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Abstract. In this paper, we consider different kinds of generalized invexity for vec-
tor valued functions and a vector optimization problem. Some relations between
some vector variational-like inequalities and a vector optimization problem are
established using the properties of Mordukhovich limiting subdifferentials under
C — n—strong pseudomonotonicity.
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1. Introduction

In 1998, Giannessi [9] first used, so called, Minty type vector variational inequal-
ity (in short, MV'VI) to establish the necessary and sufficient conditions for a point to
be an efficient solution of a vector optimization problem (in short, (VOP)) for differ-
entiable and convex functions. Since then, several researchers have studied (VOP) by
using different kinds of MV VT under different assumptions, see [1, 2, 10, 15, 19] and
the references therein. Consequently, vector variational inequalities have been gener-
alized in various directions, in particular, vector variational-like inequality problems,
see [1, 13, 14, 20, 23, 28] and the references therein. The vector variational-like in-
equalities are closely related to the concept of the invex and preinvex functions which
generalize the notion of the convexity of functions . The concept of the invexity was
first introduced by Hanson [12]. More recently, the characterization and applications
for generalized invexity were studied by many authors, see [11, 13, 19, 21, 24, 25, 27|
and the references therein.

The relation between the vector variational inequality and the smooth vector
optimization problem has been studied by many authors (see, for example, [9, 23, 26]
and the references therein). Yang et al. [26] extended the result of Giannessi [9, 10]
for differentiable but pseudoconvex functions. Yang and Yang [23] gave some relations
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between Minty variational-like inequalities and the vector optimization problems for
differentiable but pseudo-invex vector-valued functions. Yang et al. [25, 26] and Gar-
zon et al. [6, 7] studied the relations between generalized invexity of a differentiable
function and generalized monotonicity of its gradient mapping. Very recently, Rezaie
and Zafarani [20] showed some relations between the vector variational-like inequali-
ties and vector optimization problems for nondifferential functions under generalized
monotonicity. Al-Homidan and Ansari [1] studied the relation among the generalized
Minty vector variational-like inequality, generalized Stampacchia vector variational-
like inequality and vector optimization problems for nondifferential and nonconvex
functions with Clarke’s generalized directional derivative and then, Ansari and Lee
[2] showed that for pseudoconvex functions with upper Dini directional derivative,
similar results holds. Ansari, Rezaie and Zafarani [3] considered generalized Minty
vector variational-like inequality problems, Stampacchia vector variational-like in-
equality problems and nonsmooth vector optimization problems under nonsmooth
pseudo-invexity assumptions. They also considered the weak formulations of gener-
alized Minty vector variational-like inequality problems and generalized Stampacchia
vector variational-like inequality problems in a very general setting and established
the existence results for their solutions. The main results in [1] and [20] were ob-
tained in the setting of Clarke subdifferential. Since the class of Clarke subdifferential
is larger than the class of Mordukhovich subdifferential, it is necessary to study the
vector variational-like inequalities and vector optimization problems in the setting of
Mordukhovich subdifferential (see [5, 16, 17]). Oveisiha and Zafarani [18] established
some properties of pseudo-invex functions and Mordukhovich limiting subdifferen-
tial and relations between vector variational-like inequalities and vector optimization
problems. Chen and Huang [4] considered the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. They established some relations between the vector variational-like inequali-
ties and vector optimization problems using the properties of Mordukhovich limiting
subdifferential. Farajzadeh et al. [8] considered generalized variational-like inequali-
ties with set-valued mappings in topological spaces, which include as a special case
the strong vector variational-like inequalities. Motivated and inspired by the work
mentioned above, in this paper we consider the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. Some relations between vector variational-like inequalities and a vector opti-
mization problem (respectively, between Minty vector variational-like inequality and
Stampacchia vector variational-like inequality) are established using the properties of
Mordukhovich limiting subdifferentials under different kinds of generalized invexity
(respectively, C' — n—strong pseudomonotonicity).



On vector variational-like inequalities 157

2. Preliminaries

Let X be a Banach space endowed with a norm ||.|| and X* its dual space with a
norm [|.||.. Denote {.,.), [z,y], ]z, y[ the dual pair between X and X*, the line segment
for z,y € X and [z, y]\{z,y}, respectively. Let Q be a nonempty open subset of X.

