
Stud. Univ. Babeş-Bolyai Math. 59(2014), No. 4, 435–442

Reconstructibility of trees from subtree size
frequencies

Dénes Bartha and Péter Burcsi

Abstract. Let T be a tree on n vertices. The subtree frequency vector (STF-
vector) of T , denoted by stf(T ) is a vector of length n whose kth coordinate is the
number of subtrees of T that have exactly k vertices. We present algorithms for
calculating the subtree frequencies. We give a combinatorial interpretation for the
first few and last few entries of the STF-vector. The main question we investigate
– originally motivated by the problem of determining molecule structure from
mass spectrometry data – is whether T can be reconstructed from stf(T ). We
show that there exist examples of non-isomorphic pairs of unlabeled free (i.e.
unrooted) trees that are STF-equivalent, i.e. have identical subtree frequency
vectors. Using exhaustive computer search, we determine all such pairs for small
sizes. We show that there are infinitely many non-isomorphic STF-equivalent
pairs of trees by constructing infinite families of examples. We also show that
for special kinds of trees (e.g. paths, stars and trees containing a single vertex of
degree larger than 2), the tree is reconstructible from the subtree frequencies. We
consider a version of the problem for rooted trees, where only subtrees containing
the root are counted. Finally, we formulate some conjectures and open problems
and outline further research directions.

Mathematics Subject Classification (2010): 05C05.

Keywords: Tree reconstruction, subtree size frequencies.

1. Introduction

Reconstruction of combinatorial structures from partial information is a widely
discussed topic in the literature, full of intriguing and notoriously hard problems. Our
present paper falls in the domain of reconstructibility investigations. Similar problems
include reconstructibility of strings from factors or subsequences [2, 4], reconstructibil-
ity of graphs from vertex- or edge-deleted subtrees [6, 7], reconstructibility of matrices
[3, 5], reconstruction of strings from Parikh vectors [1] and others.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.



436 Dénes Bartha and Péter Burcsi

The problem we investigate is the possibility of reconstruction of an unlabeled
free (i.e. unrooted) tree with n vertices, given the number of subtrees of size 1, 2, . . . , n,
which we call the STF-vector of the tree. The motivation of the questions comes from
the interpretation of mass spectrometry data.

The paper is structured as follows: in Section 2, we give the definition of the
subtree frequency vector, and discuss some of its properties. In Section 3, we introduce
methods for calculating the STF-vectors. Our two main tools are a version of the
STF-vector for rooted trees and a polynomial representation of the STF-vector. In
Section 4, we show that in some cases, the STF-vector uniquely determines the tree
(up to isomorphism). In Section 5, we present examples where the STF information is
insufficient for reconstructing the tree. In the Conclusion we present open questions
and propose new research directions.

All symbols – if not stated otherwise – represent nonnegative integers, x is used
for the variable of univariate polynomials and n usually denotes the number of vertices
in a tree.

2. Basic definitions and properties

Definition 2.1. Let T be a tree on n vertices. The subtree frequency vector (STF-
vector) of T , denoted by stf(T ) is a vector of length n whose entry at position k is the
number of subtrees of T that have exactly k vertices.

Remark 2.2. Note that stf is clearly invariant for isomorphism. Thus in the recon-
struction problem mentioned later, we are only interested in reconstructing the (unla-
beled) tree up to isomorphism. Note however, that in the calculation of the STF-vector,
all subtrees are considered, and isomorphic subtrees are counted with multiplicity.

For example, if P5 denotes a path of length 5 and S4 a star with 4 leaves, then
we have stf(P5) = [6, 5, 4, 3, 2, 1] and stf(S4) = [5, 4, 6, 4, 1].

Proposition 2.3. Let T be a tree on n vertices with stf(T ) = [a1, a2, . . . , an]. Then the
following holds:

i) a1 = n,
ii) a2 = n− 1,

iii) a3 =
∑

v∈V
(
d(v)
2

)
, where V is the set of vertices and d(v) denotes the degree of

v.
iv) an−1 equals the number of leaves,
v) an = 1.

