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Semi-ϕh and strongly log-ϕ convexity
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Abstract. In this note, semi-ϕh-convexity as a generalization of h-convexity and
semi ϕ-convexity, and strongly log-ϕ convex functions have been introduced and
studied. Some properties of semi-ϕh-convex functions are proved. Also, some new
results of Hemite-Hadamard type inequalities for semi-ϕh-convex functions, semi
log- ϕ and strongly log-ϕ convex functions are obtained.
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1. Introduction

In 1883, Hermite proved an inequality, rediscovered by Hadamard in 1893, that
for a convex function f on [a, b] ∈ R, also continuous at the endpoints, one has that

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This is known as Hermite-Hadamard inequality. In the literature, many modi-
fications, generalizations and extensions of this inequality has been obtained for last
few years.

Let I be an interval in R. A function f : I → R, is said to be convex on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ I and t ∈ (0, 1).
Let I be an interval in R and h : (0, 1) → (0,∞) be a given function. Then a

function f : I → R is said to be h-convex if

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y),

for all x, y ∈ I and t ∈ (0, 1).
If h(t) = ts; s ∈ (0, 1), then f is said to be s-convex in second sense [2], if f is

non-negative and h(t) = 1
t then f is said to be Godunova-Levin function [6] and if f

is non-negative with h(t) = 1 then f is P -convex function [7].
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In [14], Youness introduced a new class of functions called ϕ-convex functions
and he established some results about these sets and functions. Later on, the result
by Youness [14] were improved by Yang [13], Duca et al. [4] and Chen [3]. Throughout
this paper, we assume that ϕ : I → I, where I is a real interval and h : (0, 1)→ (0,∞)
are given maps.

Definition 1.1. A function f : I → R is said to be ϕ-convex on I if

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(ϕ(x)) + (1− t)f(ϕ(y)),

for all x, y ∈ I and t ∈ (0, 1).

In [11], Sarikaya has studied ϕh- convexity and obtained some new inequalities.

Definition 1.2. Let I be an interval in R. We say that a function f : I → [0,∞) is a
ϕh-convex if

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(ϕ(x)) + h(1− t)f(ϕ(y)),

for all t ∈ (0, 1) and x, y ∈ I.

Theorem 1.3. (Th. 2, [11]) Let h : (0, 1)→ (0,∞) be a given function. If f : I → [0,∞)
is Lebesgue integrable on I and ϕh-convex for continuous function ϕ : [a, b] → [a, b],
with ϕ(a) 6= ϕ(b), then the following inequality holds:

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤
[
f2(ϕ(x)) + f2(ϕ(y))

] ∫ 1

0

h(t)h(1− t)dt+ 2f(ϕ(x))f(ϕ(y))

∫ 1

0

h2(t)dt.

Hu at al [8] studied firstly the notion of semi-ϕ-convexity. Chen in [3] modified
their results and defined the following class of functions.

Definition 1.4. The function f : I → R is semi-ϕ-convex, if for every x, y ∈ I and
t ∈ (0, 1) we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y).

Toader [12] defined the following function:

Definition 1.5. Let be b > 0 and m ∈ (0, 1]. A function f : [0, b]→ [0,∞) is said to be
m-convex if

f(tx+m(1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ [0, b], t ∈ [0, 1].

In [5], Dragomir and Pec̆arić showed that the following result holds for m-convex
functions.

Theorem 1.6. (Th. 197, [5]) If f : [0,∞) → [0,∞) is a m-convex function with
m ∈ (0, 1) and Lebesgue integrable on [ma, b] where 0 ≤ a ≤ b and mb 6= a, then

1

m+ 1

[
1

mb− a

∫ mb

a

f(x)dx+
1

b−ma

∫ b

ma

f(x)dx

]
≤ f(a) + f(b)

2
.
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The rest of the paper is organized as follows: In section 2, semi-ϕh-convexity
has been defined and some properties are studied. In section 3, some new results of
Hadamard type inequalities are proved. In the last section, semi log-ϕ and strongly
log-ϕ convex functions are discussed and some inequalities are obtained.

