inception, this prob-
lem has remained a mystery. Trying to solve it is similar to conducting a criminal
investigation. There is a suspect, the graph G, who leaves plenty of evidence (i.e.,
the deck D(G)) on the crime scene. Yet, no brilliant detective has been able to track
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down the suspect for over 70 years, and the number of works on the case is rapidly
decreasing year by year. The reconstruction problem was, however, very popular in
the past. According to [15], more than 300 research papers had been published on
graph reconstruction between 1950 and 2004.

One of the last true champions of graph reconstruction was F. Harary. He sug-
gested a natural analogue [7] of the R.C., which says that every graph having at least
four vertices is uniquely reconstructible from the deck of its edge-deleted subgraphs.
Others have come up with similar conjectures for directed graphs, cf. [14, 16], and
have obtained partial results proving or disproving them. The reader is referred to [8]
and [13] for two excellent surveys on graph reconstruction.

In this paper we propose an original new approach to the study of the recon-
struction problem. This approach is structural, rather than combinatorial. It is deeply
rooted in algebra and category theory, despite the fact that the proofs of our present
results are completely elementary. The results themselves, however, have been dis-
tilled from an entirely independent study focusing on the completeness of the traced
monoidal category axioms [1, 10] in different well-known mathematical structures
satisfying these axioms. We shall elaborate on this study to some extent in Section 4.

2. Definitions, and some easily recoverable data

Let G be a graph having at least three vertices, fixed for the rest of the paper.
As usual, V (G) and E(G) will denote the set of vertices and edges of G, respectively.
We assume that G is simple in the sense that it does not contain loops or multiple
edges. In general, we rely on the terminology of [12] to deal with graphs.

Two vertices u, v ∈ V (G) are called hypomorphic or card-equivalent (c-
equivalent, for short) if the card associated with u is identical with the one associated
with v, i.e., G−u ∼= G−v. (Remember that we do not distinguish between isomorphic
cards.) Clearly, c-equivalence is an equivalence relation on V (G). Two graphs G and
H are hypomorphic if D(G) and D(H) are identical as multisets, that is, each card
appears in D(G) and D(H) the same number of times. (Recall that D(G) denotes
the deck of G.) If G and H are hypomorphic, then a hypomorphism of G onto H is a
bijection φ : V (G) → V (H) such that G − v ∼= H − φ(v) holds for every v ∈ V (G).
A reconstruction of G is a graph G′ such that G and G′ are hypomorphic, or, equiv-
alently, there exists a hypomorphism of G onto G′. Using this terminology, the R.C.
simply says that two graphs G and H are hypomorphic iff they are isomorphic. In
other words, all reconstructions of G are isomorphic (to G, of course). Clearly, every
isomorphism of G onto H is a hypomorphism, but the converse is not true, even if
the R.C. holds.

Graph G is called card-minimal if D(G) is a set, that is, each card is unique in
D(G). Our aim in this paper is to show that the R.C. holds true for all card-minimal
graphs. (Note that any graph on two vertices has two identical cards.) One might
think that this result is trivial, since there is a unique hypomorphism between any
two hypomorphic card-minimal graphs G and H . While this is certainly true, we have
no direct information on E(G) and E(H), therefore the given unique hypomorphism
may not be an isomorphism. Reconstructing G from D(G) is still a very complex issue
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for such graphs. As we shall see, any duplication of cards in D(G) indicates a kind
of symmetry in the internal structure of G. Consequently, the class of card-minimal
graphs is really large. Our result is therefore in accordance with the observation in
[6] saying that the probability that a randomly chosen graph on n vertices is not
reconstructible goes to 0 as n goes to infinity.

In general, it is trivial that |V (G)|, the number of vertices of G, is recoverable
from D(G). It is still easy to see that |E(G)| is also recoverable. Indeed, add up the
numbers of edges appearing on the cards of D(G), and observe that this sum is equal
to

(|V (G)| − 2) · |E(G)|.

See [13, Theorem 2.1] for the details of this simple combinatorial argument.
Once |E(G)| is given, calculating the degree d(v) of vertex v for card G − v is

straightforward:

d(v) = |E(G)| − |E(G− v)|.