Proof. For iii) note that a tree with 3 vertices is a path, so we can calculate such
subtrees by counting how many of them are centered at each vertex of T , giving the
formula. For iv) note that omitting a vertex v from T is connected if and only if v is
a leaf. The other statements are trivial. �

We also introduce the rooted version of the STF-vector, partly because it is
interesting on its own, but it also helps in calculating the unrooted STF-vector.



Reconstructibility of trees from subtree size frequencies 437

Definition 2.4. Let T be a tree on n vertices and v a vertex of T . The rooted subtree
frequency vector (RSTF-vector) of T with root v, denoted by rstf(T, v) is a vector of
length n whose entry at position k is the number of subtrees of T that contain v and
have exactly k vertices.

For example if T is a path on 5 vertices, and v is its center, then rstf(T, v) =
[1, 2, 3, 2, 1]. If v′ is a leaf in T , then rstf(T, v′) = [1, 1, 1, 1, 1].

Proposition 2.5. Let T be a rooted tree on n vertices, v the root of T , and for all
vertices v′ denote by Tv′ the subtree rooted at v′. Then stf(T ) =

∑
v′ rstf(Tv′ , v′).

Proof. Simply observe that each subtree has a unique node v′ highest up in the tree,
and is thus counted exactly once on the right side. �

3. Methods for calculating subtree frequencies

One possible solution to calculate the STF-vector of an unlabeled free (i.e. un-
rooted) tree with n vertices is to generate all the subtrees of the given tree and count
their sizes in a vector. Since there can be exponentially many subtrees, this is not
always applicable.

Another possibility is to use Proposition 2.5 and apply recursion. The problem
then reduces to calculating RSTF-vectors for arbitrary Tv′ and v′. RSTF vectors can
also be calculated using recursion. We could give a combinatorial description of the
process, but it would be essentially equivalent to the polynomial method given below.
We introduce polynomials for representing STF-vectors. It turns out that they are
useful in both calculation of STF-vectors and in proving results about reconstructibil-
ity.

Definition 3.1. Let T be a tree, v a vertex of T . Let stf(T ) = [a1, a2, . . . , an] and
rstf(T, v) = [b1, b2, . . . , bn]. The STF-polynomial of T , denoted by s(T ) is defined by
s(T ) = a1+a2x+a3x

2+· · ·+anx
n−1. The RSTF-polynomial of T with root v, denoted

by r(T, v) is defined by r(T, v) = b1 + b2x + b3x
2 + · · ·+ bnx

n−1.

Remark 3.2. Note that the degree k coefficient of the polynomial corresponds to the
number of subtrees with k edges rather than k vertices and is a degree n−1 polynomial.
This will yield simpler formulas later.

We prove a few results which together allow a recursive calculation of s and r.

Lemma 3.3. Let T1, T2 be rooted trees with roots v1 and v2 respectively. Let T be the
rooted tree obtained by joining the two trees by identifying v1 and v2 as a new vertex
v. Then r(T, v) = r(T1, v1)r(T2, v2).

Proof. A subtree of T containing v and exactly k edges is obtained by joining a a
subtree of T1 containing v1 and i edges with a subtree of T2 containing v2 and j edges,
where i+j = k. The number of such pairs is

∑
i+j=k rstf(T1, v1)[i+1]·rstf(T2, v2)[j+1],

which is exactly the kth coefficient in the polynomial product. (We denote by v[i] the
ith component of vector v). �



438 Dénes Bartha and Péter Burcsi

Example 3.4. Let T1 and T2 be paths of length 2 with v1 and v2 leaves of T1 and
T2 respectively. Then T is a path of length 4 rooted at its center v. The polynomials
r(T1, v1) = r(T2, v2) = 1 + x + x2, while r(T, v) = 1 + 2x + 3x2 + 2x3 + x4 =
r(T1, v1)r(T2, v2).

