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The minimum number of critical points
of circular Morse functions
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Abstract. The minimum number of critical points for circular Morse functions on
closed connected surfaces has been computed by the authors in [4]. Some bounds
for the minimum characteristic number of closed connected orientable surfaces
embedded in the first Heisenberg group with respect to its horizontal distribution
are also given by [4]. In this paper we provide a more elementary proof for the
minimum number of critical points of circular Morse functions and the details for
the bounds on the mentioned minimum characteristic number.
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1. Introduction

In this paper we show that the circular Morse-Smale characteristic of a closed
connected surface Σ is, except for the projective plane, the absolute value |χ(Σ)| of
its Euler-Poincaré characteristic.

Definition 1.1. If M is a differential manifold, then the circular Morse-Smale charac-
teristic of M is defined by

γ
S1 (M) := min{card(C(f)) : f ∈ F(M,S1)}, (1.1)

where F(M,S1) stands for the set of all circular Morse functions f :M→S1.

Note that the Morse-Smale characteristic of a manifold M is defined by

γ(M) = min{card(C(f)) : f ∈ F(M)},
where F(M) denotes the set of all real-valued Morse functions defined on M , and it
was studied by Andrica in [1, pp.106-129]. The circular Morse-Smale characteristic
was defined by Andrica and Mangra [2, 3].

Proposition 1.1. ([4]) If M̃ is a k-fold cover of M , then γ
S1 (M̃) ≤ k · γ

S1 (M).
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Constructing a circular Morse function on the closed connected orientable surface
Σg, of genus g, with exactly 2(g− 1) critical points is part of the strategy to compute
the circular Morse-Smale characteristic of the surface Σg. We achieve this goal by
producing a suitable embedding of Σg in R3 \ Oz, where Oz stands for the z-axis
{(x, 0, 0) : x ∈ R}, alongside a submersion f : R3 \Oz −→ S1, whose restriction f

∣∣
Σg

is a circular Morse function with exactly 2(g − 1) critical points. In fact the suitable
submersion is

f(x, y, z) =
1√

x2 + y2
(x, y, 0). (1.2)

In this respect we need to characterize somehow the critical points of such a restriction.

Proposition 1.2. Let Σ ⊆ R3 be a regular surface and f : R3 −→ N be a submersion,
where N is either the real line or the circle S1. The point p = (x0, y0, z0) ∈ Σ is
critical for the restriction f |Σ if and only if the tangent plane of Σ at p is the tangent
plane at p to the fiber Fp := f−1(f(p)) of the submersion (1.2) through p.

Proposition 1.2 follows from the following more general statement.

Proposition 1.3. Let Mm, Nn, P p, m ≥ n > p be differential manifolds, let f :M→N
be a differential map and g : N → P be a submersion. Then x ∈M is a regular point
of g ◦ f if and only if f tx Fx, where Fx stands for the fiber g−1(g(x)) of g through
x.

Proof. Recall that we have the transversality property f tx Fx if and only
if Im(df)x + ker(dg)f(x) = Tf(x)(N), i.e. Im(df)x + ker(dg)f(x) = Tf(x)(N), as
Tf(x) (Fx) = ker(dg)f(x).

Assume that x ∈ R(g ◦f), i.e. Imd(g ◦f)x = T(g◦f)(x)(N). We only need to show
that Tf(x)(N) ⊆ Im(df)x + ker(dg)f(x), as the opposite inclusion is obvious. Consider
v ∈ Tf(x)(N) and observe that there exists u ∈ Tx(M) such that (dg)f(x)(v) =
d(g ◦ f)x(u), since Im[d(g ◦ f)x] = T(g◦f)(x)(N). Consequently we obtain successively:

(dg)f(x)(v) = d(g ◦ f)x(u) ⇔ (dg)f(x)(v) = (dg)f(x) ((dfx)(u))
⇔ (dg)f(x)(v)− (dg)f(x) ((dfx)(u)) = 0
⇔ (dg)f(x) (v − (dfx)(u)) = 0
⇔ v − (dfx)(u) ∈ ker(dg)f(x)

⇔ v∈(dfx)(u)+ker(dg)f(x)⊆ Im(df)x+ker(dg)f(x).