When functions are not differentiable, we use the concept of subdifferential:
Fréchet subdifferential, Limiting subdifferential and Clarke-Rockafellar subdifferen-
tial.

Definition 2.1. Let X be a Banach space and f : X — RU{oo} a proper Ls.c.
function. We say that f is Fréchet-subdifferentiable and £* is Fréchet-subderivative of
fatx (€ €0pf(x)) if x € dom f and

St h) = flx) — (€ h)

lim inf > 0.
1Al =0 7] -
Definition 2.2. [16] Let x € Q and € > 0. The set of e — normals to Q at x is defined
by
R ) = {a" € X [limsup ) <),

'U/E)J;
If « ¢ Q, we put Zva(x,Q) = @& for all e > 0.

Definition 2.3. [16] Let T € Q2. Then x* € X* is a limiting normal to Q@ at T if there

are sequences € \; 0, T LT and x7 WS T such that xy € ]vg(xk, Q), for all k € N.
The set of such normals
N(Z,) = limsupN(z, Q)

T—T
e\ 0

is the limiting normal cone to Q at T. If T ¢ Q, we put N(Z,Q) = @.
Remark 2.4. Note that the symbol u £ 2 means that u — 2 with u € Q. The symbol
%y stands for convergence in weak* topology.

Definition 2.5. [16] Considering the extended-real-valued function ¢ : X — R =
[—o00, +00] we say that ¢ is proper if p(x) > —oo for all x € X and its domain,
domyp = {z € X : p(x) < oo}, is nonempty. The epigraph of ¢ is defined as

epip = {(z,a) € X x R/p(z) < a}.
Definition 2.6. [16] Considering a point T € X with | ¢(T) |< oo, the set
Opp(T) = {z" € X" | (2", —1) € N((Z, (7)), epi )}

is the limiting subdifferential of ¢ at © and its elements are limiting subdifferentials
of ¢ at this point. If | ¢(T) |= 0o, we put Ipp(T) = @.

Remark 2.7. [16] It is well known that

Or f(z) C OLf(x) C Oc f(z),
where J¢ f is the Clarke subdifferential.
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Definition 2.8. A Banach space X is Asplund, or it has the Asplund property, if every
convex continuous function ¢ : U — R defined on an open convex subset U of X is
Fréchet differentiable on a dense subset of U.

Remark 2.9. One of the most popular Asplund spaces is any reflexive Banach space
[16].

Theorem 2.10. [16] Let X be an Asplund space and ¢ : X — R be proper and Ls.c.
around T € domy, then

ILp(T) = limsupdrp(x).
NG
For more details and applications, see [16].

Definition 2.11. Let n: X x X — X. A subset Q0 of X is said to be invex with respect
to n if for any x,y € Q and X\ € [0, 1], we have y + An(z,y) € Q.

Hereafter, unless otherwise specified, we assume that X is an Asplund space and
Q) C X is a nonempty open invex set with respect to the mapping n: 2 x Q — X.

Definition 2.12. A mapping n : Q x Q — X is said to be skew if for any x,y € Q,
n(z,y) +nly,x) = 0.

Definition 2.13. Let zg € Q. A mapping n: Q x Q — X is said to be skew at xq if for
any x € §, T # xg,

’I’)(Jf, mo) =+ T](l‘o, a:) =0.
Definition 2.14. [21] Let f : Q — R be a function. f is said to be

1. weakly — quasi — invex with respect to n on Q if for any x,y € Q,
f@) < fly) =3 €afy) (€ nlz,y)) <0;
2. quasi — invex with respect to n on Q if for any x,y € €1,

f(x) < fly) =V & €drfly) (€ nz,y)) <0
3. pseudo — tnvex with respect to n on Q if for any x,y € €1,

(€ n(x,y)) 20, 36 €Lf(y) = fx) = fy).

In some results of the paper we need to consider some further assumptions on 7.
These assumptions are known in invexity literature (Jabarootian and Zafarani (2006)
13)).

Condition C. Let n: Q x Q@ — X. Then for any z,y € Q, A € [0,1],

{ Cr:n(x,y + An(z,y)) = (1 = N)n(=, y);
Ca:n(y,y + An(z,y) = —An(x,y).