Lemma 3.5. Let T1, T2 be rooted trees with roots v1 and v2 respectively. Let T be the
rooted tree obtained by joining the two trees by identifying v1 and v2 as a new vertex
v. Then s(T ) = r(T1, v1)r(T2, v2) + s(T1)− r(T1, v1) + s(T2)− r(T2, v2).

Proof. Observe that a subtree not containing v is either a subtree of T1 not containing
v1, or a subtree of T2 not containing v2. The number of such subtrees is counted by
the polynomials s(T1) − r(T1, v1) and s(T2) − r(T2, v2), respectively. This gives the
desired result. �

This latter statement allows one to calculate r and s of a rooted tree recursively
if the root is not a leaf. Take the subtrees that are obtained by taking the root and
all nodes below one child of the root, and join them at the root. Since these subtrees
are smaller than the original tree, the calculation can proceed recursively using the
following proposition. Note that the base cases of the recursion are trees with 1 or 2
vertices for which the calculation is trivial.

Lemma 3.6. Let T be a tree and v a leaf of T . Denote by v′ the only neighbor of
v and by T ′ the subtree obtained by removing v. Then r(T, v) = 1 + xr(T ′, v′) and
s(T ) = s(T ′) + r(T ).

Proof. Apart from the single-node subtree consisting of v itself, all subtrees containing
v also contain v′, and such subtrees of T of size k are in bijection with subtrees of T ′

containing v′ and of size k− 1. This proves the first statement. The second statement
is trivial. �

4. Reconstructibility results

We present a few results which show that in some cases, stf(T ) uniquely deter-
mines T . The first two are trivial observations, the third one requires deeper analysis.

Proposition 4.1. If stf(T ) = [n, n−1, . . . , 1] for some n, then T is a path on n vertices.

Proof. From the vector we deduce that the tree has n vertices and that it contains(
n
2

)
subtrees. Every tree on n vertices contains at least

(
n
2

)
subtrees, namely the paths

between pairs of vertices. The only tree that does not contain any further subtrees is
a path. �

Proposition 4.2. Let Sk be a star with k ≥ 2 leaves. If stf(T ) = stf(Sk), then T is
isomorphic to Sk.

Proof. By Proposition 2.3, the number of vertices is k + 1 and the number of leaves
is k, which implies the claim. �



Reconstructibility of trees from subtree size frequencies 439

Definition 4.3. Let a1, a2, . . . , ak ≥ 1 and let SL(a1, a2, . . . , ak) denote the star-like
graph obtained by joining paths of length a1, a2, . . . , ak at their endpoints. See Figure
5 for an illustration.

Theorem 4.4. Let k, l ≥ 3, and 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak, 1 ≤ b1 ≤ b2 ≤ . . . ≤ bl.
If stf(SL(a1, a2, . . . , ak)) = stf(SL(b1, b2, . . . , bl)), then k = l and ai = bi for i =
1, 2, . . . , k.

Proof. Let T1 = SL(a1, . . . , ak) and T2 = SL(b1, . . . , bk). By Proposition 2.3, the
number of leaves is the same in the two graphs, which implies k = l. By Lemma 3.5
we obtain for the polynomials (which by the conditions are equal):

