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Semi-y; and strongly log-© convexity
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Abstract. In this note, semi-p,-convexity as a generalization of h-convexity and
semi ¢-convexity, and strongly log-¢ convex functions have been introduced and
studied. Some properties of semi-p-convex functions are proved. Also, some new
results of Hemite-Hadamard type inequalities for semi-¢p-convex functions, semi
log- ¢ and strongly log-¢ convex functions are obtained.
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1. Introduction

In 1883, Hermite proved an inequality, rediscovered by Hadamard in 1893, that
for a convex function f on [a,b] € R, also continuous at the endpoints, one has that

f(a;b>S&Abf(x)dng(a);f(b)

This is known as Hermite-Hadamard inequality. In the literature, many modi-
fications, generalizations and extensions of this inequality has been obtained for last
few years.

Let I be an interval in R. A function f: I — R, is said to be convex on I if

[tz + (1 =t)y) <if(x)+ (1 —1)f(y),
for all z,y € I and ¢ € (0,1).
Let I be an interval in R and & : (0,1) — (0,00) be a given function. Then a
function f : I — R is said to be h-convex if

[tz + (1= t)y) <h(@)f(z) +h(1 =) (y),
for all z,y € I and ¢ € (0,1).
If h(t) = t%;s € (0,1), then f is said to be s-convex in second sense [2], if f is

non-negative and h(t) = 1 then f is said to be Godunova-Levin function [6] and if f
is non-negative with h(t) = 1 then f is P-convex function [7].
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In [14], Youness introduced a new class of functions called ¢-convex functions
and he established some results about these sets and functions. Later on, the result
by Youness [14] were improved by Yang [13], Duca et al. [4] and Chen [3]. Throughout
this paper, we assume that ¢ : I — I, where I is a real interval and h : (0,1) — (0, 00)
are given maps.

Definition 1.1. A function f : I — R is said to be p-convex on I if
flto(x) + (1 = t)p(y) < tf(p(x) + (1 — 1) f(p(y),
forallz,y €I andt € (0,1).
In [11], Sarikaya has studied @p- convexity and obtained some new inequalities.

Definition 1.2. Let I be an interval in R. We say that a function f: I — [0,00) is a
pp-convex if

flte(@) + (1= t)p(y)) < h(t)f(p(x)) + h(1 = 1) f(e(y)),
forallt € (0,1) and z,y € I.
Theorem 1.3. (Th. 2, [11]) Let h : (0,1) — (0, 00) be a given function. If f : I — [0, 00)
is Lebesgue integrable on I and pp-convex for continuous function ¢ : [a,b] — [a, b,
with p(a) # ¢(b), then the following inequality holds:

»(b)

1
o(b) — ¢(a) ~/<,a(a)
< f2<go<x>>+f2<w<y>>} / B()A(L — 1)t + 27 ((x)) f (o)) / B2 (1) .

f(@) f(p(d) + p(a) — x)dx

Hu at al [8] studied firstly the notion of semi-p-convexity. Chen in [3] modified
their results and defined the following class of functions.

Definition 1.4. The function f : I — R is semi-p-convex, if for every x,y € I and
t € (0,1) we have
flto(x) + (1 = t)e(y)) < tf(@)+ (1 —1)f(y).
Toader [12] defined the following function:

Definition 1.5. Let be b > 0 and m € (0,1]. A function f :[0,b] — [0,00) is said to be
m-convex if

flte +m(1—t)y) <tf(z)+ (1 -1)f(y),
for all x,y € [0,b], t € [0,1].

In [5], Dragomir and Pedarié¢ showed that the following result holds for m-convex
functions.

Theorem 1.6. (Th. 197, [5]) If f : [0,00) — [0,00) is a m-convex function with
m € (0,1) and Lebesgue integrable on [ma,b] where 0 < a < b and mb # a, then

mb b
s [ ot 2 [ e < L0

m—+1

ma
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The rest of the paper is organized as follows: In section 2, semi-py,-convexity
has been defined and some properties are studied. In section 3, some new results of
Hadamard type inequalities are proved. In the last section, semi log-¢ and strongly
log-¢ convex functions are discussed and some inequalities are obtained.

