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1. Introduction

The Rössler dynamical system [12] has been widely investigated over the last
years, mainly from the chaotic dynamics perspective. In this work we are concerned
with the analysis of the conservative properties of this system. Among the studied
topics related to the conservative properties of the Rössler dynamical system, one can
mention various types of integrability, namely Darboux integrability ([8], [13]), formal
and analytic integrability [7], the description of the global dynamics in the Poincaré
sphere [6] and a dynamical analysis from the Hamiltonian point of view [14].

The aim of this work is to analyze further the Rössler dynamical system from
the stability theory point of view. More exactly, we present a method to associate
to each Lyapunov stable equilibrium state of the Rössler system, a special type of
dissipative system in such a way that each Lyapunov stable equilibrium state of the
Rössler system generates a one dimensional attracting neighborhood for the dissipa-
tive system.

The structure of the paper is as follows. In the second section of this work, we
recall from [14] the geometric framework adopted in our study, namely a Hamiltonian
realization of the Rössler system. In the third section of the paper we recall from [14]
the main results regarding the Lyapunov stability analysis of the equilibrium states
of the Rössler system. In the fourth section, we recall the definition of a metriplectic
system and construct explicitly a metriplectic perturbation associated to the Rössler
system. The metriplectic perturbation of the Rössler system, prove to have all the
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equilibrium states of the Rössler system. The last part of the paper contains the main
results, namely it describes explicitly the method of associating, to each Lyapunov
stable equilibrium state of the Rössler system, a special type of metriplectic system,
in such a way that each Lyapunov stable equilibrium of the unperturbed system
generates a one dimensional attracting neighborhood for the dissipative system.

For details on Hamiltonian dynamics, and respectively metriplectic dissipative
systems, see, e.g. [1], [2], [11], [3], [4], [9].

2. Setting of the problem from the Poisson geometry point of view

As the purpose of this paper is to study a special type of perturbations of a
Hamiltonian system from the Poisson dynamics and geometry point of view, the first
step in this approach is to prepare the geometric framework of the problem. The
results from this chapter are from [14].

The Rössler system we consider for our study, is governed by the equations: ẋ = −y − z
ẏ = x
ż = xz.

(2.1)

Note that in the article [13] it is proved that the above system it is the only case when
the Rössler system it is completely integrable.

Let us recall now some results from [14] concerning the geometric framework of
the problem. The following proposition from [14] provides a Hamiltonian formulation
of the Rössler system on an appropriate Poisson manifold.

Theorem 2.1. The dynamics (2.1) admit the following Hamilton-Poisson realization:

(R3, νΠC ,H) (2.2)

where

ΠC(x, y, z) =

 0 e−y ze−y

−e−y 0 0
−ze−y 0 0


is the Poisson structure generated by the smooth function C(x, y, z) := ze−y, the
rescaling ν is given by ν(x, y, z) = −ey, and the Hamiltonian H ∈ C∞(R3, R) is given

by H(x, y, z) :=
1
2
(x2 + y2) + z.

Note that, by Poisson structure generated by the smooth function C, we mean
the Poisson structure generated by the Poisson bracket

{f, g}C := ∇C · (∇f ×∇g),

for any smooth functions f, g ∈ C∞(R3, R).

Next remark from [14] provides a class of first integrals for all the Hamiltonian
dynamical systems modeled on the Poisson manifold (R3, νΠC).

Remark 2.2. By definition we have that the center of the Poisson algebra
(C∞(R3, R), {·, ·}C) is generated by the Casimir invariant C(x, y, z) = ze−y.
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3. Equilibrium states and Lyapunov stability

In this short section, we recall some results from [14] regarding the Lyapunov
stability of the equilibrium states of the Rössler system (2.2). As our main purpose is
to perturb the Rössler system in such a way that, each Lyapunov stable equilibrium
of the unperturbed system, turnes to an asymptotically stable equilibrium for the
perturbed system, we do not consider here the unstable equilibrium states of the
unperturbed system.

Note that the set of equilibrium states of the Rössler system is given by

E := {(0,−M,M) : M ∈ R}.
Let us recall from [14], the following theorem describing the stability properties of the
equilibrium states of the Rössler system.

Theorem 3.1. Let eM = (0,−M,M) ∈ E be an arbitrary equilibrium state of the
Rössler system (2.1). The equilibrium eM ∈ E is Lyapunov stable for M > −1 and
unstable for M ≤ −1.