s(T1) =

k∏
i=1

(1 + x + x2 + · · ·+ xai) +

k∑
i=1

(
ai + (ai − 1)x + · · ·+ xai−1

)
s(T2) =

k∏
i=1

(1 + x + x2 + · · ·+ xbi) +

k∑
i=1

(
bi + (bi − 1)x + · · ·+ xbi−1

)
Assume by contradiction that for some i, ai 6= bi holds and i is the smallest such
index. Denote by c the constant term in the polynomials and note that c = a1 + a2 +
· · ·+ak+1 = b1+b2+ · · ·+bk+1, thus i < k. Wlog., we may assume ai < bi. Compare
the coefficients of degree c−ai−2 in the expansion of the two polynomials. Note that
c− 1 is the degree of the polynomials. The sums ai + (ai − 1)x + · · ·+ xai−1 do not
contribute to this term (because k ≥ 3 and i < k), so we only have to compare the
expansion of the products. The expansion of the product gives a reciprocal polynomial,
thus it is enough to show that the degree ai + 1 term differs in the products. This
coefficient can be calculated if we consider the products modulo xai+2. Then the first
i − 1 factors coming from s(T1) and s(T2) are identical, but in the ith factor, s(T2)
has the additional term xai+1, which contributes to the product. For the remaining
factors, s(T2) has always at least as many terms as s(T1). �

A similar statement holds for rooted STF-vectors which, however, is easier to
prove.

Proposition 4.5. Let k, l ≥ 3, and 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak, 1 ≤ b1 ≤ b2 ≤ . . . ≤ bl.
Let T1 = SL(a1, a2, . . . , ak) and T2 = SL(b1, b2, . . . , bl), with the vertices of degree
larger than 2: v1 and v2 as roots. If r(T1, v1) = r(T2, v2), then k = l and ai = bi for
i = 1, 2, . . . , k.

Proof. We have

f = r(T1, v1) =

k∏
i=1

(1 + x + x2 + · · ·+ xai)

g = r(T2, v2) =

l∏
i=1

(1 + x + x2 + · · ·+ xbi)

Assume by contradiction that ak 6= bl, say ak > bl. If we look at the polynomials as
complex polynomials, then a primitive (ak)th root of unity is a root of f but not a



440 Dénes Bartha and Péter Burcsi

root of g. So ak = bl, and a primitive (ak)th root of unity is a root of both f and
g. We deduce that the factor (1 + x + · · · + xak) is present in both products. After
simplifying, we proceed by induction on max(k, l) and the claim follows. �

5. STF-equivalent trees

Definition 5.1. We say that trees T1 and T2 are STF-equivalent if stf(T1) = stf(T2).

In this section we consider non-isomorphic STF-equivalent trees. We performed
computer experiments in order to determine STF-equivalent pairs of trees for n ≤ 21
(n is the number of vertices). We found that for n ≤ 9 no such pairs exist and for
10 ≤ n ≤ 21, there always exist non-isomorphic STF-equivalent trees. This means
that in general, unique reconstruction from STF-vectors is impossible. We show the
computational results in Table 1.

n #trees #classes largest class #dog’s bone
0 1 0 0 0
...

...
...

...
...

9 47 0 0 0
10 106 1 2 1
11 235 4 2 0
12 551 5 2 1
13 1301 12 2 1
14 3159 32 2 0
15 7741 62 2 0
16 19320 139 3 3
17 48629 298 3 0
18 123867 649 3 0
19 317955 1441 4 2
20 823065 3330 3 2
21 2144505 7932 4 0
22 5623756 ? ? 3
24 39299897 ? ? 2
25 104636890 ? ? 3
28 2023443032 ? ? 7
31 40330829030 ? ? 4

Table 1. The number of STF-equivalence classes containing at least two trees and
the maximal size of a class for n ≤ 21. The last column shows the number of classes

that contain a special kind of graph which we call dog’s bone graphs – all such
examples are shown for n ≤ 31.

Based on computational investigation, we tried to construct general examples
of non-isomorphis STF-equivalent pairs. We present two infinite families of non-
isomorphic STF-equivalent pairs, showing that for sizes n = 3k + 1, there always



Reconstructibility of trees from subtree size frequencies 441

exist such pairs. We introduce a notation for a special kind of graph, which – based
on its shape – we call dog’s bone graphs.

Definition 5.2. Let a, b, c, d, e ≥ 1. The dog’s bone tree DB(a, b, c, d, e) is a tree that
contains two vertices v, v′ of degree 3 connected by a path of length c, and two paths
of length a and b starting at v, and two other paths of length d and e starting at v′.
See Figure 5 for an illustration.

