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Integral operator defined by g-analogue
of Liu-Srivastava operator

Huda Aldweby and Maslina Darus

Abstract. In this paper, we shall give an application of g-analogues theory in
geometric function theory. We introduce an integral operator for meromorphic
functions involving the g-analogue of differential operator. We also investigate
several properties for this operator.
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1. Introduction

The theory of g-analogues or g-extensions of classical formulas and functions
based on the observation that

. 1—=g®
lim
—1 1—gq

=a,lq < 1,

therefore the number (1—¢%)/(1—¢q) is sometimes called the basic number [«],. In this
work we derive g-analogue of Liu-Srivastava operator and employ this new differential
operator to define an integral operator for meromorphic functions.

Let ¥ denote the class of functions of the form

1 = &
CEES S (L)
k=1
which are analytic in the punctured open unit disk

U ={z:2€C,0< |z] <1} =U\{0}.

For complex parameters «;,5; (1 = 1,...,7, j = 1,...,8, o € C, ; €
C\{0,—1,-2,...}) the basic hypergeometric function (or ¢- hypergeometric function)
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is the g-analogue of the familiar hypergeometric function and it is defined as follows:
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(1.2)
with ( ]; ) = k(k —1)/2, where ¢ # 0 when r > s+ 1, (r,s € Ny = NU {0}), and
(r, )i is the g-analogue of the Pochhammer symbol («)j defined by

B 17 kZO;
(0= { (1-a)1-ag)(l-ag’)...(1-ag" ), keN.

It is clear that
(4% 9k
lim ——— a)g.
q—1 (1 — q) = ()i
The radius of convergence p of the basic hypergeometric series (1.2) for |g| < 1 is
given by
oo, if r<s+1;
p=<¢ 1, if r=s+1;
0, if r>s-+1.
The basic hypergeometric series defined by (1.2) was first introduced by Heine
in 1846. Therefore it is sometimes called Heine’s series. For more details concerning
the g-theory the reader may refer to (see [1],[2]).

Now for z € U, |g| < 1, and r = s+ 1, the basic hypergeometric function defined
n (1.2) takes the form

, = (ke
el ani B Bt D) = D s e

which converges absolutely in the open unit disk U.
Corresponding to the function ,®s(aq, ..., a; 01, .., 0, ¢, z), consider

’l‘gs(a17"'?aT‘;ﬁl7"'7BS7Q7z) Tq)s(alﬂ"'7a7‘;ﬂ17"'7ﬁS7Q7Z)
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Next, we define the linear operator L% (aq,...,ap;01,...,0s¢) : ¥ — X by
Li(ar,...;qr; P10, 80) f(2) = Gs(a1, ...,y 1,y Bss @, 2) % f(2)

_liyy k (1.3)
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where
v:(a17Q7k) = (al’q)k+1"'(aT7Q)k+l
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For the sake of simplicity we write

‘C:(ala <. '7a7";/617 s 7ﬁ$7q)f(z) = ‘C’Z[ala(ﬂf(z)

Remark 1.1. i For oy = ¢%,3; = @, > 0,6, > 0,(i = 1,...,r;5 =
1,...,87 =s4+1),q — 1 the operator L%[a1,q]f(z) = H[o1]f(z) which was
investigated by Liu and Srivastava [3].

ii. For r =2,5=1,a9 = q,q — 1, the operator £?[a1,q, £1,q|f(2) = Lay; B1]f(2)
was introduced and studied by Liu and srivastava [4]. Further, we note in passing
that this operator L[aq; 81]f(2) is closely related to the Carlson-Shaffer operator
L[ag; B1]f(2) defined on the space of analytic univalent functions in U.

iii. For 7 = 1,5 =0,y = A+ 1,q — 1, the operator L[\ + 1,q]f(z) = D f(z) =
W * f(2)(A > —1), where D* is the differential operator which was in-
troduced by Ganigi and Uralegadi [5], and then it was generalized by Yang [6].

Analogue to the integral operator defined in [7] which involving g-hypergeometric
functions on the normalized analytic functions, we now define the following integral
operator on the space of meromorphic functions in the class ¥ using the differential
operator L!]a1, q] defined in (1.3).