Remark 2.15. Yang et al. [27] have shown that if n : Q x Q@ — X satisfies condition
C, then for all z,y € Q, X € [0,1],

n(y + n(z,y),y) = Mz, y).
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Definition 2.16. Let n: Q x Q — X, xg € Q. We say that n : Q x Q@ — X satisfies
condition C at zg if for all x € Q, XA € [0, 1],

n(xo + An(z, xo), o) = An(z, zg).

Definition 2.17. Let f = (f1,..., fn) : @ = R"™ be a vector-valued function and xy € Q.
f s said to be

1. pseudo — invex with respect to n on Q if for any z,y € £,
f@) = fy) € ~RI\{0} = (Ouf(y),n(z,y)) € —RI\{0};
2. quasi — invex with respect to n on Q if for any x,y € €,
(€ n(x,y)) € REN{0}, 3€ € arfly) = flz) — f(y) € RE\{0};
3. weakly — quasi — invex with respect to n on S if for any z,y € §,
(Ouf(y)n(z,y)) CRIN{0} = f(z) — f(y) € RE\{0};
4. weakly — quasi — invex at xy with respect to n if for any x € 2,
(OLf(w0),m(x,20)) € REN{0} = f(z) — f(wo) € R}\{0}.

Remark 2.18. Next, we provide an example which shows that a function f =
(f1, .-, fn) it can be pseudo-invex with respect to n on Q and there exists k, 1 < k < n,
such that fi is not pseudo-invex with respect to n on €.

Example 2.19. Let us consider X = R, Q = [~1,1], f = (f1, f2) : Q@ — R? defined as
>
hw={ Y& 12p

x, z <0,

fo(z) ==

and n: Q x 2 — R defined as
n(@,y) =x—y

We have

(551 «>0,

oLf(z) =14 [0,00[x{1}, =0,

(1,1), x < 0.
It is not difficult to see that f is pseudo-invex with respect to 7. Function f7 is
not pseudo-invex with respect to 1 on {2 because for x = —1,y = 0 there exists

£ =0€0rf(y) such that (*,n(z,y)) =0 and f(z) < f(y).

Definition 2.20. [8] A set valued mapping F : Q — 2X" s said to be C — n—strong
pseudomonotone if for any x,y € €,

(Fz,n(z,y)) £ =C(x)\{0} = (Fy,n(y,z)) € =C(y).

Definition 2.21. A set valued mapping F : Q — 25" is said to be (C, K) — n—strong
pseudomonotone if for any x,y € §2,

(Fx,n(z,y)) £ C = (Fy,n(y,r)) C K.
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Definition 2.22. A set valued mapping F : Q — 2% is said to be strictly (C, K) —
n—strong pseudomonotone if for any x,y € Q,x # vy,

(Fa,n(z,y)) £ C = (Fy,n(y,r)) C K.

Let f = (f1,.-, fn) : & = R"™ be a vector-valued function, where f; : @ - R
(i =1,...,n) is non-differentiable locally Lipschitz function.
In this paper, we consider the following vector optimization problem:

(VOP) Minimize f(z) = (f1(z), ..., fn(2))

subject to x € Q.

Definition 2.23. A point xo € Q is said to be an efficient (or Pareto) solution (respec-
tively, weak efficient solution) of (VOP) if for all x € Q,

f@) = fxo) = (fi(@) = fi(@0)s o ful@) = fulo)) & ~RI\{0},
(respectively, f(z) = f(z0) = (fi(@) — fi(@0)s oo ful@) = fulo)) & —intRT),

where R is the nonnegative orthant of R™ and 0 is the origin of the nonnegative
orthant.

3. Characterization

We consider the following Minty vector variational-like inequality problems and
Stampacchia vector variational-like inequality problems.
(GGMVVLIP) Find ¢ € Q such that, forallz € Q and all §; € O fi(z) (i =1,...,n),

(€ n(x, 20)) = (&1, n(w, o)), s (€15 (2, 20))) & —REN{0}.
(GMVVLIP) Find o € Q such that, for all € Q there exists & € J, fi(z)
(i=1,..,n),

(€ n(z, z0)) = (&1, n(@, 20)); s (&5 (2, 20))) & —REN{0}.