Clearly, the degree of any vertex c-equivalent with v is the same as that of v. We
thus have managed to recover the degree-sequence of G from D(G). Recall that the
degree-sequence of G is the sequence of degrees of G’s vertices in a non-decreasing
order.

A similar combinatorial argument leads to the following result, known as Kelly’s
Lemma [11], see also [13, Theorem 2.4].

Proposition 2.1. For any graph Q, let sQ(G) denote the number of subgraphs of G
isomorphic to Q. Then sQ(G) = sQ(H) whenever G and H are hypomorphic and
|V (Q)| < |V (G)|.

Nash-Williams [13] has also shown that the so-called degree-sequence sequence
of G is recoverable from D(G). Essentially this means that, not only d(v) can be read
from the card G−v as above, but also the degrees of the neighbors of v are recoverable
in this way. We shall reformulate Nash-Williams’ proof in Section 4 in terms of relative
degree-sequences. A natural question to ask at this point is whether the degrees of the
neighbors of the neighbors of v are also recoverable, and so on, moving away further
and further from vertex v. This question is already a lot more difficult to answer,
mainly because the desired degrees or degree-sequences are no longer c-equivalence
invariant. In other words, the answer depends on the representant vertex v chosen for
card G− v.

3. Characterizing card equivalence

The simple results discussed in Section 2 are of a strictly combinatorial nature,
and they do not even touch on the structural properties of card equivalence. In this
section we present a real structural characterization of c-equivalence, which is our
first main result. In this characterization, card equivalence is compared to two other
important equivalence relations on V (G), namely automorphism equivalence and the
equivalence of having the same behavior. Card equivalence will be denoted by ∼c.
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Definition 3.1. Two vertices u, v ∈ V (G) are automorphism-equivalent (a-equivalent,
for short) if there exists an automorphism of G taking u to v.

Automorphism equivalence will be denoted by ∼a. It is obvious that ∼a is an
equivalence relation, but its relationship to ∼c is not clear for the first sight.

Example 3.2. Let G be the graph in Fig. 1a, and consider the vertices u1, u2, u3 in G.
It is easy to see that ui ∼c uj and ui ∼a uj both hold for any 1 ≤ i, j ≤ 3.

In general, it is clear by the definitions that ∼a⊆∼c. Example 3.3 below shows, how-
ever, that ∼c 6⊆∼a.

Example 3.3. Let G be the graph of Fig. 2, and consider again the vertices u1, u2, u3.
As it turns out, u1 ∼c u3, but u1 6∼a u3. Furthermore, G has no automorphisms other
than the identity.

u2
u3u1

e

a) b)

Figure 1. The graph of Example 3.2.

u2
u3u1

Figure 2. The graph of Example 3.3.

The reader familiar with flowchart schemes and their behaviors [1, 2, 4, 5] will no-
tice that the graphs in Figures 1a and 2 have been inspired by appropriate flowcharts.
To recover these flowcharts, make each edge bidirectional in the graphs and supply the
degrees with appropriate input-output port distinctions at each vertex. The resulting
flowcharts will have no entry or exit vertices, though. Also, no two lines (edges) will
be joined at any input or output port. The characteristic feature of such connected
“injective” flowcharts is that their proper automorphisms do not have fixed-points.
The automorphisms themselves can be neatly characterized by Ésik’s commutativity
axioms [5, 3] for iteration theories. Regarding the graph G in Fig. 1a this means that
G can be constructed by taking three copies of the minimal graph (scheme) M –
shown in Fig. 1b as a multigraph – and turn the edge e ∈ E(M) into a sequence of
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edges running through the three copies of M − e in an appropriate way, following a
cyclic permutation. This is of course a very simplistic interpretation of the otherwise
truly complex commutativity axioms, but it is right to the point. On the other hand,
graphs that are not scheme-like, e.g. the simple graph in Fig. 3, do have proper au-
tomorphisms with fixed-points, and the concept of minimal graph is meaningless for
them.

u v

v’

Figure 3. A non-scheme-like graph

Yet another important equivalence relation on V (G) closely related to ∼a and
∼c is that of having the same behavior. The reader is referred again to [1, 4, 5] for
the original definition of this concept in flowchart schemes.