Definition 1.2. Let n € N,i € {1,2,...,n},7; > 0. We define the integral operator
H(f1’f27 L) fn)(Z) MDY by

H(f1s for- s fn)(2) = Z—12 /Oz(u Lo, qlf1(w) ... (u Lo, q] fn(w) ™ du.  (1.4)

For the sake of simplicity, we write H(z) instead of H(f1, f2, ..., fn)(2)-

We observe that in (1.4) for r = 1,s = 0,a; = ¢, we obtain the integral operator
introduced and studied by Mohammed and Darus [8], see also ([9],[10],[11]).

The following definitions introduce subclasses of ¥ which are of meromorphic
starlike functions.

Definition 1.3. Let a function f € X be analytic in U*. Then f is in the class
¥y s(a1,4q,6,b) if and only if, f satisfies

_ 1 (2L, qlf) (2) )}
w15 (G )} 7o
where Loy, q]f defined in (1.3) and b € C\{0},0 < ¢ < 1.

Definition 1.4. Let a function f € X be analytic in U*. Then f is in the class
¥y Ular,q,,6,b) if and only if, f satisfies

1 (a(Lifen, q1f) (2) )} ‘1 (2(52[%»(1]]”)'(2) )‘
-5 (e )}l (o )|+
where Loy, q)f defined in (1.8) and o > 0,—-1 <6 < 1,a+ 6 > 0,b € C\{0}.
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Definition 1.5. Let a function f € X be analytic in U*. Then f is in the class
¥y UH(ar, g, ,b) if and only if, f satisfies

(e dD ) L\ s
! b( Ll dlf(2) “) 2a(v2-1)

1 (2(L5en, qlf) (2) (V3 —
<n{va (1= (i +1)) -0
where L [aq, q]f defined in (1.3) and o > 0,b € C\{0}.

For r = 1,s = 0 and a; = ¢ in Definitions 1.3, 1.4 and 1.5, we obtain
X5(0), " U(ev, 8,b) and T*UH (v, b) the classes of meromorphic functions, introduced
and studied by Mohammed and Darus [12].

Now, let us introduce the following families of subclasses of meromorphic func-
tions X.F(6,b), L Fa(c, 6,b) and L F3(c, b) as follows.

Definition 1.6. Let a function f € ¥ be analytic in U*. Then f is in the class ZF1(6,b)
if and only if, f satisfies

- (e ) as)

where b € C\{0},0 < 4§ < 1.

Definition 1.7. Let a function f € X be analytic in U*. Then f is in the class
YSFo (e, 0,b) if and only if, [ satisfies

1 (2 (2) 1 31(2) L (e +37)
m{l b ( TG 1) } - ‘b ( O T2E) 1) ’ 8 (16)
where a > 0,—-1 < § < 1,a+ 9 > 0,b € C\{0}.

Definition 1.8. Let a function f € ¥ be analytic in U*. Then f is in the class X F3(«, b)
if and only if, f satisfies

LGOI L s
! b( (2 + 24 (2) “) 2a(v2 1)’

<R {\/i (1 - % (Z(z?/((;)):;f(/i)z)) + 1))} +2a(V2-1), (1.7)

where o > 0,b € C\{0}.

2. Main results

In this section, we investigate some properties for the integral operator H(z)
defined by (1.4)of the subclasses given by Definitions 1.3, 1.4 and 1.5

Theorem 2.1. For i € {1,2,...,n}, let v; > 0 and f; € ¥} (a1,4,0;,0)(0 <6 < 1)
and b € C\{0}. If

0< Z’}/Z(l — 52) < 17
=1
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then H(z) is in the class BFy (p,b), p=1—>"  7i(1—6;)
Proof. A differentiation of H(z) which is defined by (1.4), we obtain
M (2) + 22H(2) = (2 Li[on, gl f1(2))" .. (2 Ll[on, g fa(2)) 7, (2.1)

2H"(2) + 42H () + 2H(2)
slan, ) f)i(2) + Lifen, gl fi(2)
N Z ( 2L [on, q]fi(2) )
[(z Lilan, gl ()™ - (2 Lilan, gl fu(2))™] (2:2)
Then from (2.1) and (2.2),we obtain