2. Semi-p,-Convexity
In this section, we define the following function:

Definition 2.1. Let ¢ : [a,b] — [a,b] and I be an interval in R such that [a,b] C I. Let
h:(0,1) = (0,00) be a given function. We say that a function f : I — [0,00) is a
semi-pp-convex if for allt € (0,1) and z,y € I, we have

flto(z) + (1 =t)e(y)) < h(t)f(z) + k(1 —1)f(y).

Remark 2.2. 1. If h(t) = ¢, f is a semi-p-convex function on I.

If h(t) =t%, f is a semi-p,-convex function on I.

If h(t) = ¢, f is a semi-¢p Gudunova-Levin convex function on I.
If h(t) =1, f is a semi-pP-convex function on I.

If p(x) =z, f is a h-convex function on I.

6. If p(x) =« and h(t) =1, f is a convex function on I.

Gl

Example 2.3. [3] Let ¢ : R — R such that

1, 1<zx<4
p(z) =4 14 2arctan(l—z), z<1
24 Jarctan(x —4), x> 4.
and f: R — R

7, r<lorx>4

r—3, 1<x<?2

F@)=9335_, 2<.<3

r—3, 3<z<A4.

Here f is a semi-pp-convex function on R for h(t) = t.
Example 2.4. Let h(t) = 1 for all t € R, p(z) = —22, for all x € R, and
1, >0

f(m):{ 2, <0.

Then f is a semi-p P-convex function on R.
Now we prove some properties of semi-pp-convex functions.

Theorem 2.5. If f,g: I — [0,00) are semi-py-convez functions, where h : (0,1) —
(0,00) is a given function, and o > 0 then f+g and af are semi-@p-convex functions.

Proof. Since f, g are semi-p}, convex functions then for x,y € I and ¢ € (0,1),

(f +9)(te(x) + (1 =t)p(y) = flte(x) + (1 —)p(y) +g(te(z) + (1 —)e(y))
h(t)(f + g)(x) +h(L =)(f + 9)(y),

<
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and

O

Lemma 2.6. If f : I — [0,00) is a semi~p convez function and g is an increasing
h-convex function, where range of f is contained in the domain of g and h: (0,1) —
(0,00), then go f is a semi-pp- convex function.

Proof. Since f is semi-p-convex function then for z,y € I and t € (0, 1),

fltp(x) + (1 = t)e(y) < tf (@) + (1 =) f(y).

Since g is increasing and h-convex we have

(go fllte(z) + (1 =)e(y)) <gtf(z)+ (1 -1)f(y))
< h(t)(go f)(z) +h(1—1t)(go f)y).

This completes the proof. O
Lemma 2.7. If f is semi-p-convex and h(t) >t then f is semi-py,-convez.
Proof.
flto(z) + (1 =t)p(y)) <tf(z) + (1 =) f(y) <h(B)f(x) +h(1-1)f(y).
This completes the proof. O
Lemma 2.8. If f is semi-pp convex and h(t) <t then f is semi-p-conve.
Proof.
flto(z) + (1 =t)e(y)) < h(t)f(z) +h(1 =) f(y) <tf(z)+ (1 -1)f(y)
This completes the proof. O

Lemma 2.9. Let hy,hs : (0,1) = (0,00) such that ha(t) < hy(t). If [ is semi-pp,
convex then f is semi-pp, convex.