Definition 3.4. The relation ∼ of having the same behavior is defined on V (G) as the
largest equivalence having the following two properties.

1. If u ∼ v, then d(u) = d(v).
2. If u ∼ v and {u1, . . . uk} ({v1 . . . vk}) is the set of vertices adjacent to u (re-

spectively, v), then the multiset of ∼-equivalence groups defined by the set of
representants {u1, . . . uk} is the same as the one determined by {v1 . . . vk}.

It is easy to see that two vertices u and v have the same behavior iff G unfolds to
isomorphic infinite rooted trees starting from u and v. For example, any two vertices
of a regular graph have the same behavior.

Clearly, ∼a⊆∼, but ∼6⊆∼a. Indeed, not every two vertices of a regular graph are
a-equivalent in general. On the other hand, ∼c is not comparable with ∼. The regular
graph counterexample shows that ∼6⊆∼c, and vertices u1, u3 in the graph of Fig. 2
demonstrate that ∼c 6⊆∼.

The practical importance of the equivalence ∼ is that it is computable in poly-
nomial time. The algorithm to isolate the equivalence groups of ∼ is completely anal-
ogous to Hopcroft’s [9] well-known algorithm for minimizing finite state automata.
Even though ∼a is a lot more costly to compute because of the isomorphism check
involved, it still helps to know that ∼a is a refinement of ∼.

The above comparison with the relations ∼ and ∼a shows that ∼c is rather
inconvenient to deal with in a direct way. We need to find a characterization of ∼c

that brings it in line with the much better structured equivalence ∼a. The basis of
this characterization is the following lemma.

Lemma 3.5. Let u and v be two distinct vertices of G. Then u ∼c v iff there exists a
sequence of vertices x0, x1, . . . , xn (n ≥ 1) in G satisfying the conditions (i) and (ii)
below.

(i) x0 = v and xn = u;
(ii) there exists an isomorphism φ of G − u onto G − v such that φ(xi) = xi+1 for

every 0 ≤ i < n.
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Proof. Notice first that the graphs G− u and G− v are not separated in the lemma,
they both use the vertices of the common supergraph G. The lemma therefore estab-
lishes a link between two c-equivalent vertices u and v in G through a sequence of
(necessarily distinct) vertices x1, . . . , xn−1 in G−u−v. These vertices, however, need
not be c-equivalent with u or each other in G. For example, in the graph of Fig. 2, if
v = u1 and u = u3, then n = 2, x1 = u2, and φ can be derived from the automorphism
of G−{u1, u2, u3} that determines a cyclic permutation of the four small cycles of G
from left to right. Clearly, u1 6∼c u2.

Sufficiency of condition (ii) alone for having u ∼c v is trivial. Assuming that
u ∼c v, choose an arbitrary isomorphism φ : G−u→ G−v. Let x1 = φ(v), x2 = φ(x1),
and so on, until u = xn = φ(xn−1) is reached. Vertex u must indeed be encountered
at some point along this line, since φ, being an isomorphism, is an injective mapping
V (G) \ {u} → V (G) \ {v}. Consequently, the vertices x1, . . . , xn−1 in V (G) \ {u, v}
will all be different until xn = u stops this necessarily finite sequence. (Mind that
xi+1 = φ(xi) 6= v, since v is not a vertex of G− v.) The proof is complete. �

Theorem 3.6. Let u and v be two distinct vertices of G. Then u ∼c v iff there exists
a sequence of pairwise distinct vertices x0, x1, . . . , xn (n ≥ 1) satisfying the following
conditions.

(i) x0 = v and xn = u;
(ii) for X = {x0, x1, . . . , xn} ⊆ V (G) there exists an automorphism ψ of G−X such

that:
(iia) for every 0 ≤ i < n and vertex wi ∈ V (G − X) adjacent to xi in G (or,

equivalently, in G − u), the vertex wi+1 = ψ(wi) is also in V (G −X) and
is adjacent to xi+1 in G (i.e., in G− v);

(iib) for every 0 ≤ i < j < n,

xi is adjacent to xj iff xi+1 is adjacent to xj+1

(in G, of course).