2. Semi-ϕh-Convexity

In this section, we define the following function:

Definition 2.1. Let ϕ : [a, b]→ [a, b] and I be an interval in R such that [a, b] ⊆ I. Let
h : (0, 1) → (0,∞) be a given function. We say that a function f : I → [0,∞) is a
semi-ϕh-convex if for all t ∈ (0, 1) and x, y ∈ I, we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(x) + h(1− t)f(y).

Remark 2.2. 1. If h(t) = t, f is a semi-ϕ-convex function on I.
2. If h(t) = ts, f is a semi-ϕs-convex function on I.
3. If h(t) = 1

t , f is a semi-ϕ Gudunova-Levin convex function on I.
4. If h(t) = 1, f is a semi-ϕP -convex function on I.
5. If ϕ(x) = x, f is a h-convex function on I.
6. If ϕ(x) = x and h(t) = t, f is a convex function on I.

Example 2.3. [3] Let ϕ : R→ R such that

ϕ(x) =

 1, 1 ≤ x ≤ 4
1 + 2

π arctan(1− x), x < 1
2 + π

4 arctan(x− 4), x > 4.

and f : R→ R

f(x) =


7, x < 1 or x > 4
x− 3, 1 ≤ x < 2
3− x, 2 ≤ x ≤ 3
x− 3, 3 < x ≤ 4.

Here f is a semi-ϕh-convex function on R for h(t) = t.

Example 2.4. Let h(t) = 1 for all t ∈ R, ϕ(x) = −x2, for all x ∈ R, and

f(x) =

{
1, x ≥ 0
2, x ≤ 0.

Then f is a semi-ϕ P -convex function on R.

Now we prove some properties of semi-ϕh-convex functions.

Theorem 2.5. If f, g : I → [0,∞) are semi-ϕh-convex functions, where h : (0, 1) →
(0,∞) is a given function, and α > 0 then f+g and αf are semi-ϕh-convex functions.

Proof. Since f, g are semi-ϕh convex functions then for x, y ∈ I and t ∈ (0, 1),

(f + g)(tϕ(x) + (1− t)ϕ(y)) = f(tϕ(x) + (1− t)ϕ(y)) + g(tϕ(x) + (1− t)ϕ(y))
≤ h(t)(f + g)(x) + h(1− t)(f + g)(y),
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and
(αf)(tϕ(x) + (1− t)ϕ(y)) ≤ α[h(t)f(x) + h(1− t)f(y))]

= h(t)(αf)(x) + h(1− t)(αf)(y).

�

Lemma 2.6. If f : I → [0,∞) is a semi-ϕ convex function and g is an increasing
h-convex function, where range of f is contained in the domain of g and h : (0, 1)→
(0,∞), then g ◦ f is a semi-ϕh- convex function.

Proof. Since f is semi-ϕ-convex function then for x, y ∈ I and t ∈ (0, 1),

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y).

Since g is increasing and h-convex we have

(g ◦ f)(tϕ(x) + (1− t)ϕ(y)) ≤ g(tf(x) + (1− t)f(y))
≤ h(t)(g ◦ f)(x) + h(1− t)(g ◦ f)(y).

This completes the proof. �

Lemma 2.7. If f is semi-ϕ-convex and h(t) ≥ t then f is semi-ϕh-convex.

Proof.

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(x) + (1− t)f(y) ≤ h(t)f(x) + h(1− t)f(y).

This completes the proof. �

Lemma 2.8. If f is semi-ϕh convex and h(t) ≤ t then f is semi-ϕ-convex.

Proof.

f(tϕ(x) + (1− t)ϕ(y)) ≤ h(t)f(x) + h(1− t)f(y) ≤ tf(x) + (1− t)f(y).

