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1. Introduction

In 1998, Giannessi [9] first used, so called, Minty type vector variational inequal-
ity (in short, MV V I) to establish the necessary and sufficient conditions for a point to
be an efficient solution of a vector optimization problem (in short, (V OP )) for differ-
entiable and convex functions. Since then, several researchers have studied (V OP ) by
using different kinds of MV V I under different assumptions, see [1, 2, 10, 15, 19] and
the references therein. Consequently, vector variational inequalities have been gener-
alized in various directions, in particular, vector variational-like inequality problems,
see [1, 13, 14, 20, 23, 28] and the references therein. The vector variational-like in-
equalities are closely related to the concept of the invex and preinvex functions which
generalize the notion of the convexity of functions . The concept of the invexity was
first introduced by Hanson [12]. More recently, the characterization and applications
for generalized invexity were studied by many authors, see [11, 13, 19, 21, 24, 25, 27]
and the references therein.

The relation between the vector variational inequality and the smooth vector
optimization problem has been studied by many authors (see, for example, [9, 23, 26]
and the references therein). Yang et al. [26] extended the result of Giannessi [9, 10]
for differentiable but pseudoconvex functions. Yang and Yang [23] gave some relations
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between Minty variational-like inequalities and the vector optimization problems for
differentiable but pseudo-invex vector-valued functions. Yang et al. [25, 26] and Gar-
zon et al. [6, 7] studied the relations between generalized invexity of a differentiable
function and generalized monotonicity of its gradient mapping. Very recently, Rezaie
and Zafarani [20] showed some relations between the vector variational-like inequali-
ties and vector optimization problems for nondifferential functions under generalized
monotonicity. Al-Homidan and Ansari [1] studied the relation among the generalized
Minty vector variational-like inequality, generalized Stampacchia vector variational-
like inequality and vector optimization problems for nondifferential and nonconvex
functions with Clarke’s generalized directional derivative and then, Ansari and Lee
[2] showed that for pseudoconvex functions with upper Dini directional derivative,
similar results holds. Ansari, Rezaie and Zafarani [3] considered generalized Minty
vector variational-like inequality problems, Stampacchia vector variational-like in-
equality problems and nonsmooth vector optimization problems under nonsmooth
pseudo-invexity assumptions. They also considered the weak formulations of gener-
alized Minty vector variational-like inequality problems and generalized Stampacchia
vector variational-like inequality problems in a very general setting and established
the existence results for their solutions. The main results in [1] and [20] were ob-
tained in the setting of Clarke subdifferential. Since the class of Clarke subdifferential
is larger than the class of Mordukhovich subdifferential, it is necessary to study the
vector variational-like inequalities and vector optimization problems in the setting of
Mordukhovich subdifferential (see [5, 16, 17]). Oveisiha and Zafarani [18] established
some properties of pseudo-invex functions and Mordukhovich limiting subdifferen-
tial and relations between vector variational-like inequalities and vector optimization
problems. Chen and Huang [4] considered the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. They established some relations between the vector variational-like inequali-
ties and vector optimization problems using the properties of Mordukhovich limiting
subdifferential. Farajzadeh et al. [8] considered generalized variational-like inequali-
ties with set-valued mappings in topological spaces, which include as a special case
the strong vector variational-like inequalities. Motivated and inspired by the work
mentioned above, in this paper we consider the Minty vector variational-like inequal-
ity, Stampacchia vector variational-like inequality and the weak formulations of these
inequalities, defined by means of Mordukhovich limiting subdifferentials in Asplund
spaces. Some relations between vector variational-like inequalities and a vector opti-
mization problem (respectively, between Minty vector variational-like inequality and
Stampacchia vector variational-like inequality) are established using the properties of
Mordukhovich limiting subdifferentials under different kinds of generalized invexity
(respectively, C − η−strong pseudomonotonicity).
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2. Preliminaries

Let X be a Banach space endowed with a norm ‖.‖ and X∗ its dual space with a
norm ‖.‖∗. Denote 〈., .〉, [x, y], ]x, y[ the dual pair between X and X∗, the line segment
for x, y ∈ X and [x, y]\{x, y}, respectively. Let Ω be a nonempty open subset of X.

When functions are not differentiable, we use the concept of subdifferential:
Fréchet subdifferential, Limiting subdifferential and Clarke-Rockafellar subdifferen-
tial.