Vertices u and v are a-equivalent iff the assignments xi 7→ xi+1, u 7→ v extend the
automorphism ψ in (ii) to one of G.

Proof. Intuitively, condition (iia) says that for every 0 ≤ i < n, the neighbors of xi in
G−X are matched up with those of xi+1 in G−X by the automorphism ψ. Condition
(iib) settles the issue of how the vertices xi themselves are connected in G. Notice that
the question whether u is connected to v is irrelevant. Indeed, it can easily happen
that u ∼c v and u ∼c v

′ both hold, while u is adjacent to v but not to v′. See Fig. 3.

The first statement of the theorem is in fact a simple consequence of Lemma 3.5.
Regarding sufficiency, if ψ is an automorphism of G−X satisfying (iia) and (iib), then
it can be extended to an isomorphism φ ofG−u ontoG−v satisfying (ii) of Lemma 3.5.
Thus, u ∼c v. Conversely, if u ∼c v, then the required automorphism ψ can be derived
in a unique way from the isomorphism φ guaranteed by Lemma 3.5. Notice that the
subgraph G−X may turn out to be empty. The second statement of the theorem is
obvious. �
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At this point the reader may want to have a second look at Examples 3.2 and 3.3,
and identify the underlying automorphism ψ in the graphs of Fig. 1 and Fig. 2. One
important point is that, given the fact v ∼a u (and therefore u ∼c v), one must not
jump to the conclusion saying that x0 = v and x1 = u will do for X = {x0, x1} in
(ii) of Theorem 3.6, and then be taken by surprise that the desired automorphism
ψ cannot be located in G − X . For example, in the graph G of Fig. 1, if v = u1
and u = u2, then x1 = u3! Consequently, X = {u1, u2, u3}, and the automorphism
ψ is just the one taking the three small cycles into one another following a cyclic
permutation with offset 2 from left to right.

4. Relative degree-sequences

Recall from Section 2 that the degree-sequence of graph G is the sequence of
degrees of its vertices in a non-decreasing order. Let Q be a subgraph of G. The degree
of a vertex v ∈ V (Q) relative to G is a pair (r, d), where d (r) is the degree of v in G
(respectively, Q). We shall use the notation rd for the pair (r, d), and say that v has
relative degree r out of d. Then the relative degree-sequence of Q (with respect to G)
is the sequence of relative degrees of its vertices in an order that is non-decreasing
regarding the superscripts d and also non-decreasing in r among those degrees that
have the same superscript d.

The degree-sequence of G and the relative degree-sequence of Q with respect to
G will be denoted by ds(G) and rdsG(Q), respectively. In order to ensure that ds(G)
and rdsG(Q) have the same length, we shall include a relative “degree” ∅d in rdsG(Q)
for each vertex v ∈ V (G) \ V (Q) with degree d. The “number” ∅ is treated as 0, but
the notation ∅ will distinguish between a vertex that has been deleted and one that
is still present but isolated. This distinction is purely technical, however, because one
can easily fill in the ∅d relative degrees in rdsG(Q) once ds(G) is known.

Example 4.1. Consider the graph G and its subgraph Q in Fig. 4. The degree-
sequence of G is 2, 2, 3, 3, while the relative degree sequence of Q with respect to G is
12, 12, 13, 33.

.

.

.

.

. ..

.

G:
v2

1v

4v

3v

1v

v2

4v

3v
Q:

Figure 4. Graph G and its subgraph Q

The following simple combinatorial observation is equivalent to Nash-Williams’
result [13, Corollary 3.5] on degree-sequence sequences.

Proposition 4.2. For every vertex v ∈ V (G), rdsG(G− v) is recoverable from D(G).
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Proof. We have seen in Section 2 that d(v) and ds(G) are recoverable from D(G).
Write the sequence ds(G−v) underneath ds(G) by inserting the “degree” ∅ in ds(G−v)
right under the position of the first occurrence of d(v) in ds(G). For example:

ds(G) : 2 2 2 3 3 4 4
ds(G − v)) : 1 1 2 2 3 ∅ 3
rdsG(G− v) : 12 12 22 23 33 ∅4 34

Observe that the “true” degrees in ds(G− v) will lag behind those in ds(G), so that
the difference between two degrees in aligned positions is at most 1. Therefore it is
trivial to fill out the missing superscripts in ds(G− v), so that the resulting sequence
becomes rdsG(G− v). �

Proposition 4.2 basically says that, for every card G − v, the degrees of the
vertices adjacent to v in G are uniquely determined by ds(G) and ds(G− v). Indeed,
these are exactly the degrees r + 1 appearing in rdsG(G − v) as rr+1. Of course, we
still have no information about the actual position of v’s neighbors in G− v.