Proof. Since f is semi-¢p, convex then for 2,y € I and ¢t € (0,1) we have

flte(@) + (1 =)p(y)) < ha(t)f(@) + ha(l =) f(y) < ha(t) f(x) + ha(1 = 1) f(y).
This completes the proof. O

3. Hermite-Hadamard Type Inequalities

Theorem 3.1. If [a,b] C I, ¢ : [a,b] — [a,b] is a continuous function such that
o(a) # ¢(b) and the function f: I — [0,00) is Lebesgue integrable on I and semi-op

convez, then
m /:j)f (@)dz < (f(a> +f(b)) /0 1 h(t)dt.
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Proof. Since f is semi-p}, convex, we have for ¢ € (0, 1),
f(te(a) + (L= t)p(b)) < h(t)f(a) + h(1 — 1) f(D).
Integrating the above inequality over the interval (0, 1),
1
[ st + (=000 < 1@+ 50) [ oy
0
Substituting @ = te(a) + (1 — t)¢(b) we get the required inequality. O
Corollary 3.2. Under the assumptions of Theorem 3.1 with h(t) =t for all t € (0,1),
we have o
@(b
I\ LY (CL I U}
(p(b) - (p(a) p(a) 2

Corollary 3.3. Under the assumptions of Theorem 3.1 with s € (0,1) and h(t) =
for allt € (0,1), we have

»(b)
- / Fa)dn < LD FFO)
@(b) - (p(@) p(a) s+1
Corollary 3.4. Under the assumptions of Theorem 3.1 with h(t) =1 fort € (0,1), we
have
L [ s < s+ 50)
_ z)dx < f(a)+ f(b).
0~ 2@ Joa AR
Remark 3.5. If h(t) =t for t € (0,1) and p(x ) = z we have
fla) + f(b) + f(o)
b—a / Ut

Theorem 3.6. If [a,b] C I, ¢ : [a,b] — [a,b] is a continuous function such that
o(a) # ¢(b) and the function f: I — [0,00) is Lebesgue integrable on I and semi-op
convezx, then

()
M/f) f(@)f(ola) + p(b) — z)dz
p(a

< (F2(a) + PPO)) / B(OR(1 — t)dt + 2 (a) £ (D) / B2 (t)dr).

Proof. Since f is semi-pp, convex we have for ¢ € (0,1)

flto(a) + (1 = t)e(b)) < h(t)f(a) + h(1 —1)f(b),
and

F((L=1)p(a) + (tp(b)) < h(1 = 1) f(a) + h(t) f(b)-
By multiplying both inequalities, we get

fte(a) + (1= 1)p(0) f((1 = t)p(a) + (D))
< R = )h(t)(f*(a) + () + f(a) f(0)(R?(t) + h*(1 = 1))
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‘We obtain

/ F(tp(a) + (1 — () F(1 — Dp(a) + (tp(b))dt
< (f2(a) + £2(0)) / B(L — t)h(t)dt + 2 (a) £ (D) / B2 (1)t

0
Substituting x = te(a) + (1 — t)(b), we get the required inequality. O

Corollary 3.7. Under the assumptions of Theorem 3.6 with h(t) =t for allt € (0,1),
we have
1 »(b)
M/( : F@)f(e(b) + ¢(a) — x)da
e(a
< fz(a)ng(b) N 2f(a§f(b).

Theorem 3.8. If [a,b] C I, ¢ : [a,b] — [a,b] is a continuous function such that
p(a) # p(b) and the functions f,g : I — [0,00) is Lebesque integrable on I and

Semi—@h COn'Ue.T, then
/Soa
@(

M(a, b)/o h%(t)dt + N(a, b)/ h(t)h(1 — t)dt.

0

where
M(a,b) = f(a)g(a) + f(b)g(b),
N(a,b) = f(a)g(b) + f(b)g(a).
Proof. Since f, g are semi-pp-convex we have for ¢ € (0,1)
ftp(a) + (1 = t)p(b)) < h(t)f(a) + h(1 ) f(b),
and
g(te(a) + (1= t)p(b)) < h(t)g(a) + h(1 —t)g(b).
By multiplying both sides, we get
flto(a) + (1= t)e(b))g(te(a) + (1 — t)p(b))
< h2(t) f(a)g(a) + h*(1 = 1) f(b)g(b) + h(t)h(1 — ) f(a)g(b) + h(t)h(1 —t) f(b)g(a).