Proof. See [14]. �

4. Metriplectic perturbations of the system (2.2)

The purpose of this section is to associate to the Rössler system (2.2), a class
of metriplectic systems (parameterized by a smooth real function ϕ ∈ C∞(R, R))
in such a way that the equilibrium states of the Hamilton-Poisson system (2.2) are
also equilibrium states for all the associated metriplectic systems. By metriplectic
system we mean a dynamical system consisting of a compatible pair consisting of a
conservative system (modeled by a Hamiltonian system), together with a dissipative
(nonconservative) system (modeled by a gradient system with respect to a symmetric
tensor G). For details regarding the properties of metriplectic systems, see e.g. [10], [3].

Let us give first the definition of a general metriplectic perturbation of a Hamil-
tonian system on the Poisson manifold (R3, νΠC).

Definition 4.1. A metriplectic perturbation of a Hamiltonian system on (R3, νΠC) is
a dynamical system of the type:

u̇ = ν(u)ΠC(u) · ∇H(u) + G(u) · ∇(ϕ ◦ C)(u), uT = (x, y, z) ∈ R3,

where ν, H, C ∈ C∞(R3, R), C(x, y, z) = ze−y, ν(x, y, z) = −ey, G is a symmetric
covariant tensor, and ϕ ∈ C∞(R, R), such that the following compatibility conditions
hold:
(i) G · ∇H = 0̄,
(ii) (∇(ϕ ◦ C))T ·G · ∇(ϕ ◦ C) ≤ 0.

Let us now construct a metriplectic perturbation of the Rössler system (2.2).
In order to do that, we associate to the Hamiltonian H ∈ C∞(R3, R), H(x, y, z) =
1
2
(x2+y2)+z, of the system (2.2), a second order covariant symmetric tensor, given by
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G = ∇H⊗∇H−‖∇H‖2 Id, in order to get a candidate for a metriplectic perturbation
of the system (2.2).

Note that, in coordinates:

G(x, y, z) =

 −y2 − 1 xy x
xy −x2 − 1 y
x y −x2 − y2

 .

Next proposition gives a family of metriplectic perturbations of the Rössler system,
parameterized by a smooth real function ϕ ∈ C∞(R, R).

Proposition 4.2. The system:

u̇ = ν(u)ΠC(u) · ∇H(u) + G · ∇(ϕ ◦ C)(u), uT = (x, y, z), (4.1)

is a metriplectic perturbation of the Rössler system, where ν, H, C ∈ C∞(R3, R) are

given by ν(x, y, z) = −ey, H(x, y, z) =
1
2
(x2 + y2) + z, and respectively C(x, y, z) =

ze−y.

Proof. In order to obtain the conclusion, we need to check the condition (i) and
respectively (ii) from the above definition. The condition (i) follows by straightforward
computations. To verify the condition (ii), note that:

(∇(ϕ ◦ C)(x, y, z))T ·G(x, y, z) · ∇(ϕ ◦ C)(x, y, z) =

= −
[
ϕ′

(
ze−y

)]2 · e−2y
[
x2 + x2z2 + (y + z)2

]
≤ 0.

�

Before analyzing the equilibrium states of the metriplectic system, let us write
the system in coordinates.

Remark 4.3. The metriplectic system (4.1) is given in coordinates by: ẋ = −y − z + ϕ′ (ze−y) · xe−y(1− yz),
ẏ = x + ϕ′ (ze−y) · e−y(y + z + x2z),
ż = xz − ϕ′ (ze−y) · e−y(x2 + y2 + yz).

(4.2)

Next remark gives a relation between the equilibrium states of the Hamilton-
Poisson system (2.2) and the associated metriplectic perturbation (4.1).

Remark 4.4. All of the equilibrium states of the Rössler system (2.2) are also equilib-
rium states for the perturbed metriplectic system (4.1), for any smooth real function
ϕ ∈ C∞(R, R).

5. Asymptotically stabilizing the metriplectically perturbed system

The aim of this section is to discuss the asymptotic stability of some special
equilibrium states of the metriplectic system (4.1). In the previous section we ob-
tained that for any smooth real function ϕ ∈ C∞(R, R), all the equilibrium states
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of the Rössler system (2.1) are also equilibrium states of his metriplectic perturba-
tion (4.1). The aim of this section is to make use of this important property in order
to metriplectically perturb the Rössler system in such a way that each Lyapunov
stable equilibrium of the unperturbed system, generates a one-dimensional attracting
neighborhood for the associated metriplectically perturbed system.