We immediately generalize Proposition 4.2 to find out the relative degree-
sequence of all 2-vertex-deleted subgraphs of G. Notice that, for two distinct vertices
u, v ∈ V (G), the subgraph G− u− v is no longer determined by the cards G− u and
G−v in a unique way, since the cards themselves do not uniquely identify the vertices
u, v. Moreover, the subgraph G − u − v, too, can be isomorphic to other subgraphs
G− u′ − v′ in which u′ and v′ are associated with some different cards.

Theorem 4.3. Let u and v be two distinct vertices of G. Given the degree-sequence of
the subgraph G − u − v, rdsG(G − u − v) is uniquely determined by the data ds(G),
ds(G− u), and ds(G− v). Moreover, the question whether u and v are adjacent in G
or not turns out from the data ds(G), ds(G− u− v), d(u) and d(v).

Proof. We use the same alignment argument as in the proof of Proposition 4.2. Write
the degree-sequences ds(G), ds(G − u), and ds(G − v) under each other, inserting
the ∅ symbol in the appropriate positions of ds(G − u) and ds(G − v). Furthermore,
insert two ∅’s in ds(G − u − v) aligned with the ones already inserted in ds(G − u)
and ds(G − v). If d(u) = d(v) = d, then insert two consecutive ∅’s aligned with the
beginning of the block marked by degree d in ds(G). For example:

ds(G) : 2 2 2
ds(G − u) : 1 1 2
ds(G − v) : 1 2 2
ds(G − u− v) : 0 1 1

→
rdsG(G− u− v) : 02 12 22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 3
2 3
2 2
2 2
←
13 23

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 4 . . . . . . . . . . . .

4 4 . . . ∅ . . . . . .

3 4 . . . . . . ∅ . . .

3 4 . . . ∅ ∅ . . .

34 44 . . . ∅ ∅ . . .

Let nG(d) (nG,Q(r
d)) denote the number of occurrences of d (rd) in ds(G) (respec-

tively, rdsG(Q)). Assume, for simplicity, that the smallest degree in G is d0 ≥ 2. Then,
clearly:

nG,Q((d0 − 2)d0) = nQ(d0 − 2).

It follows that:

nG,Q((d0 − 1)d0) = nG−u(d0 − 1) + nG−v(d0 − 1)− 2 · nQ(d0 − 2), and
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nG,Q(d
d0

0 ) = nG(d0)− nG,Q((d0 − 2)d0)− nG,Q((d0 − 1)d0),

provided that neither of the degrees d(u) and d(v) equals d0. If either or both does,
then the above calculation changes in a straightforward way regarding the numbers
nG,Q((d0 − 1)d0) and nG,Q(d

d0

0 ). One can then carry on in the same way, calculating

the numbers nG,Q((d0 − 1)d0+1), nG,Q(d
d0+1

0 ), nG,Q((d0 +1)d0+1), and so on. Details
are left to the reader.

As to the second statement of the theorem, if

|E(G)| − |E(G− u− v)| = d(u) + d(v),

then u and v are not connected in G, otherwise they are. The numbers |E(G)| and
|E(G − u − v)| are determined by ds(G) and ds(G − u − v), respectively. The proof
is complete. �

Proposition 4.2 and Theorem 4.3 show that the concept of relative degree-
sequence is rather fundamental in the study of graph reconstruction. To provide yet
another evidence for this observation, let Rds(G) denote the multiset

{rdsG(Q)|Q is an induced subgraph of G}.

Thus, relative degree-sequences of subgraphs count with multiplicity in Rds(G). We
put forward the following conjecture, which is very closely related to the R.C..