This completes the proof. �

Lemma 2.9. Let h1, h2 : (0, 1) → (0,∞) such that h2(t) ≤ h1(t). If f is semi-ϕh2

convex then f is semi-ϕh1
convex.

Proof. Since f is semi-ϕh2
convex then for x, y ∈ I and t ∈ (0, 1) we have

f(tϕ(x) + (1− t)ϕ(y)) ≤ h2(t)f(x) + h2(1− t)f(y) ≤ h1(t)f(x) + h1(1− t)f(y).

This completes the proof. �

3. Hermite-Hadamard Type Inequalities

Theorem 3.1. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the function f : I → [0,∞) is Lebesgue integrable on I and semi-ϕh
convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤
(
f(a) + f(b)

)∫ 1

0

h(t)dt.
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Proof. Since f is semi-ϕh convex, we have for t ∈ (0, 1),

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b).

Integrating the above inequality over the interval (0, 1),∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt ≤ (f(a) + f(b))

∫ 1

0

h(t)dt.

Substituting x = tϕ(a) + (1− t)ϕ(b) we get the required inequality. �

Corollary 3.2. Under the assumptions of Theorem 3.1 with h(t) = t for all t ∈ (0, 1),
we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b)

2
.

Corollary 3.3. Under the assumptions of Theorem 3.1 with s ∈ (0, 1) and h(t) = ts

for all t ∈ (0, 1), we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b)

s+ 1
.

Corollary 3.4. Under the assumptions of Theorem 3.1 with h(t) = 1 for t ∈ (0, 1), we
have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ f(a) + f(b).

Remark 3.5. If h(t) = t for t ∈ (0, 1) and ϕ(x) = x we have

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Theorem 3.6. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the function f : I → [0,∞) is Lebesgue integrable on I and semi-ϕh
convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(a) + ϕ(b)− x)dx

≤ (f2(a) + f2(b))(

∫ 1

0

h(t)h(1− t)dt+ 2f(a)f(b)

∫ 1

0

h2(t)dt).

Proof. Since f is semi-ϕh convex we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b),

and

f((1− t)ϕ(a) + (tϕ(b)) ≤ h(1− t)f(a) + h(t)f(b).

By multiplying both inequalities, we get

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))

≤ h(1− t)h(t)(f2(a) + f2(b)) + f(a)f(b)(h2(t) + h2(1− t)).
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We obtain ∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + (tϕ(b))dt

≤ (f2(a) + f2(b))

∫ 1

0

h(1− t)h(t)dt+ 2f(a)f(b)

∫ 1

0

h2(t)dt.

Substituting x = tϕ(a) + (1− t)ϕ(b), we get the required inequality. �

Corollary 3.7. Under the assumptions of Theorem 3.6 with h(t) = t for all t ∈ (0, 1),
we have

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤ f2(a) + f2(b)

6
+

2f(a)f(b)

3
.

Theorem 3.8. If [a, b] ⊆ I, ϕ : [a, b] → [a, b] is a continuous function such that
ϕ(a) 6= ϕ(b) and the functions f, g : I → [0,∞) is Lebesgue integrable on I and
semi-ϕh convex, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx

≤M(a, b)

∫ 1

0

h2(t)dt+N(a, b)

∫ 1

0

h(t)h(1− t)dt.

where
M(a, b) = f(a)g(a) + f(b)g(b),

N(a, b) = f(a)g(b) + f(b)g(a).

Proof. Since f, g are semi-ϕh-convex we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)f(a) + h(1− t)f(b),

and
g(tϕ(a) + (1− t)ϕ(b)) ≤ h(t)g(a) + h(1− t)g(b).

By multiplying both sides, we get

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))

≤ h2(t)f(a)g(a) + h2(1− t)f(b)g(b) + h(t)h(1− t)f(a)g(b) + h(t)h(1− t)f(b)g(a).