Definition 2.1. Let X be a Banach space and f : X → R ∪ {∞} a proper l.s.c.
function. We say that f is Fréchet-subdifferentiable and ξ∗ is Fréchet-subderivative of
f at x (ξ∗ ∈ ∂F f(x)) if x ∈ dom f and

lim inf
‖h‖→0

f(x+ h)− f(x)− 〈ξ∗, h〉
‖h‖

≥ 0.

Definition 2.2. [16] Let x ∈ Ω and ε ≥ 0. The set of ε− normals to Ω at x is defined
by

N̂ε(x,Ω) = {x∗ ∈ X∗ | lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖

≤ ε}.

If x /∈ Ω, we put N̂ε(x,Ω) = ∅ for all ε ≥ 0.

Definition 2.3. [16] Let x ∈ Ω. Then x∗ ∈ X∗ is a limiting normal to Ω at x if there

are sequences εk ↘ 0, xk
Ω→ x and x∗k

w∗→ x∗ such that x∗k ∈ N̂ε(xk,Ω), for all k ∈ N.
The set of such normals

N(x,Ω) = lim sup
x→x
ε↘0

N̂ε(x,Ω)

is the limiting normal cone to Ω at x. If x /∈ Ω, we put N(x,Ω) = ∅.

Remark 2.4. Note that the symbol u
Ω→ x means that u→ x with u ∈ Ω. The symbol

w∗→ stands for convergence in weak∗ topology.

Definition 2.5. [16] Considering the extended-real-valued function ϕ : X → R =
[−∞,+∞] we say that ϕ is proper if ϕ(x) > −∞ for all x ∈ X and its domain,
domϕ = {x ∈ X : ϕ(x) <∞}, is nonempty. The epigraph of ϕ is defined as

epiϕ = {(x, a) ∈ X ×R/ϕ(x) ≤ a}.

Definition 2.6. [16] Considering a point x ∈ X with | ϕ(x) |<∞, the set

∂Lϕ(x) = {x∗ ∈ X∗ | (x∗,−1) ∈ N((x, ϕ(x)), epi ϕ)}
is the limiting subdifferential of ϕ at x and its elements are limiting subdifferentials
of ϕ at this point. If | ϕ(x) |=∞, we put ∂Lϕ(x) = ∅.

Remark 2.7. [16] It is well known that

∂F f(x) ⊆ ∂Lf(x) ⊆ ∂Cf(x),

where ∂Cf is the Clarke subdifferential.
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Definition 2.8. A Banach space X is Asplund, or it has the Asplund property, if every
convex continuous function ϕ : U → R defined on an open convex subset U of X is
Fréchet differentiable on a dense subset of U.

Remark 2.9. One of the most popular Asplund spaces is any reflexive Banach space
[16].

Theorem 2.10. [16] Let X be an Asplund space and ϕ : X → R be proper and l.s.c.
around x ∈ domϕ, then

∂Lϕ(x) = lim sup
x→x
ε↘0

∂Fϕ(x).

For more details and applications, see [16].

Definition 2.11. Let η : X ×X → X. A subset Ω of X is said to be invex with respect
to η if for any x, y ∈ Ω and λ ∈ [0, 1], we have y + λη(x, y) ∈ Ω.

Hereafter, unless otherwise specified, we assume that X is an Asplund space and
Ω ⊆ X is a nonempty open invex set with respect to the mapping η : Ω× Ω→ X.

Definition 2.12. A mapping η : Ω× Ω→ X is said to be skew if for any x, y ∈ Ω,

η(x, y) + η(y, x) = 0.

Definition 2.13. Let x0 ∈ Ω. A mapping η : Ω×Ω→ X is said to be skew at x0 if for
any x ∈ Ω, x 6= x0,

η(x, x0) + η(x0, x) = 0.

Definition 2.14. [21] Let f : Ω→ R be a function. f is said to be

1. weakly − quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x) ≤ f(y)⇒ ∃ ξ∗ ∈ ∂Lf(y) 〈ξ∗, η(x, y)〉 ≤ 0;

2. quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x) ≤ f(y)⇒ ∀ ξ∗ ∈ ∂Lf(y) 〈ξ∗, η(x, y)〉 ≤ 0;

3. pseudo− invex with respect to η on Ω if for any x, y ∈ Ω,

〈ξ∗, η(x, y)〉 ≥ 0, ∃ ξ∗ ∈ ∂Lf(y)⇒ f(x) ≥ f(y).

In some results of the paper we need to consider some further assumptions on η.
These assumptions are known in invexity literature (Jabarootian and Zafarani (2006)
[13]).
Condition C. Let η : Ω× Ω→ X. Then for any x, y ∈ Ω, λ ∈ [0, 1],{

C1 : η(x, y + λη(x, y)) = (1− λ)η(x, y);
C2 : η(y, y + λη(x, y)) = −λη(x, y).

