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New univalence criteria for some integral
operators

Virgil Pescar

Abstract. In this work we consider some integral operators for analytic functions
in the open unit disk and we obtain new univalence criteria for these integral
operators, using Mocanu’s and Serb’s Lemma, Pascu’s Lemma.
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1. Introduction

Let A be the class of functions of the form
o0
flz)=z+ Z anz",
n=2
normalized by f(0) = f'(0) — 1 = 0, which are analytic in the open unit disk

U={zeC: |z <1}.

We denote S the subclass of A consisting of functions f € A, which are univalent
in U. We consider the integral operators

()= {o [Fw (L) (L) du}i (L)

ne = (o [Co (L) (2 ™ du}i L (12)

u u

for the functions f; € A and the complex numbers v, o, 5,7 # 0,5 = 1,n.
In this work we define a new general integral operator V,, given by

o o ()" )" (1) ()

for f;,g9; € A and the complex numbers «;, 8;,0,0 # 0,5 = 1,n.
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The integral operator V, is the most general integral operator.

Remarks. For different particular cases for parameters 9, «;, 35,
j = 1,n, we obtain the integral operators which have been defined and studied by
Kim-Merkes, Pfaltzgraff, Pascu, Pescar, Owa, D. Breaz and N. Breaz, Frasin, Ovesea.

i1)
2)
i3)
i)

i5)

i6)

i7)

i8)

For n = 1,0 = 1,81 = 0,91(2) = z we obtain the integral operator which was
introduced and studied by Kim-Merkes [4].

For n =1,0 = 1,a; = 0 we have the integral operator that was introduced and
studied by Pfaltzgraff [10].

For n = 1,51 = 0,91(2) = z we obtain the integral operator which was defined
and studied by Pescar and Pascu [8].

For n = 1,1 = 0,91(2) = 2z we have the integral operator, which was defined
and studied by Pescar and Owa [9].

For g;(z2) = 2,i = I,n,0 = vy and B; = --- = 3, = 0 we obtain the integral
operator H,, (1.1), which was defined and studied by D. Breaz and N. Breaz [1],
and this integral operator is a generalization of the integral operator defined by
Pescar and Pascu [8].

For a; = ag = -+ = a, = 0,6 = 7,9:(2) = 2,4 = 1,n we have the integral
operator which was defined and studied by D. Breaz, N. Breaz [2] and this
integral operator is a generalization of the integral operator defined by Pescar
and Owa [9].

For n =1, g1(2) = z we obtain the integral operator which is defined and studied
by Ovesea [6].

For g;(z) = 2,4 = 1,n,8 = v we obtain the integral operator T}, that was defined
and studied by Frasin [3], and this integral operator is a generalization of the
integral operator defined by Ovesea [6].

In this paper we derive certain sufficient conditions of univalence for the integral

operators H,,, T,, V,,, using Mocanu’s and Serb’s Lemma, Pascu’s Lemma.

2. Preliminary results

In order to prove main results we will use the lemmas.

Lemma 2.1. Mocanu and Serb [5]. Let My = 1,5936... the positive solution of equation

(2—M)eM = 2. (2.1)
If fe Aand
f"(2)
Fl < Gew, (22
then
zf'(z) ;
‘f(z) 1‘<1, (z €U). (2.3)

The edge My is sharp.
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Lemma 2.2. Pascu [7]. Let a be a complex number, Re o > 0 and the function f € A.
If

1— |Z|2Re [eY zf”(z)

Re « f(2)

for all z € U, then for any complex number 8, Re 8 > Re «, the function

<1, (2.4)

Fa(z) = [ﬂ / ) uﬁ‘lf’(u)du} ' (2.5)

is reqular and univalent in U.

3. Main results

Theorem 3.1. Let 3,7, ; be complex numbers, j = 1,n, Re B > 0, My the positive
solution of the equation (2.1), My =1,5936... and f; € A,
[i(z) =z+agz* +asjz®+..., j=1,n.

If
Re B> |ag| + -+ + |anl, (3.2)

then for all v be complex numbers, Re v > Re 3, the integral operator H, given by
(1.1) is in the class S.

Proof. Let’s consider the function
z (63} Qn
o (2) = / <fl(“)) <f"(“)) du, (z€l), (3.3)
0 u u
which is regular in & and h,(0) = h/,(0) —1=0.