Integrating over the interval (0, 1), we obtain∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))dt

≤ (f(a)g(a) + f(b)g(b))

∫ 1

0

h2(t)dt+ (f(a)g(b) + f(b)g(a))

∫ 1

0

h(t)h(1− t)dt.

Replacing x = tϕ(a) + (1− t)ϕ(b), we get the required inequality. �

Definition 3.9. Let be m ∈ (0, 1]. A function f : [0, b]→ [0,∞) is said to be semi-ϕm-
convex if

f(tϕ(x) +m(1− t)ϕ(y)) ≤ tf(x) +m(1− t)f(y),

for all x, y ∈ [0, b], t ∈ [0, 1].
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Remark 3.10. If m = 1, then f is semi-ϕ-convex, and if m = 1, ϕ(x) = x for all
x ∈ [0, b], then f is convex on [0, b].

Theorem 3.11. If f : [0,∞)→ [0,∞) is a semi- ϕm-convex function, with m ∈ (0, 1)
such that mϕ(b) 6= ϕ(a) and mϕ(a) 6= ϕ(b) and f is Lebesgue integrable on [ma, b]
then

1

m+ 1
[

1

mϕ(b)− ϕ(a)

∫ mϕ(b)

ϕ(a)

f(x)dx+
1

ϕ(b)−mϕ(a)

∫ ϕ(b)

mϕ(a)

f(x)dx] ≤ f(a) + f(b)

2
.

Proof. Since f is semi- ϕm-convex we have following inequalities

f(tϕ(a) +m(1− t)ϕ(b)) ≤ tf(a) +m(1− t)f(b),

f((1− t)ϕ(a) +mtϕ(b)) ≤ (1− t)f(a) +mtf(b),

f(mtϕ(a) + (1− t)ϕ(b)) ≤ mtf(a) + (1− t)f(b),

f(m(1− t)ϕ(a) + tϕ(b)) ≤ m(1− t)f(a) + tf(b).

Adding the above four inequalities, we get

f(tϕ(a) +m(1− t)ϕ(b)) + f((1− t)ϕ(a) +mtϕ(b))

+f(mtϕ(a) + (1− t)ϕ(b)) + f(m(1− t)ϕ(a) + tϕ(b))

≤ (m+ 1)(f(a) + f(b)).

Now, integrating over the interval (0, 1), we have∫ 1

0

f(tϕ(a) +m(1− t)ϕ(b))dt+

∫ 1

0

f((1− t)ϕ(a) +mtϕ(b))dt+

∫ 1

0

f(mtϕ(a) + (1− t)ϕ(b))dt+

∫ 1

0

f(m(1− t)ϕ(a) + tϕ(b))dt

≤ (m+ 1)(f(a) + f(b)).

Using the substitution x = tϕ(a) + (1− t)ϕ(b), we have∫ 1

0

f(tϕ(a) +m(1− t)ϕ(b))dt =

∫ 1

0

f((1− t)ϕ(a) +mtϕ(b))dt

=
1

mϕ(b)− ϕ(a)

∫ mϕ(b)

ϕ(a)

f(x)dx,

and using the substitution x = tϕ(a) + (1− t)ϕ(b), we have

f(mtϕ(a) + (1− t)ϕ(b))dt = f(m(1− t)ϕ(a) + tϕ(b))dt

=
1

ϕ(b)−mϕ(a)

∫ ϕ(b)

mϕ(a)

f(x)dx.

Using the above equations, we get the required inequality. �
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4. Semi-ϕ and strongly log-ϕ convexity

Definition 4.1. [3] A function f : I → [0,∞) is a semi log-ϕ convex if, for all t ∈ (0, 1)
and x, y ∈ I, one has

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(x)tf(y)1−t.

Polyak [9] introduced strongly convex functions which plays an important role
in optimization theory and mathematical economics.