Remark 2.15. Yang et al. [27] have shown that if η : Ω × Ω → X satisfies condition
C, then for all x, y ∈ Ω, λ ∈ [0, 1],

η(y + λη(x, y), y) = λη(x, y).
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Definition 2.16. Let η : Ω × Ω → X, x0 ∈ Ω . We say that η : Ω × Ω → X satisfies
condition C at x0 if for all x ∈ Ω, λ ∈ [0, 1],

η(x0 + λη(x, x0), x0) = λη(x, x0).

Definition 2.17. Let f = (f1, ..., fn) : Ω→ Rn be a vector-valued function and x0 ∈ Ω.
f is said to be

1. pseudo− invex with respect to η on Ω if for any x, y ∈ Ω,

f(x)− f(y) ∈ −Rn
+\{0} =⇒ 〈∂Lf(y), η(x, y)〉 ⊆ −Rn

+\{0};

2. quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

〈ξ∗, η(x, y)〉 ∈ Rn
+\{0}, ∃ ξ∗ ∈ ∂Lf(y) =⇒ f(x)− f(y) ∈ Rn

+\{0};

3. weakly − quasi− invex with respect to η on Ω if for any x, y ∈ Ω,

〈∂Lf(y), η(x, y)〉 ⊆ Rn
+\{0} =⇒ f(x)− f(y) ∈ Rn

+\{0};

4. weakly − quasi− invex at x0 with respect to η if for any x ∈ Ω,

〈∂Lf(x0), η(x, x0)〉 ⊆ Rn
+\{0} =⇒ f(x)− f(x0) ∈ Rn

+\{0}.

Remark 2.18. Next, we provide an example which shows that a function f =
(f1, ..., fn) it can be pseudo-invex with respect to η on Ω and there exists k, 1 ≤ k ≤ n,
such that fk is not pseudo-invex with respect to η on Ω.

Example 2.19. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,

x, x < 0,

f2(x) = x

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =


( 1

2
√
x
, 1) x > 0,

[0,∞[×{1}, x = 0,
(1, 1), x < 0.

It is not difficult to see that f is pseudo-invex with respect to η. Function f1 is
not pseudo-invex with respect to η on Ω because for x = −1, y = 0 there exists
ξ∗ = 0 ∈ ∂Lf(y) such that 〈ξ∗, η(x, y)〉 = 0 and f(x) < f(y).

Definition 2.20. [8] A set valued mapping F : Ω → 2X
∗

is said to be C − η−strong
pseudomonotone if for any x, y ∈ Ω,

〈Fx, η(x, y)〉 * −C(x)\{0} =⇒ 〈Fy, η(y, x)〉 ⊆ −C(y).

Definition 2.21. A set valued mapping F : Ω → 2X
∗

is said to be (C,K) − η−strong
pseudomonotone if for any x, y ∈ Ω,

〈Fx, η(x, y)〉 * C =⇒ 〈Fy, η(y, x)〉 ⊆ K.
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Definition 2.22. A set valued mapping F : Ω → 2X
∗

is said to be strictly (C,K) −
η−strong pseudomonotone if for any x, y ∈ Ω, x 6= y,

〈Fx, η(x, y)〉 * C =⇒ 〈Fy, η(y, x)〉 ⊆ K.

Let f = (f1, ..., fn) : Ω → Rn be a vector-valued function, where fi : Ω → R
(i = 1, ..., n) is non-differentiable locally Lipschitz function.

In this paper, we consider the following vector optimization problem:
(V OP ) Minimize f(x) = (f1(x), ..., fn(x))

subject to x ∈ Ω.

Definition 2.23. A point x0 ∈ Ω is said to be an efficient (or Pareto) solution (respec-
tively, weak efficient solution) of (V OP ) if for all x ∈ Ω,

f(x)− f(x0) = (f1(x)− f1(x0), ..., fn(x)− fn(x0)) /∈ −Rn
+\{0},

(respectively, f(x)− f(x0) = (f1(x)− f1(x0), ..., fn(x)− fn(x0)) /∈ −intRn
+),

where Rn
+ is the nonnegative orthant of Rn and 0 is the origin of the nonnegative

orthant.

3. Characterization

We consider the following Minty vector variational-like inequality problems and
Stampacchia vector variational-like inequality problems.
(GGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω and all ξi ∈ ∂Lfi(x) (i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(GMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(WGGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω and all ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.