SHG) A MG s ((Lolondlf) ()
TG e — ) < Lo dfi(2) *z)' 23)

i=1
By multiplying (2.3) with z we have

22H"(2) + 42H' (2 )+2H - slaasdlfi)'(2)
H L, (2) + 2H,, (2 2_: ( D” la1,q]fi(2) H)'

That is equivalent to

z (ZH/I(Z) + 37’(’(2)) . n ' Z( [ah ]fz)/( )

Equivalently, (2.4) can be written as
1 f2(zH"(2) + 3H' (2 z(Lgloa, q]fi)' (2) )} -
1—— i +1 1— i
b{ SHI(2) 1 2H(z) ZW b Crlan dfi(2) * ;7
Taking the real part of both sides of the last expression, we have
z(zH"(2) + 3H'(2))
1—- 1
9‘{{ b< ZH!(z) + 2H(z) +
- 1 (2(Leloa,q]fi)' (2) )} -
=Y ril— - 1) b 4+1-3
;” { b( Crlon, dlfi(2) ;”
Since f; € ¥} ((a1,4,0i,b), hence

1o} (AT Y5 -3

) R I

Then H(z) € BF1(p,b), p=1-=3" 1 7(1-46;) O

Therefore
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Theorem 2.2. Fori € {1,2,...,n}, lety; >0 and f; € X} U(a,6,b)(a>0,-1 <6 <
1,a+6>0) and b € C\{0}. If

i=1
then H(z) is in the class EFa(w, 6,b).
Proof. Since f; € X} U(ai,q, a,d,b), it follows from Definition 1.3 that
2(Lilen, qlfi) (2) )} ‘1 (Z(CT[QhQ]fi)’(Z) >’
R1— — +1 >a|— n +1)|+6. 2.5
Vs (e AR 29
Considering (2.2) and (2.5) we obtain

{1 (e ) -l (e ) -

=1- Z% + Z% {1 3 ( (zz[[zlqu]]ﬁ();() 24 1)}
oS (Heee )

=1

-0

i=1
—6)(1— Z%‘) >0
i=1
This completes the proof. O

Theorem 2.3. Fori € {1,2,...,n}, lety; >0 and f; € Z*UH(a,b) (a >0 and b€

C\{o}). If
i=1

then H(z) is in the class EF3(a,b).
Proof. Since f; € Xy UH (a1, q, a,b), it follows from Definition 1.4 that
1 (2(Li[en, qlfi) (2) ))}
R f2<1—< O +1) ) +2a(vV2-1
(- (s vy

(
_ ‘1 - % ( (U[[zll: ‘ﬁ]ff();()z) + 1) —2a(V2 - 1)‘ >0. (2.6)




Integral operator defined by g-analogue of Liu-Srivastava operator 535

Considering (2.2) and (2.6), we obtain

9%{[2(1 % (Z(igl(( ;i;:i ) 4 )} +2a(\/§ 1)

1 (z(zH"(2) +3H’
z'H' (2) + 2H(»

+ 1) —2a(V2 — 1)‘ (2.7)
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i=1

_ fg(lZv) +20(v2 - 1>+ﬂ2njwﬁ{1 P aeie )
fnesoee (1- S+ St (R )
—2a(x/§—1)H

>\2 (1 - ZV> +2a(V2-1)+ \@Z%m{l - % (Z(ﬁ[[sll’q]%();() 24 1>}

—Zw % ( (é[[jll q]];();() ) + 1) —2a(V2 — 1)‘—|1—2a(\/§—1)| (1 - Z%)
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Lilat,qlfi(2)
AR EC R A N
1 (G ) a2 ”’}“@(1 Z%>

+2a(\/§—1)—2a(\/§—1)zn:'yl 11— 20(V2 (1—Z%>

i=1

_ ;v{mﬁ {1 = <Z(EZ[01,Q]J%)’(Z) . 1)} L 2a(vE—1)

> [V2+2a(vV2-1) = [1-2a(vV2 - 1)]] (1 —Xn:%)

i=1

> (1 —Zn:%) min {(v2 - 1)(1 + 4a), V2 + 1} > 0.

This completes the proof. O
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