A function f : I → R is said to be strongly convex with modulus c > 0 on I if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ct(1− t)(x− y)2,

for all x, y ∈ I and t ∈ (0, 1).
Sarikaya [11] defined strongly log-convex functions as:

Definition 4.2. A positive function f : I → (0,∞) is said to be strongly log-convex
with respect to c > 0 if

f(tx+ (1− t)y) ≤ f(x)tf(y)1−t − ct(1− t)(x− y)2,

for all x, y ∈ I and t ∈ (0, 1).

In this section we relate Hermite Hadamard type inequalities to some special
means. Firstly, let us recall the following means for positive a, b ∈ R:
Arithmetic mean:

A(a, b) =
a+ b

2
,

Geometric mean:
G(a, b) =

√
ab,

Logarithmic mean:

L(a, b) =
b− a

log(b)− log(a)
.

Theorem 4.3. If the positive function f : I → (0,∞) is semi log-ϕ convex function
and Lebesgue integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx ≤ G(f(a), f(b)),

for all a, b ∈ I, a < b.

Proof. Since f is semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1)

and
f((1− t)ϕ(a) + tϕ(b)) ≤ f(a)1−tf(b)t, ∀ t ∈ (0, 1).

By multiplying both inequalities, we get

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b)) ≤ f(a)f(b).

Now, taking square root, we get

G(f(tϕ(a) + (1− t)ϕ(b)), f((1− t)ϕ(a) + tϕ(b))) ≤ G(f(a), f(b)).
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By integrating over the interval (0, 1) and replacing x = tϕ(a) + (1 − t)ϕ(b), we get
the required inequality. �

Theorem 4.4. If the positive function f : I → (0,∞) is semi log-ϕ convex function
and Lebesgue integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx ≤ L(f(b), f(a)) ≤ f(a) + f(b)

2
,

for all a, b ∈ I, a < b.

Proof. Since f is semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1).

Integrating over the interval (0, 1), we get∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt ≤
∫ 1

0

f(a)tf(b)1−tdt

=
f(b)− f(a)

log f(b)− log f(a)
= L(f(b), f(a)) ≤ f(a) + f(b)

2
.

Substituting x = tϕ(a) + (1− t)ϕ(b), we get the required result. �

Theorem 4.5. If the functions f, g : I → (0,+∞) are semi log-ϕ convex and Lebesgue
integrable on I, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx ≤ L(f(b)g(b), f(a)g(a))

≤ 1

4
{(f(b) + f(a))L(f(b), f(a)) + (g(a) + g(b))L(g(b), g(a))},

for all a, b ∈ I, a < b.

Proof. Since f, g are semi log-ϕ convex, we have

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(a)tf(b)1−t, ∀ t ∈ (0, 1)

and
g(tϕ(a) + (1− t)ϕ(b)) ≤ g(a)tg(b)1−t, ∀ t ∈ (0, 1).

Multiplying both inequalities and integrating over the interval (0, 1), we get∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))g(tϕ(a) + (1− t)ϕ(b))dt

≤
∫ 1

0

f(a)tf(b)1−tg(a)tg(b)1−tdt

=
f(b)g(b)− f(a)g(a)

log(f(b)g(b))− log(f(a)g(a))

= L(f(b)g(b), f(a)g(b)). (4.1)

By Young’s inequality, we have∫ 1

0

f(a)tf(b)1−tg(a)tg(b)1−tdt
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≤ 1

2

∫ 1

0

{[f(a)tf(b)1−t]2 + [g(a)tg(b)1−t]2}dt

=
1

4

[
(f(b))2 − (f(a))2

log(f(b))− log(f(a))
+

(g(b))2 − (g(a))2

log(g(b))− log(g(a))

]
=

1

4

{
(f(a) + f(b))L(f(b), f(a)) + (g(a) + g(b))L(g(b), g(a))

}
. (4.2)

Using (4.1) and (4.2) and substituting x = tϕ(a)+(1−t)ϕ(b), we get the required
result. �

Definition 4.6. Let f : I → (0,∞) be a positive function. We say that f is strongly
log-ϕ convex with respect to c > 0 if

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(ϕ(x))tf(ϕ(y))1−t − ct(1− t)(ϕ(x)− ϕ(y))2,

for all x, y ∈ I and t ∈ (0, 1).