Conjecture 4.4. For every graph G, Rds(G) identifies G up to isomorphism.

Conjecture 4.4 is especially useful for several reasons.

1. It appears to hold for all graphs with no exceptions.
2. It provides a characterization of graph isomorphism, which has been sought for

a very long time.
3. Algebraically, if G = G1 +G2, then

Rds(G) = Rds(G1)×Rds(G2). (4.1)

In equation 4.1 above, × stands for concatenation of sets of relative degree-sequences
in the formal language sense (taking the quotient of the product by commutativity).
In terms of polynomials, we can think of a relative degree rd as a formal variable.
Let X denote the set of all such variables. Then Rds(G) becomes a polynomial of
the variables X over the integer ring Z, in which all coefficients are non-negative.
(Treat union of multisets as addition in this polynomial.) Let Z[X ] denote the com-
mutative Z-module (in fact algebra) of X-polynomials over Z. (Mind that addition
of polynomials is commutative in Z[X ].) Our fundamental observation is that the
operation × in (4.1) translates naturally into product of polynomials in the algebra
Z[X ]. This product makes the algebra Z[X ] associative and commutative, therefore
a commutative ring.

Conjecture 4.4 was the starting point of the present study, and the fundamental
observation in the previous paragraph served as a motivation for it. In the language
of category theory this observation suggests that the traced monoidal category of
graphs (flowchart schemes), in which tensor is disjoint union and trace is feedback (i.e.,
creating an internal edge by merging two external ones, see [1, 3]) can be embedded in
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a natural way into the compact closed category of free modules over the commutative
algebra (ring) Z[X ], in which tensor and trace are the standard matrix operations.
There is a clear analogy in this statement with the Int construction, cf. [10], for the
“scalar” connection between graphs and polynomials is lifted to the level of traced
monoidal and compact closed categories by observing that the given translation of
graphs into polynomials is compatible with the trace operation at the higher level.

Naturally enough, Conjecture 4.4 also has an “edge” version, in which Rds(G)
is defined as the set of relative degree-sequences of all subgraphs of G. This version,
too, appears to hold for all graphs G with no exceptions, even for multigraphs as one
would expect after the flowchart scheme analogy.

The connection between Conjecture 4.4 and the R.C. is the following. If we
could compute rds(G) from D(G), then Conjecture 4.4 would imply the R.C.. As our
main result in Section 5 shows, however, computing the whole multiset Rds(G) is
far too much work in order to reconstruct G. Therefore this reconstruction argument
probably does not hold much water, indicating that Conjecture 4.4 is even tougher
than the R.C..

On the other hand, if, given Rds(G), we could isolate Rds(G − v) for each
vertex-deleted subgraph of G, then the R.C. would imply Conjecture 4.4 through a
straightforward induction argument. Since our concern is eventually Conjecture 4.4,
and the construction of the multiset of multisets

{Rds(G− v)|v ∈ V (G)}

from Rds(G) looks promising, we definitely must prove the R.C. first.

5. The reconstruction of card-minimal graphs

In this section we present our second main result, which aims at the reconstruc-
tion of card-minimal graphs. Temporarily, we are going to assume a further technical
condition in order to keep the reconstruction simple. Dropping this condition will be
the subject of a forthcoming paper. The condition is formally defined as follows.

Definition 5.1. Graph G is 2-card reconstructible if it is connected, and for every
u, v, x, y ∈ V (G), the isomorphism

G− u− v ∼= G− x− y

implies that u, v, x, and y cannot all be distinct.

To shed some light on the intuition behind Definition 5.1, let G be card-minimal,
and Q be an arbitrary graph having |V (G)| − 2 vertices. Consider the set C of cards
in D(G) in which Q is isomorphic to at least one vertex-deleted subgraph. Construct
the graph GQ which has C as its set of vertices, and any two cards G− u, G− v are
connected in GQ iff G − u − v ∼= Q. (Remember that G is card-minimal, therefore
the definition of GQ is correct.) Then G is 2-card reconstructible iff GQ is either a
triangle or a star graph for every 2-vertex-deleted subgraph Q of G. In other words,
if |C| > 2, then the following two conditions are met:
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1. the subgraph Q occurs k ≥ 2 times as a vertex-deleted subgraph in some card
G− u ∈ C;

2. |C| = k+ 1 and the cards in C different from G− u all have a single occurrence
of Q in them, with the possible exception that k = 2 and all the three cards in
C have two occurrences of Q in them.