Integrating over the interval (0, 1), we obtain

/ F(tp(a) + (1 — B)p(b)g(to(a) + (1 — t)p(b))dt

1
< (f(a)g(a) + f(b)g(b)) ; s (t)dt + (f(a)g(b) +f(b)9(a))/0 h(t)h(1 = t)dL.
Replacing x = tp(a) + (1 — t)p(b), we get the required inequality. O

Definition 3.9. Let be m € (0,1]. A function f :[0,b] = [0,00) is said to be semi-py,-
convez if

flte(@) +m(1 = t)p(y)) < tf(z) +m( —1)f(y),
for all x,y € [0,b], t € [0,1].
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Remark 3.10. If mm = 1, then f is semi-p-convex, and if m = 1,¢(x) = x for all
x € [0,b], then f is convex on [0, b].

Theorem 3.11. If f : [0,00) — [0,00) is a semi- @, -convex function, with m € (0,1)
such that me(b) # ¢(a) and mp(a) # @(b) and f is Lebesgue integrable on [ma,b]
then

1 1 me(b) 1 () f(a)+ f(b)
ot 1mg(5) — o(a) /W e+ (@) /W(a) Jw)da] £ ===

Proof. Since f is semi- ,,-convex we have following inequalities
f(te(a) +m(l —t)p(b) < tf(a) +m(l—1)f(b),
J((1=t)p(a) + mtp(d)) < (1 —1t)f(a) +mtf(b),
fmtp(a) + (1 = t)p(b)) <mtf(a)+ (1—1)f(b),
Fm(1 = t)p(a) +tp(b)) < m(1l—t)f(a) +tf(b).

Adding the above four inequalities, we get
f(te(a) +m(L = t)p(b)) + f((1 = t)p(a) + mtp(d))
+f(mtp(a) + (1 = t)p(d)) + f(m(l — t)p(a) + tp(b))

< (m+1)(f(a) + f(b)).

Now, integrating over the interval (0,1), we have

/ft<p +m(l—t)p dt+/ F((1 =t)p(a) + mtp(b))dt+

/ f(mto(a) + (1 —t)p(d))dt +/ F(m(1l —t)p(a) + tp(d))dt
0

< (m+1)(f(a) + f(b)).
Using the substitution z = tp(a) + (1 — t)p(b), we have

/ftgo )+ m(1—t)p(b))dt = /f ((1 = t)p(a) + mto(b))dt

1 mep(d)
= )~ pla >/W> fle)de,

(a
and using the substitution z = te(a) + (1 — t)¢(b), we have
f(mitp(a) + (1= t)p(b))dt = f(m(1 —t)p(a) + to(b))dt

1 @ (b)
B @(b) - mgp(a) /Tncp(a) f(x)dx

Using the above equations, we get the required inequality. O
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4. Semi-p and strongly log-¢ convexity

Definition 4.1. [3] A function f : I — [0,00) is a semi log-¢ convez if, for allt € (0,1)
and z,y € I, one has

Fto(@) + (1 =)o) < fx) fly)' "
Polyak [9] introduced strongly convex functions which plays an important role
in optimization theory and mathematical economics.
A function f: I — R is said to be strongly convex with modulus ¢ > 0 on [ if
flte+ 1 =t)y) <tf(x) + (1 —t)f(y) +ct(l = t)(z —y)*,
for all z,y € I and ¢ € (0,1).
Sarikaya [11] defined strongly log-convex functions as:

Definition 4.2. A positive function f : I — (0,00) is said to be strongly log-convex
with respect to ¢ > 0 if
fltz+ (1 =t)y) < f(@)' fy)' ™" —et(l = )(z —y)*,
forallz,y eI andt € (0,1).
In this section we relate Hermite Hadamard type inequalities to some special

means. Firstly, let us recall the following means for positive a,b € R:
Arithmetic mean:

A(a7 b) = ot ba
2
Geometric mean:
G(a,b) = Vab,
Logarithmic mean:
b—a
L(a,b) =

~ log(b) — log(a)’
Theorem 4.3. If the positive function f : I — (0,00) is semi log-p convex function
and Lebesgue integrable on I, then

1 ©(b)
T ., Gl o)~ < ). ),
foralla,bel, a<b.
Proof. Since f is semi log-¢ convex, we have

f(te(a) + (1 = 1)p(b) < f(a) f(0)'", Yt € (0,1)
and

(1= Hp(a) + (b)) < F(a) (B, Wt € (0,1).
By multiplying both inequalities, we get

fto(a) + (1 =8)p0) f(1 = t)p(a) + (b)) < f(a)f (D).