Remark 4.7. From the above inequality, using arithmetic mean- geometric mean, we
have

f(tϕ(x) + (1− t)ϕ(y)) ≤ f(ϕ(x))tf(ϕ(y))1−t − ct(1− t)(ϕ(x)− ϕ(y))2

≤ tf(ϕ(x)) + (1− t)f(ϕ(y))− ct(1− t)(ϕ(x)− ϕ(y))2

≤ max{f(ϕ(x)), f(ϕ(y))} − ct(1− t)(ϕ(x)− ϕ(y))2.

Example 4.8. Let

ϕ(x) =

{
1, x ≥ 0
−1, x < 0.

Then for c = 1
4 the function

f(x) =

{
0, −1 < x < 1
1, otherwise

is strongly log-ϕ convex function with respect to c on R.

Theorem 4.9. Let ϕ : [a, b]→ [a, b] be a continuous function and f : I → (0,∞) be a
positive strongly log-ϕ convex function with respect to c > 0, where a, b ∈ I. If f is
Lebesgue integrable on I then

f

(
ϕ(a) + ϕ(b)

2

)
+
c

2
(ϕ(a)−ϕ(b))2 ≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a)+ϕ(b)−x))dx

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx

≤ L(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

≤ f(ϕ(a)) + f(ϕ(b))

2
− c

6
(ϕ(a)− ϕ(b))2.
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Proof. Since f is strongly log-ϕ convex, we have for t ∈ (0, 1)

f(
ϕ(a) + ϕ(b)

2
)

≤
√
f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))− c

4
(ϕ(a)− ϕ(b))2(1− 2t)2

≤ f(tϕ(a) + (1− t)ϕ(b))

2
+
f((1− t)ϕ(a) + tϕ(b))

2
− c

4
(ϕ(a)− ϕ(b))2(1− 2t)2.

Integrating the above inequality over (0, 1) and substituting x = tϕ(a) + (1 − t)ϕ(b)
we get

f

(
ϕ(a) + ϕ(b)

2

)
+

c

12
(ϕ(a)− ϕ(b))2

≤
∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx (4.3)

≤
∫ ϕ(b)

ϕ(a)

A(f(x), f(ϕ(a) + ϕ(b)− x))dx. (4.4)

Using
∫ ϕ(b)
ϕ(a)

f(x)dx =
∫ ϕ(b)
ϕ(a)

f(ϕ(a) + ϕ(b)− x)dx, (4.3) becomes

f

(
ϕ(a) + ϕ(b)

2

)
+

c

12
(ϕ(a)− ϕ(b))2

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

G(f(x), f(ϕ(a) + ϕ(b)− x))dx

≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx.

Again, using strongly log-ϕ convexity of f , we get

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)dx =

∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))dt

≤
∫ 1

0

[f(ϕ(a)]t[f(ϕ(b)]1−tdt−
∫ 1

0

ct(1− t)(ϕ(a)− ϕ(b))2dt

=
f(ϕ(b))− f(ϕ(a))

log(f(ϕ(b)))− log(f(ϕ(a)))
− c

6
(ϕ(a)− ϕ(b))2

= L(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

≤ A(f(ϕ(b)), f(ϕ(a)))− c

6
(ϕ(a)− ϕ(b))2

=
f(ϕ(b)) + f(ϕ(a))

2
− c

6
(ϕ(a)− ϕ(b))2.

�
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Theorem 4.10. Let ϕ : [a, b]→ [a, b] be a continuous function, where a, b ∈ I, and let
f : I → (0,∞) be a positive strongly log-ϕ convex function with respect to c > 0. If f
is Lebesgue integrable on I then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)f(ϕ(b) + ϕ(a)− x)dx

≤ f(ϕ(a))f(ϕ(b)) +
c2

30
(ϕ(b)− ϕ(a))4

−4c
(ϕ(b)− ϕ(a))2

(log(f(ϕ(b)))− log(f(ϕ(a))))2
[A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))].