See Fig. 5a for a card-minimal graph G which is, and Fig. 5b for one which is not
2-card reconstructible.

u

v

x

y

a) b)

Figure 5. The 2-card reconstructibility condition

Theorem 5.2. Every card-minimal and 2-card reconstructible graph G is recon-
structible.

Proof. Let Q be an arbitrary graph having |V (G)| − 2 vertices, and find the set C
of cards in which Q is isomorphic to at least one vertex-deleted subgraph. If C = ∅,
then drop Q as uninteresting. Otherwise C has at least two elements. If there are
exactly two cards G− u and G− v in C, then conclude that Q ∼= G− u− v, and use
Theorem 4.3 to decide if u and v are adjacent in G or not. If C has more than two
elements, then the condition of 2-card reconstructibility implies that either |C| = 3
and each card in C has two subgraphs isomorphic to Q, or there is exactly one card
G − u ∈ C that contains more than one subgraph isomorphic to Q. In the first case
Q ∼= G − u − v for any pair G − u, G − v of distinct cards in C, while in the latter
Q ∼= G− u − v for all vertices v 6= u such that G − v ∈ C. Furthermore, in this case
Q is not isomorphic to any other 2-vertex-deleted subgraph of G. (In other words,
Q 6∼= G − u1 − u2, where G − u1 and G − u2 are both in C but ui 6= u for either
i = 1 or 2.) Again, use Theorem 4.3 to find out if u is adjacent to v in G, knowing
that Q ∼= G − u − v. It is evident that the above procedure will decide for each pair
of cards G − u, G − v in D(G) if the vertices u and v are adjacent in G or not. The
proof is now complete. �

At this point the reader might have the impression that the condition of 2-card
reconstructibility is overly restrictive. In fact it is not, and a fairly simple analysis
based on the combination of Proposition 2.1 and Theorem 4.3 shows that whenever

G− u− v ∼= G− x− y

holds for four distinct vertices u, v, x, y, then each possible correspondence of these
vertices to appropriate cards in D(G) can be identified in a consistent way. This
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analysis is technically complicated, however, therefore we do not include it in the
present introductory paper.

6. Conclusion

Motivated by an independent research on traced monoidal categories, we have
presented a structural analysis of graphs with the aim of being able to reconstruct
them from some partial information. The basis of the reconstruction of graph G

could either be the classical multiset of G’s vertex-deleted subgraphs, or the multiset
of relative degree-sequences of all induced subgraphs of G.

We have introduced three equivalence relations on V (G) for the better under-
standing of the reconstruction problem. Card equivalence is the one directly related
to the reconstruction conjecture. Our examples have shown, however, that this equiv-
alence is rather inconvenient to deal with. Automorphism equivalence and having
the same behavior have been adopted from the study of flowchart schemes and their
behaviors. These relations have a much more transparent structure, and both have
turned out to be very closely related to card equivalence. For an evidence, we have
worked out a characterization theorem for card equivalence to bring it in line with
automorphism equivalence.

With respect to relative degree sequences, we have provided a generalization of
an earlier observation by Nash-Williams on the degree-sequence sequence of graphs.
As an application of this result we have shown that every card-minimal graph G

satisfying a further simple condition is reconstructible from the deck of G. However,
the condition of 2-card reconstructibility used in the proof of this result appears to be
purely technical, and could be replaced by a thorough analysis of G’s 2-vertex-deleted
subgraphs on the basis of our characterization theorem for card equivalence.

References

[1] Bartha, M., A finite axiomatization of flowchart schemes, Acta Cybernetica, 8(1987),
no. 2, 203–217, http://www.cs.mun.ca/∼bartha/linked/flow.pdf.

[2] Bartha, M., An algebraic model of synchronous systems, Information and Computation
97(1992), 97–131.

[3] Bartha, M., The monoidal structure of Turing machines, Mathematical Structures in
Computer Science, 23(2013), no. 2, 204–246.
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