We have
zhy(2) (Zf{(Z) > (Zf’ (2) >
L= 1)+ +a, 1
() UAG) fa(2)
and hence, we obtain
_ 2Re " _ 2Re 3 M U
1—|z] zh!'(2) 1—|z] Z o] zfj(2) 4] (3.4)
Re 8 h!(2) Re 8 = fi(2)
for all z e U.
From (3.1) and Lemma Mocanu and Serb we obtain
—1l<1, (z€el;j=1,n). (3.5)
fi(2)
By (3.4) and (3.5) we get
1— [0 b (2) | _ loal + - + |aw|
L < . .
Re 8 R (2) Re 8 , (z€l) (3.6)
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From (3.2) and (3.6) we have

1— |z‘2Re B8 Zh"(z)
L <1 Uu). 3.7
o | <1 Gew (37)
(o) = (B (@) i
From (3.3) we get hl,(z) = (7) e (7) and by Lemma Pascu it results
that H, € S. O

Corollary 3.2. Let o, 8 be complex numbers, Re 8 > 0, My the positive solution of
the equation (2.1), My =1,5936... and f; € A,
fi(z)=z+ayz>+...,i=1n.

If
1) P
fJ/(Z) < My, (z€lU;j=1,n), (3.8)
Re[n(a—1)4+1] > Re B >nla—1|, (neN-{0}), (3.9)
then the integral operator G, defined by
Gan={Ia = +11 [" (@) (@) a} T @0

1s in the class S.

Proof. From (3.10) we have

(3.11)
We take y =n(a—1)+1, a1 =as = -+ = o,y = @ — 1 in Theorem 3.1 and we obtain
the Corollary 3.2. 0

Theorem 3.3. Let 6, v, 3; be complex numbers, j = 1,n, Re 6 > 0, M, the positive
solution of the equation (2.1), My =1,5936... and f; € A,
fi(z) =z+agz*+..., j=1,n.

If

fi(2)
fi(z)

‘ <My, (€U, j=1,n), (3.12)

S eyl | (2Re 5+ 1) 5T 120y | S718)]| Re s <
Jj=1 j=1

< (2Re § + 1)"28%+ Re 6, (3.13)

then for all v be compler numbers, Re v > Re 6 > 0 the integral operator T,, given by
(1.2) is in the class S.
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Proof. We consider the function
“(filu “ Jn(u o n
i) = [ () (B T ) ) e @)
0 u u
The function g, is regular in & and we have g,(0) = ¢,,(0) —1 = 0.
From (3.14) we obtain
= Q; -1+ B, 3.15
ne ~ 2956 2 |55 (3:19)
and hence, we get
1 (2R | zg0(2)
Red | g,(2)
e N IEAD #0)
< - ; -1 i 3.16
R€§ - |a]‘ J(Z) +|BJ||Z| f]/(Z) ( )
for all z € U.
From (3.12), Lemma Mocanu and Serb, by (3.16) we have
1 [2f2Re 8 | zg(2)]
Re d g.(z) | —
LR gy Ll
< WZN ol + —F— |MOZ|5J (3.17)
j=1
Since
- 1_|Z|2Re5lz| 2
X - )
sl<1 Red (2Re 6§ + 1)*5re 5
from (3.17) we obtain
1 [£f2Re 8 | zg0(2)
Red | g,(2)
<= 5Z| s ij (3.18)
for all z € U.
From (3.13) and (3 18) we get
— 2 | 2gn(2) | _
1
7 s () 1, (z€el). (3.19)
From (3.14) we have ¢/, (z (f1<z )O” (fn;z)) "G (L () and
by Lemma Pascu we obtain that T, €S. O
Remark 3.4. For 8y = o = --- = 5, = 0,6 = 8, from Theorem 3.3 we obtain the

Theorem 3.1.
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Corollary 3.5. Let 6,a;,[; be complex numbers, j = 1,n, 0 < Re & < 1,M, the
positive solution of the equation (2.1), My = 1,5936... and f; € A,
f[i(z)=z+ayz?+...,j=1,n.

If

i (2)

1) <My, (z€lU,j=1n), (3.20)

(2Re 6 + )2Re5 Z|a]|—|—2Re(5 Z'BJ <

j=1
2Re 5+

< (2Re 0 + 1) 2res "Re 6, (3.21)
then the integral operator I,, defined by

e = (2 (DT ) e e

u u

belongs to the class S.
Proof. We take v =1 in the Theorem 3.3. d

Theorem 3.6. Let v, a;,3; be complex numbers, j = 1,n, Re v > 0, My the positive
solution of the equation (2.1), My =1,5936... and f;,g; € A,
[i(z)=z+az+...,9;(z) =2+byz? +...,j=1,n.

If
']ché/((j)) < M07 (Z € u7 ] = H)a (323)
?;/((2 <My, (z€lU,j=1n), (3.24)

(2Re y+1) 37 3 Jay| +2(Re 7)Mo Y 18] <
J=1 j 1
(2Re v+ 1) 2y Re ~y
— 2 )
then for every complex number § , Re § > Re ~y the integral operator V,, defined by
(1.3) is in the class S.