Proof. Since f is strongly log-ϕ convex, we have for t ∈ (0, 1)

f(tϕ(a) + (1− t)ϕ(b)) ≤ f(ϕ(a))tf(ϕ(b))1−t − ct(1− t)(ϕ(a)− ϕ(b))2,

and

f((1− t)ϕ(a) + tϕ(b)) ≤ f(ϕ(a))1−tf(ϕ(b))t − ct(1− t)(ϕ(a)− ϕ(b))2.

Multiplying both inequalities and integrating over (0, 1), we get

∫ 1

0

f(tϕ(a) + (1− t)ϕ(b))f((1− t)ϕ(a) + tϕ(b))dt

≤ f(ϕ(a))f(ϕ(b))− (ϕ(a)− ϕ(b))2
∫ 1

0

ct(1− t)
{
f(ϕ(b))

[
f(ϕ(a))

f(ϕ(b))

]t

+f(ϕ(a))

[
f(ϕ(b))

f(ϕ(a))

]t}
dt+ c2(ϕ(a)− ϕ(b))4

∫ 1

0

t2(1− t)2dt. (4.5)

Since ∫ 1

0

t(1− t)
[
f(ϕ(a))

f(ϕ(b))

]t
dt

=
2

f(ϕ(b))(log(f(ϕ(a)))− log(f(ϕ(b))))2
[A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))].

(4.6)
Similarly, ∫ 1

0

t(1− t)
[
f(ϕ(a))

f(ϕ(b))

]t
dt

=
2

f(ϕ(a))(log(ϕ(b))− log(ϕ(a)))2

[
A(f(ϕ(b)), f(ϕ(a)))− L(f(ϕ(b)), f(ϕ(a)))

]
.

(4.7)
Substituting (4.6) and (4.7) in (4.5) and replacing x = tϕ(a) + (1− t)ϕ(b), we get the
required inequality. �
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Theorem 4.11. Let ϕ : [a, b]→ [a, b] be a continuous function, where a, b ∈ I, and let
f, g : I → (0,∞) be a positive strongly log-ϕ convex functions with respect to c > 0.
If f and g are Lebesgue integrable, then

1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f(x)g(x)dx

≤ L(f(ϕ(b))g(ϕ(b)), f(ϕ(a))g(ϕ(a))) +
c2

30
(ϕ(a)− ϕ(b))4 − 2c(ϕ(b)− ϕ(a))2

×
[
A(f(ϕ(b)), f(ϕ(a))) − L(f(ϕ(b)), f(ϕ(a)))

(log(f(ϕ(b))) − log(f(ϕ(a))))2
+

A(g(ϕ(b)), g(ϕ(a))) − L(g(ϕ(b)), g(ϕ(a)))

(log(g(ϕ(b))) − log(g(ϕ(a))))2

]

≤ 1

4

[
{f(ϕ(a))+f(ϕ(b))}L(f(ϕ(b)), f(ϕ(a)))+{g(ϕ(a))+g(ϕ(b))}L(g(ϕ(b)), g(ϕ(a)))

]
+
c2

30
(ϕ(a)− ϕ(b))4 − 2c(ϕ(b)− ϕ(a))2

×
[
A(f(ϕ(b)), f(ϕ(a))) − L(f(ϕ(b)), f(ϕ(a)))

(log(f(ϕ(b))) − log(f(ϕ(a))))2
+

A(g(ϕ(b)), g(ϕ(a))) − L(g(ϕ(b)), g(ϕ(a)))

(log(g(ϕ(b))) − log(g(ϕ(a))))2

]
.

Proof. The proof is similar to Theorem 4.10 �
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