Figure 1. On the left: the star-like graph SL(a1, a2, . . . , ak).
On the right: the dog’s bone DB(a, b, c, d, e).

Theorem 5.3. Let k ≥ 1. The trees T1 = DB(k, 2k + 1, 1, k, 2k + 1) and T2 =
DB(k, k, 1, 2k, 2k + 2) are STF-equivalent.

Proof. Using Lemma 3.5, and applying summation for geometric series, after some
calculation we have the following polynomials f = s(T1), g = s(T2).

f =
x
(
xk+1 − 1

)2 (
x2 k+2 − 1

)2
(x− 1)

4 + 2

(
x
(
x3 k+2 − 1

)
x− 1

− 3 k − 2

)
(x− 1)

−1

g =
x
(
xk+1 − 1

)2 (
x2 k+1 − 1

) (
x2 k+3 − 1

)
(x− 1)

4

+

(
x
(
x2 k+1 − 1

)
x− 1

+
x
(
x4 k+3 − 1

)
x− 1

− 6 k − 4

)
(x− 1)

−1

Their equality would be tedious to check by hand, but can readily be verified on a
computer algebra system: if we replace all occurrences of xk by a new variable y, then
the difference of the resulting bivariate polynomials simplifies to 0. �

The following theorem can be proved similarly.

Theorem 5.4. Let k ≥ 1. The trees T1 = DB(k, 2k + 2, 1, k + 1, 2k + 2) and T2 =
DB(k, k + 1, 1, 2k + 1, 2k + 3) are STF-equivalent.

Corollary 5.5. There exist non-isomorphic pairs of STF-equivalent trees for 6k + 1
and 6k + 4 vertices, for any k ≥ 1.



442 Dénes Bartha and Péter Burcsi

6. Summary and further work

In this paper we introduced the concept of STF-vectors and investigated the
problem of reconstructibility of trees from subtree frequencies. We pose some open
questions.

• Find more families of non-isomorphic STF-equivalent pairs and prove that such
pairs exist for all n ≥ 10.

• Find more types of graphs which are reconstructible from their STF-vectors.
• Are STF-equivalence class sizes unbounded as n grows?
• Calculate the STF-vector of a tree together with all RSTF-vectors. Are these
n + 1 vectors already sufficient for reconstruction up to isomorphism?

• Investigate the relationship of STF-vectors with other graph invariants, e.g. spec-
trum.

Besides these, our ongoing research will mainly focus on the labeled version of
the problem, where each vertex or edge of the tree has a label from a finite set of
colors.

Acknowledgement. The research of the second author was partially supported by a
special contract No. 18370-9/2013/TUDPOL with the Ministry of Human Recources.

References

[1] Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S., String reconstruction from
substring compositions, arXiv:1403.2439v1.

[2] Dudik, J., Schulman, L.J., Reconstruction from subsequences, J. Combin. Theory Ser.
A, 103(2003), no. 2, 337–348.

[3] Kós, G., Ligeti, P., Sziklai, P., Reconstruction of matrices from submatrices, Math. Com-
put., 78(2009), 1733–1747.

[4] Krasikov, I., Roddity, Y., On a reconstruction problem for sequences, J. Combin. Theory
Ser. A, 77(1997), no. 2, 344–348.

[5] Manvel, B., Stockmeyer, P.K., On reconstruction of matrices, Math. Mag., 44(1971), no.
4, 218–221.

[6] Manvel, B., Reconstruction of trees, Canad. J. Math., 22(1970), 55–60.

[7] Manvel, B., On reconstructing graphs from their sets of subgraphs, J. Combin. Theory
Ser. B, 21(1976), 156–165.

Dénes Bartha
Eötvös Loránd University
Department of Computer Algebra
Budapest, Hungary
e-mail: denesb@gmail.com

Péter Burcsi
Eötvös Loránd University
Department of Computer Algebra
Budapest, Hungary
e-mail: bupe@compalg.inf.elte.hu