(WGGMVVLIP) Find xg € Q such that, for all x € 2 and all & € 9y, fi(z)
(i=1,..,n),
<€*a 77(73, $0)> = (<£ik7 77(337 $0)>, (XX} <§7*u 77(3"7 x0)>) ¢ _ZntR1

(WGMVVLIP) Find zg € Q such that, for all z €  there exists & € 91, f;(x)
(i=1,..,n),
<€*a77(ma IO)) = (<£Ta 77(957950»7 sty <§;kz7 77(357530») ¢ _’LntRﬁ

(SVVLIP) Find z( €  such that, for all €  there exists & € I, fi(zo)
(i=1,..,n),
<f*77)($7$0)> = (<§T,77($L‘,I0)>, 3% <§Z7’7($7$0)>) ¢ -RY \{O}

(WSVVLIP) Find zy €  such that, for all x € Q there exists & € Irfi(xo)
(i=1,..,n),

(€ n(z,20)) = (&1, 0@, 20)), -, (&55 (2, 20))) ¢ —intRL.
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Theorem 3.1. If x is a solution of (SVVLIP), Opf is strictly (intR7,intR}) —
n—strong pseudomonotone, 1 is skew at xo and O f(xo),n(xo0,20)) € RY, then xq
is a solution of (GGMVVLIP).

Proof. Suppose that z( is not a solution of (GGMVV LIP). B
Since (Jr f(x0), n(xo,z0)) € R it follows that there exist T € Q,7 # xo, ¢ € I f(T)
such that

<C7 77@7 .’L‘())) € —Ri\{O}

Therefore,
Since 0y, f is strictly (intR’,intR’ ) —n—strong pseudomonotone, by (3.1) we obtain
(Orf(x0),n(xo, ™)) C intRY. (3.2)

Since 7 is skew at xg, by (3.2) it follows that

(O f(w0),n(T,20)) C —intRY,

which contradicts the fact that zq is a solution of (SVV LIP). Therefore, it follows
that z¢ is a solution of (GGMVV LIP). O

Example 3.2. Let us consider X = R, Q = [-1,1], f: Q@ — R defined as
>
fa={ Ve rzh

-z, z<O0.
and 7 : Q x Q — R defined as

n(z,y) =z —y.
We have
ﬁ, z >0,
orf(xr) =< [0,00U{-1}, x =0,
-1, x < 0.

and Jp, f is strictly (intR4,intR) — n—strong pseudomonotone. It is not difficult to
see that o = 0 is a solution of (SVV LIP) and 7 is skew at xg. Therefore, zj is a
solution of (GGMVV LIP).

Corollary 3.3. If xg is a solution of (SVVLIP), Opf is strictly (intRY,intRY}) —
n—strong pseudomonotone and 1 is skew at xo, then xq is a solution of (GMVV LIP).

Corollary 3.4. If xo is a solution of (WSVV LIP), O f is strictly (intR,intR’}) —
n—strong pseudomonotone, 1 is skew at xo and ( O f(xo),n(xo,x0)) € RE\{0}, then
xo is a solution of (GGMVV LIP).

Corollary 3.5. If xg is a solution of (WSVV LIP), Opf is strictly (intR,intR’}) —
n—strong pseudomonotone and n is skew at xg, then xq is a solution of
(WGMVVLIP).

Theorem 3.6. If xg is a solution of (VOP), f is quasi-invex with respect to n on §
and n is skew, then xq is a solution of (GGMVV LIP).
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Proof. Suppose that g is not a solution of (GGMVV LIP). It follows that there exist
T €, ¢ € O f(T) such that we have

(C,n(@, 20)) € —RY\{0}. (3.3)
Since 7 is skew, by (3.3) we obtain

<Za 77(5”07 I» € R:t\{O}

Since f is quasi-invex, it follows that

f(zo) — f(z) € RY\{0},
which contradicts the fact that g is a solution of (VOP). Therefore, xq is a solution

of (GGMVVLIP). O

Remark 3.7. In [4] (Theorem 3.1) the authors obtained this result by assuming that
fi(i =1,...,n) are invex with respect to n on Q. Next, we provide an example which
shows that a function f = (fi,..., fn) it can be quasi-invex with respect to n on
and there exists k,1 < k < n, such that f; is not invex with respect to n on €.

Example 3.8. Let us consider X = R, Q = [f%, %], f=(f1, f2) : @ — R? defined as

22+ 22, x>0,
fl(x) N { -, x S 07
23 —222+z, x>0,

fZ(z){—x <0
and n: Q x 2 — R defined as

n(@,y) =z —y.
We have
(22 +2,322 — 4z + 1), x>0,
of(x) =< (k,t), ke{2,-1},te{l,—1},z=0.