Now, taking square root, we get

G(f(tp(a) + (1 =1)p(0), f(1 = t)p(a) + tp(b))) < G(f(a), f(D))-
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By integrating over the interval (0, 1) and replacing = = tp(a) + (1 — t)p(b), we get
the required inequality. O

Theorem 4.4. If the positive function f : I — (0,00) is semi log-p convex function
and Lebesgue integrable on I, then

1 /W’) fa) + f(b)

o(b) — p(a) @ f(x)dz < L(f(b), f(a)) < :
foralla,be I, a<b.

)

Proof. Since f is semi log-¢ convex, we have

f(t(a) + (1 = 1)p(b)) < f(a) f(0)' ™", Yt € (0,1).

Integrating over the interval (0, 1), we get

LAﬂw@HﬂfﬂﬂmﬁSAfWV@“%

= o = ) + 50
= Tog 7(6) "log fla) — LU0 fla)) < ==
Substituting = = t@(a) + (1 — )¢ (b), we get the required result. O

Theorem 4.5. If the functions f,g: I — (0,+00) are semi log-p convex and Lebesque
integrable on I, then

1 »(b)
s L, S < L @90), e
w(a

< i{(f(b) + f(a))L(f(b), f(a)) + (9(a) + g(b)) L(g(b), g(a))},
foralla,bel, a<b.

Proof. Since f, g are semi log- convex, we have
fltp(a) + (1= t)e(b)) < fla)' f(b)' 7", Ve (0,1)
and

g(tp(a) + (1= 1)p(b)) < g(a)'g(b)'~", Yt € (0,1).
Multiplying both inequalities and integrating over the interval (0, 1), we get

/’fw (1= D)p(b)g(te(a) + (1 — )p(b))dt

/jf LF(B) "t g(a) g (b) Mt

(b)g(b) — f(a)g(a)
log( () (b)) —log(f(a)g(a))
L(f(b)g(b), f(a)g(b)).

By Young’s inequality, we have

Aiﬂwvwf4awwwﬂ4ﬁ
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<5 [ + [gla)'g(b) "2}t
S VL O]
i Tog(F(0)) —log(/(@)) " Tor(9(b) — log(a(@)

- i{(f(a) + F(B))L(f(b), f(a)) + (g(a) + g(b))L(g(b), g(a))}. (4.2)

Using (4.1) and (4.2) and substituting = = tp(a)+(1—1t)¢(b), we get the required
result. O

Definition 4.6. Let f : I — (0,00) be a positive function. We say that f is strongly
log-p convex with respect to ¢ > 0 if

Flto(@) + (1= t)p(y) < fle@) flpy)' " = ct(l - t)(p(z) — o(y))?,
forallz,y €I andt € (0,1).

Remark 4.7. From the above inequality, using arithmetic mean- geometric mean, we
have

Flto(@) + (1= t)p(y) < flp@) flpy)' " = ct(l = t)(p(z) — o(y))?
<tf(p(x) + (1 =) f(e(y)) — ct(l = 1) (p(z) = ¢(y))*
< max{f(p(x)), f(p(y)} — ct(l = t)(p(z) — o (y))*.
Example 4.8. Let
90(17):{ ]:1’ mZO

x < 0.

Then for ¢ = % the function

o) = {

is strongly log-¢ convex function with respect to ¢ on R.