Before stating the main results of this paper, let us recall the principle of
LaSalle [5].

Theorem 5.1. Let x0 ∈ Rn be an equilibrium state of the dynamical system ẋ = f(x),
where f ∈ C∞(Rn, Rn), and let U be a compact neighborhood around x0. Suppose
there exists L : U → R a C1 function with L(x) > 0 for x 6= x0, L(x0) = 0 and
L̇(x) ≤ 0. Let E := {x ∈ U : L̇(x) = 0} and M ⊂ E be the largest dynamically
invariant subset of E. Then there exists V ⊂ U a neighborhood of x0 such that the
ω-limit set ω(x) ⊂ M for all x ∈ V .

Let us now state the main result of this article.

Theorem 5.2. Let eM ∈ E be a Lyapunov stable equilibrium state of the Rössler
systems (2.1), and respectively (4.1). Then there exists a smooth function ϕeM

∈
C∞(R, R), a compact neighborhood K around eM and a neighborhood U ⊂ K such
that any solution of the metriplectic system (4.1) (corresponding to ϕeM

) starting in
U approaches K ∩ E.

Proof. Let eM = (0,−M,M) ∈ E be a Lyapunov stable equilibrium state of the
Rössler system (2.1). Recall from Theorem (3.1) that eM is a Lyapunov stable equi-
librium state for the system (2.1) if and only if M > −1. Recall that eM it is also
an equilibrium state for the system (4.1) for any smooth real function ϕ. In order to
prove the theorem, we construct a Lyapunov type function that verifies the hypothesis
of LaSalle’s principle. Let

(x, y, z) ∈ R3 7→ LϕeM
(x, y, z) =

1
2
(x2 + y2) + z + ϕeM

(
ze−y

)
∈ R

be a smooth real function, where ϕeM
∈ C∞(R, R) is given by

ϕeM
(t) = e−2M · M + 2

M + 1
· t2

2
− e−M ·

[
M(M + 2)

M + 1
+ 1

]
· t.

Using these functions, we construct a candidate for a Lyapunov type function
that verifies LaSalle’s principle.

Let LeM
∈ C∞(R3, R) be the smooth function given by

LeM
(x, y, z) = LϕeM

(x, y, z)− LϕeM
(0,−M,M).

Note that the condition LeM
(eM ) = 0 is automatically satisfied, and also we have

that dLeM
(eM ) = 0. Hence, to check the first condition of LaSalle’s principle, i.e.,

LeM
(x, y, z) > LeM

(eM ) = 0, locally for (x, y, z) 6= eM = (0,−M,M), it is enough to
prove that d2LeM

(eM ) is positive definite.
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This is true indeed, because

d2LeM
(eM ) =

 1 0 0
0 M2 + (M + 1)−1 1−M(M + 2)(M + 1)−1

0 1−M(M + 2)(M + 1)−1 (M + 2)(M + 1)−1


is positive definite, since M > −1.

To check the last condition of LaSalle’s principle we compute first L̇eM
.

L̇eM
(x, y, z) = [∇H(x, y, z) +∇(ϕeM

◦ C)(x, y, z)]T (ẋ, ẏ, ż)T

= [∇H(x, y, z) +∇(ϕeM
◦ C)(x, y, z)]T [ν(x, y, z)ΠC(x, y, z)∇H(x, y, z)

+ G(x, y, z)∇(ϕeM
◦ C)(x, y, z)]

= −
[
ϕ′eM

(
ze−y

)]2 · e−2y ·
[
x2 + x2z2 + (y + z)2

]
≤ 0.

Using the above relation and the analytic expression of ϕ′eM
, we get that

EeM
:= {(x, y, z) ∈ R3 | L̇eM

(x, y, z) = 0} = E ∪ ΣM ,

where ΣM :=
{
(x, y, z) ∈ R3 | ze−y = eM [M + (M + 1)(M + 2)−1]

}
is a symplectic

leaf of the Poisson manifold (R3, νΠC), and consequently a dynamically invariant set.
Hence, the largest dynamically invariant subset MeM

⊆ EeM
coincides with EeM

.
Now the conclusion follows from LaSalle’s principle together with the remark that
eM = (0,−M,M) ∈ E . �
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