(—1,-1), z < 0.

It is easy to observe that xg = 0 is a solution of (VOP), n is skew and function f is
quasi-invex with respect to n on 2. Function f5 is not invex with respect to n on Q2
because for z = 1,y = 0 we obtain

f2(1) - fZ(O) < <€*7n(1’0)>7
for £* = 1.

Corollary 3.9. If xq is a solution of (VOP), f is quasi-invex with respect to n on 2
and n is skew, then xq is a solution of (GMVV LIP).

Theorem 3.10. If xg is a solution of (VOP), [ is weakly quasi-invez at xo with respect
ton on Q and n is skew at xg, then o is a solution of (GMVV LIP).

Proof. Suppose that zg is not a solution of (GMVV LIP). Therefore, there exists
T € Q such that for all £&* € dy f(Z) we have

(€ (T, z0)) € —RI\{0}. (3.4)
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Hence,

(Opf(),n(F,x0)) € —RI\{0}. (3.5)
Since 7 is skew at xg we obtain

(OLf(@),n(x0,7)) € RY\{0}.

Since f is weakly quasi-invex at xy with respect to n on 2 it follows that

f(wo) = f(7) € RE\{0},
which contradicts the fact that ¢ is a solution of (VOP). Therefore, x( is a solution
of (GMVVLIP). O

Remark 3.11. In [18] (Theorem 13) the authors obtained this result by assuming that
fi(i =1,...,n) are pseudo-invex with respect to n on 2. Next, we provide an example
which shows that a function f = (f1, ..., fn) it can be weakly quasi-invex with respect
to n on 2 and there exists k,1 < k < n, such that fi is not pseudo-invex with respect
to n on Q.

Example 3.12. Let us consider X = R, Q = [~1,1], f = (f1, f2) : @ — R? defined as
>
fl(x):{ \/57 .T_O;

x, x <0,
L/z, >0
— 2 Y - )
fax) = { -z, x<0,
zo=0and n: Q2 x Q2 — R defined as
n(z,y) =z —y.
We obtain that
(57 1) z>0,
Orfi(xr) = ¢ [0,00[x([0,00[U{-1}), z =0,
(1,-1), x <0.

It is not difficult to verify that f is weakly quasi-invex at xy with respect to i, xg =0
is solution of (VOP), n is skew at x¢ and f; is not pseudo-invex with respect to n on
Q because for x = —1,y = 0 there exists £&* =0 € 9r f(y) such that (*,n(x,y)) =0

and f(z) < f(y).
Theorem 3.13. Suppose that xo is a solution of (SVVLIP) and f is pseudo-invex
with respect to n on Q. Then, xo is a solution of (VOP).

Proof. Suppose that x is not a solution of (VOP). Therefore, there exists T €  such
that
f(@) = fzo) € —RY\{0}.
Since f is pseudo-invex with respect to n on €2, it follows that
(Orf(x0),n(T, o)) € —RY\{0},

which contradicts the fact that zg is a solution of (SVV LIP). Therefore, z¢ is a
solution of (VOP).
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Remark 3.14. In [4] (Theorem 3.2) the authors obtained this result by assuming that
fi(i =1,...,n) are invex with respect to n on Q. Next, we provide an example which
shows that a function f = (f1,..., fn) it can be pseudo-invex with respect to n on Q
and there exists k,1 < k < n, such that fi is not invex with respect to n on Q.

Example 3.15. Let us consider X = R, Q = [~1,1], f = (f1, f2) : Q@ — R? defined as
>
fl(l') :{ \/E, .’E_O,

—z, x <0,
fo(z) ==

and 7 : Q x 2 — R defined as

n(x,y) =z —y.
We have

(ﬁv 1)a xr > 07

Opfi(r) = ¢ ([0,00[U{~1}) x {1}, z =0,
(_17 1)7 xr < 0.

It is not difficult to see that xg = 0 is solution of (SVV LIP), f is pseudo-invex with
respect to 1. Function f; is not invex with respect to n on € because for x =1,y =0
we obtain

J(1) = f(0) < (&7, n(1,0)),
for £&* = 2.
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