0, -I<zx<l
1, otherwise

Theorem 4.9. Let ¢ : [a,b] — [a,b] be a continuous function and f: I — (0,00) be a
positive strongly log-¢ convex function with respect to ¢ > 0, where a,b € I. If f is
Lebesgue integrable on I then

a c w(b)
f(sp();_@(b)>+2(<p(a)—<p(b))2 < m L(a) G(f(2), f(p(a)+p(b) —x))dx
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Proof. Since f is strongly log-¢ convex, we have for t € (0,1)

ﬂww;w@)

< /FlEola) + (1= @) (T — pla) + 0(0)) — 5 (pla) — o(B)2(1 - 2)*
ol + (1= 0p0) | HO= 0 e €y iy oyt

- 2 2
Integrating the above inequality over (0,1) and substituting « = t@(a) + (1 — t)p(b)

H(HA) et

»(b)
S/W G(f(), f(p(a) + p(b) - 2))de (4.3)

we get

©(b)
< [ AU@. S + (b)), (4.4)
»(a)
Using f“oa) f(z f;p(gl)) )+ p(b) — x)dx, (4.3) becomes

f(W) + 2 (pa) — o(1)?

_ W(b)G b d
< x a —x))ax
< @ ., U ol o)~ )

1 @ (b)
< T L T

Again, using strongly log-¢ convexity of f, we get

s@(b)i@/m df”*/ffso (1= D)p(b))dt

1
< / (@) [ (o) "dt / et(1— 1)(pla) — o(b))dt

- 0
_ flp(d)) — f(p(a)) ot ,
= Tog(7 () —log(flp(a)) 670

:LU@@)ﬂﬂwﬁ—%ﬂw—w@f
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Theorem 4.10. Let ¢ : [a,b] — [a,b] be a continuous function, where a,b € I, and let
f:I—(0,00) be a positive strongly log-p convex function with respect to ¢ > 0. If f
18 Lebesgue integrable on I then

©(b)
m /( : (@) f(p(b) + p(a) — x)dx

< flp(@) f((0)) + 35((8) = ¢(a)*

o (ol0) = (@) o)) - .
e o O los (oAU (@), F(o(@) = LU (o), f(pla))]

Proof. Since f is strongly log-¢ convex, we have for ¢t € (0,1)
Ftp(a) + (1 =1)p) < f(e(@) fle®)' ™" = ct(l = t)(p(a) — p(b))%,

and
F((1 = t)p(a) +tp(b)) < fe(a) " flp(b)" — ct(L = t)(p(a) — (b))
Multiplying both inequalities and integrating over (0, 1), we get
/O f(tp(a) + (1 =1)@(b) f(1 —t)p(a) + to(b))dt

< Flp(@) f(p(®) = (¢la) — p(b))? / ct(1 — t){ Flo(b) []}Ei((bm

t 1
+f<so<a>>[f “”“’))] }dt+02(s0(a)—<p(b))4 [ ea-aws)

f(p(a))
Since
! fle(a)]’
| t“‘“[ﬂw(b»] o
2
o0 Qor(F (o)) —os(F(p)2 (PO TP = (0. (“”(“()i)g')
Similarly, .
! fle(a)]
| t(l_t)[f(w(b))] o
2
TR TG A (A0 (60 = 0. (‘”(“)))(4 '

Substituting (4.6) and (4.7) in (4.5) and replacing x = ty(a) + (1 —t)¢(b), we get the
required inequality. O



Semi-pp, and strongly log-¢ convexity 153

Theorem 4.11. Let ¢ : [a,b] — [a,b] be a continuous function, where a,b € I, and let
fog: I — (0,00) be a positive strongly log-p convex functions with respect to ¢ > 0.
If f and g are Lebesgue integrable, then

< L(f(p(®)g(e (b)), F(p(@)g(p(a)) + 35(#(a) = 9(0))" = 2¢(2(b) = p(a))?
( ) (

) —
flea))) | Algle?)),g(¢(a))) — Llg (@(b)),g(w(a)))}
))? (log(g((b))) — log(g((a))))?

02
+55(#(@) = (B)" = 2c(p(b) — ()

o {A(f(so(b)% f(p(a) = L(f(e(0)). f(e(a)) | Alg(e(b)), 9(¢(a))) — L(g(so(b)%g(so(a)))}
(log(f(0(b))) — log(f(#(a))))? (log(g(¢(b))) — log(g(y(a))))?
Proof. The proof is similar to Theorem 4.10 g
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