(3.25)

Proof. We consider the function

o () G) ™ G) G e o
The function p,, is regular in ¢ and p,(0) = p’,(0) — 1 = 0.

n
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We have
2Pp(2) _ ¢ 2fj(z)  zg;(2) 2fj(z) 295 (2)
/ = Z @ j - J + Bj ; - )
m(z) = fiz)  g;(2) fiz) g5(2)
and hence, we get
2pn(2) _
P(2)
n z / z /' z 1" z /./ z
$° o [ (2 0) - ()], (D OV i
2 7 0(2) ORrIE)
for all z € U.
From (3.27) we obtain
Rey | pn(2) '
1_|Z|2Re’y n |: (’zf]’(z ’ ‘zgg(z) D
<——- a; — 1]+ —1]) +
Re vy ; I\ T 9;(2)
2fi(2)] | |29](2)
+ |ﬁjl /7 /J
fi(2) gi(2)
for all z € U.
From (3.23), (3.24) and Lemma Mocanu and Serb we have
2fj(2)
—1] <1, 3.29
7, 529
/
29;() 1‘ <1, (3.30)
9;(2)
for all z € U, 7 = 1,n and hence, we get
1— |27 | zp)(2)
Revy | pp(2)
1—[o2Re IZI
Fe s 2Z| gl + -] 2MOZ|@ (3:31)
Since
_ 2Re v
max ! ‘Z| |Z‘ = 2 2Re y+1 (332)
lzI<t Revwy (2Re y + 1) 2re~
from (3.31) we obtain
|Z|2Re'y Zp AM,
2Re 2R B 3.33
| Zm P — Zu (3:3)
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for all z € U.
From (3.25) and (3.33) we get
1— |Z|2Re’y zp”(z)
n <1, U). 3.34
Rey [ pn(2) |~ (zetd) (334

From (3.26) we obtain

o (28)" - (52)"(5)" (58"

and by Lemma Pascu it results that V,, € S. d

Corollary 3.7. Let v, be complex numbers, j = 1,n, Re v > 0, M, the positive
solution of the equation (2.1), My =1,5936... and f;,g; € A,

fi(z)=2z4ag2*+..., g;(2) =2+byiz* +..., j=1,n.

If
Jg((;) <My, (€U, j=T,n), (3.35)
?;l((j)) <M, (z€U,j=1n), (3.36)
and
- R
> oyl < ;7 (3.37)
=1

then for all complex numbers § , Re & > Re ~y the integral operator K, defined by

- () () )

s in the class S.

Proof. We take 1 = 2 =--- = B, = 0 in Theorem 3.6. O

Corollary 3.8. Let v, a;,[3; be complex numbers, j = 1,n, 0 < Re v < 1, M the
positive solution of the equation (2.1), My =1,5936... and f;,9; € A,

fi(z)=2z4a2*+..., g;(2) =2+byz* +..., j=1,n.

If
Jg((;) < Mo, (2€U,j=1n), (3.39)
‘Z((j)) <M, (€U, j=1n), (3.40)
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and

(2Re v+ ) 2y Z|a]\+2]\/l0 Re ) Z
Jj=1 Jj=1

(2Re v+ 1) 7a - Re 7
- 2
then the integral operator J, defined by
[ ﬁ(u))“{,.(fn(u))a”_(f{(u))’f{,,(fm))ﬁ"
we= [ (20 w@) g ) MO

s in the class S.

(3.41)

Proof. For 6 =1 in Theorem 3.6, we obtain Corollary 3.8. g

Corollary 3.9. Let ~,[; be complex numbers, j = 1,n, Re v > 0,My the positive
solution of the equation (2.1), My =1,5936... and f;,g; € A,
fi(z)=z+az®+...,9;(z) =2+byz? +...,j=1,n.

If
fi'(z) —
< My, (z€lU, j=1,n), 3.43
P | <M ) (3.43)
g (2) L
<My, (z€lU, j=1,n), 3.44
0| S Mo et i=T) (3.4
and
2Re y+1
(2Re v + 1) 2Ren
< .
; 13 _— (3.45)

then for all complex number 6, Re § > Re vy, the integral operator Q,, defined by

= { [ (B ()" } 510

s in the class S.

Proof. For a1 = as = -+ = a,, = 0 in Theorem 3.6, we obtain Corollary 3.9. O

Corollary 3.10. Let v, 3; be complex numbers, j =1,n, 0 < Rey <1, My the positive
solution of the equation (2.1), My =1,5936... and f;,9; € A,
fi(z)=z+4az+..., gij(z) =z2+byz? +..., j=1,n.

If

fi(2)
fi(z)

‘ < Mo, (z€U, j=1n), (3.47)
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g; (2) o
< My, (z€l, 7=1n), 3.48
S| <M ) (3.48)
and

n (2R + 1) 2R§’y+1

6*)/ 2Re 7y
| < 3.49
Dol s = (3.49)

then the integral operator L, defined by
(i @))m (f’ (u))ﬁ"
LnZz/ < R du 3.50
D=0 Giw) \aw (350
s in the class S.

Proof. We take 0 =1 and a; = as =+ = «a,, = 0 in Theorem 3.6. O
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