(WGMV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.

(SV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x0)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −Rn
+\{0}.

(WSV V LIP ) Find x0 ∈ Ω such that, for all x ∈ Ω there exists ξi ∈ ∂Lfi(x0)
(i = 1, ..., n),

〈ξ∗, η(x, x0)〉 = (〈ξ∗1 , η(x, x0)〉, ..., 〈ξ∗n, η(x, x0)〉) /∈ −intRn
+.
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Theorem 3.1. If x0 is a solution of (SV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+) −

η−strong pseudomonotone, η is skew at x0 and 〈 ∂Lf(x0), η(x0, x0)〉 ⊆ Rn
+, then x0

is a solution of (GGMV V LIP ).

Proof. Suppose that x0 is not a solution of (GGMV V LIP ).
Since 〈∂Lf(x0), η(x0, x0)〉 ⊆ Rn

+ it follows that there exist x ∈ Ω, x 6= x0, ζ ∈ ∂Lf(x)
such that

〈ζ, η(x, x0)〉 ∈ −Rn
+\{0}.

Therefore,

〈ζ, η(x, x0)〉 /∈ intRn
+. (3.1)

Since ∂Lf is strictly (intRn
+, intR

n
+)−η−strong pseudomonotone, by (3.1) we obtain

〈∂Lf(x0), η(x0, x)〉 ⊆ intRn
+. (3.2)

Since η is skew at x0, by (3.2) it follows that

〈∂Lf(x0), η(x, x0)〉 ⊆ −intRn
+,

which contradicts the fact that x0 is a solution of (SV V LIP ). Therefore, it follows
that x0 is a solution of (GGMV V LIP ). �

Example 3.2. Let us consider X = R, Ω = [−1, 1], f : Ω→ R defined as

f(x) =

{ √
x, x ≥ 0,
−x, x < 0.

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =


1

2
√
x
, x > 0,

[0,∞[∪{−1}, x = 0,
−1, x < 0.

and ∂Lf is strictly (intR+, intR+)− η−strong pseudomonotone. It is not difficult to
see that x0 = 0 is a solution of (SV V LIP ) and η is skew at x0. Therefore, x0 is a
solution of (GGMV V LIP ).

Corollary 3.3. If x0 is a solution of (SV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+) −

η−strong pseudomonotone and η is skew at x0, then x0 is a solution of (GMV V LIP ).

Corollary 3.4. If x0 is a solution of (WSV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+)−

η−strong pseudomonotone, η is skew at x0 and 〈 ∂Lf(x0), η(x0, x0)〉 ⊆ Rn
+\{0}, then

x0 is a solution of (GGMV V LIP ).

Corollary 3.5. If x0 is a solution of (WSV V LIP ), ∂Lf is strictly (intRn
+, intR

n
+)−

η−strong pseudomonotone and η is skew at x0, then x0 is a solution of
(WGMV V LIP ).

Theorem 3.6. If x0 is a solution of (V OP ), f is quasi-invex with respect to η on Ω
and η is skew, then x0 is a solution of (GGMV V LIP ).
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Proof. Suppose that x0 is not a solution of (GGMV V LIP ). It follows that there exist
x ∈ Ω, ζ ∈ ∂Lf(x) such that we have

〈ζ, η(x, x0)〉 ∈ −Rn
+\{0}. (3.3)

Since η is skew, by (3.3) we obtain

〈ζ, η(x0, x)〉 ∈ Rn
+\{0}.

Since f is quasi-invex, it follows that

f(x0)− f(x) ∈ Rn
+\{0},

which contradicts the fact that x0 is a solution of (V OP ). Therefore, x0 is a solution
of (GGMV V LIP ). �

Remark 3.7. In [4] (Theorem 3.1) the authors obtained this result by assuming that
fi(i = 1, ..., n) are invex with respect to η on Ω. Next, we provide an example which
shows that a function f = (f1, ..., fn) it can be quasi-invex with respect to η on Ω
and there exists k, 1 ≤ k ≤ n, such that fk is not invex with respect to η on Ω.

Example 3.8. Let us consider X = R, Ω = [− 1
5 ,

1
5 ], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{
x2 + 2x, x > 0,
−x, x ≤ 0,

f2(x) =

{
x3 − 2x2 + x, x ≥ 0,
−x, x < 0,

and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We have

∂Lf(x) =

 (2x+ 2, 3x2 − 4x+ 1), x > 0,
(k, t), k ∈ {2,−1}, t ∈ {1,−1}, x = 0.
(−1,−1), x < 0.

It is easy to observe that x0 = 0 is a solution of (V OP ), η is skew and function f is
quasi-invex with respect to η on Ω. Function f2 is not invex with respect to η on Ω
because for x = 1, y = 0 we obtain

f2(1)− f2(0) < 〈ξ∗, η(1, 0)〉,

for ξ∗ = 1.

Corollary 3.9. If x0 is a solution of (V OP ), f is quasi-invex with respect to η on Ω
and η is skew, then x0 is a solution of (GMV V LIP ).

Theorem 3.10. If x0 is a solution of (V OP ), f is weakly quasi-invex at x0 with respect
to η on Ω and η is skew at x0, then x0 is a solution of (GMV V LIP ).

Proof. Suppose that x0 is not a solution of (GMV V LIP ). Therefore, there exists
x ∈ Ω such that for all ξ∗ ∈ ∂Lf(x) we have

〈ξ∗, η(x, x0)〉 ∈ −Rn
+\{0}. (3.4)
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Hence,

〈∂Lf(x), η(x, x0)〉 ⊆ −Rn
+\{0}. (3.5)

Since η is skew at x0 we obtain

〈∂Lf(x), η(x0, x)〉 ⊆ Rn
+\{0}.

Since f is weakly quasi-invex at x0 with respect to η on Ω it follows that

f(x0)− f(x) ∈ Rn
+\{0},

which contradicts the fact that x0 is a solution of (V OP ). Therefore, x0 is a solution
of (GMV V LIP ). �

Remark 3.11. In [18] (Theorem 13) the authors obtained this result by assuming that
fi(i = 1, ..., n) are pseudo-invex with respect to η on Ω. Next, we provide an example
which shows that a function f = (f1, ..., fn) it can be weakly quasi-invex with respect
to η on Ω and there exists k, 1 ≤ k ≤ n, such that fk is not pseudo-invex with respect
to η on Ω.

Example 3.12. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,

x, x < 0,

f2(x) =

{
1
2

√
x, x ≥ 0,

−x, x < 0,

x0 = 0 and η : Ω× Ω→ R defined as

η(x, y) = x− y.
We obtain that

∂Lf1(x) =


( 1

2
√
x
, 1

4
√
x

), x > 0,

[0,∞[×([0,∞[∪{−1}), x = 0,
(1,−1), x < 0.

It is not difficult to verify that f is weakly quasi-invex at x0 with respect to η, x0 = 0
is solution of (V OP ), η is skew at x0 and f1 is not pseudo-invex with respect to η on
Ω because for x = −1, y = 0 there exists ξ∗ = 0 ∈ ∂Lf(y) such that 〈ξ∗, η(x, y)〉 = 0
and f(x) < f(y).

Theorem 3.13. Suppose that x0 is a solution of (SV V LIP ) and f is pseudo-invex
with respect to η on Ω. Then, x0 is a solution of (V OP ).

Proof. Suppose that x0 is not a solution of (V OP ). Therefore, there exists x ∈ Ω such
that

f(x)− f(x0) ∈ −Rn
+\{0}.

Since f is pseudo-invex with respect to η on Ω, it follows that

〈∂Lf(x0), η(x, x0)〉 ⊆ −Rn
+\{0},

which contradicts the fact that x0 is a solution of (SV V LIP ). Therefore, x0 is a
solution of (V OP ).
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Remark 3.14. In [4] (Theorem 3.2) the authors obtained this result by assuming that
fi(i = 1, ..., n) are invex with respect to η on Ω. Next, we provide an example which
shows that a function f = (f1, ..., fn) it can be pseudo-invex with respect to η on Ω
and there exists k, 1 ≤ k ≤ n, such that fk is not invex with respect to η on Ω.

Example 3.15. Let us consider X = R, Ω = [−1, 1], f = (f1, f2) : Ω→ R2 defined as

f1(x) =

{ √
x, x ≥ 0,
−x, x < 0,

f2(x) = x

and η : Ω× Ω→ R defined as
η(x, y) = x− y.

We have

∂Lf1(x) =


( 1

2
√
x
, 1), x > 0,

([0,∞[∪{−1})× {1}, x = 0,
(−1, 1), x < 0.

It is not difficult to see that x0 = 0 is solution of (SV V LIP ), f is pseudo-invex with
respect to η. Function f1 is not invex with respect to η on Ω because for x = 1, y = 0
we obtain

f(1)− f(0) < 〈ξ∗, η(1, 0)〉,
for ξ∗ = 2.
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