In order to prove the opposite inclusion, we use the property of g to be a sub-
mersion and observe that we have successively:

Im(df)x + ker(dg)f(x) = Tf(x)(N) ⇒
(dg)f(x)

[
Im(df)x + ker(dg)f(x)

]
= (dg)f(x)

[
Tf(x)(N)

]
⇔

(dg)f(x) [Im(df)x] + (dg)f(x)

[
ker(dg)f(x)

]
= Tg(f(x))(N) ⇔

(dg)f(x) [Im(df)x] = T(g◦f)(x)(N) ⇔
Im

(
(dg)f(x) ◦ df)x

)
= T(g◦f)(x)(N) ⇔

Im (d(g ◦ f)x) = T(g◦f)(x)(N) ⇔ x ∈ R(g ◦ f).

�
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2. The circular Morse-Smale characteristic of closed surfaces

According to [4, Corollary 1.3], γ
S1 (S2) = γ(S2) = 2 and γ

S1 (RP2) = γ(RP2) =
3. Also γ

S1 (Σ1) = γ
S1 (T 2) = 0, as the projection T 2 = S1×S1 → S1 is a submersion

and it has no critical points. More generally, we shall prove the following:

Theorem 2.1. The circular Morse-Smale characteristic of a closed surface Σ 6=RP2 is

γ
S1 (Σ) = |χ(Σ)| (2.1)

2.1. The case of the closed orientable surfaces

In this case we only need to prove Theorem 2.1 for the compact orientable surface
Σg of genus g ≥ 1, as it is obvious for Σ = S2 (see [4, Corollary 1.3]). In this respect
we need:

1. to show that µ(F ) := µ0(F )+µ1(F )+µ2(F ) ≥ 2(g−1) for every circular Morse
function F : Σg −→ S1, where µj(F ) stands for the number of critical of index
j of F and µ(F ) for the total number card(C(F )) of critical points of F ;

2. to produce a circular Morse function on Σg with exactly 2(g− 1) critical points.
In order to do so, we first observe that

2− 2g = µ0(F )− µ1(F ) + µ2(F ). (2.2)

Indeed, by using the Poincaré-Hopf Theorem one obtains

2− 2g = χ(Σg) =
∑

p∈C(F )

indp(∇F ),

where ∇F is the gradient vector field of F with respect to some Riemann metric on
Σg. To finish the proof of relation 2.2, we just need to observe that the index of the
gradient vector field ∇F at a critical point of index one is −1 and the index of ∇F at
the critical points of index zero and two is 1. Indeed the local behavior of F around
the critical points of index one is F = x2− y2 and its gradient behaves locally around
such a point like the vector field (x,−y). The degree of its normalized restriction to
the circle S1 is −1 as the normalized restriction is a diffeomorphism which reverses the
orientation. Similarly, the index of ∇F at a critical point of index zero or two is one
as the local behavior of F around such a critical point is F = x2 +y2 or F = −x2−y2

and its gradient behaves locally around such a point like the vector field (x, y) or
(−x,−y) respectively. The normalized restrictions of these vector fields to the circle
S1 are diffeomorphisms preserving the orientation and their degree is therefore one.
Thus, the relation (2.2) is now completely proved via the Poincaré-Hopf Theorem.

For the second item of the above observation we prove the following

Lemma 2.2. The surface Σg can be suitably embedded into the three dimensional space
R3 \ Oz such that the restriction f

∣∣
Σg

: Σg −→ S1 is a circular Morse function with
exactly 2(g − 1) critical points, where f : R3 \Oz −→ S1 is the submersion given by

f(x, y, z) =
1√

x2 + y2
(x, y, 0).
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2.1.1. The embedding of Σg into R3 \ Oz. Recall that Σ1 = T 2 = S1 × S1 is being
usually identified with the surface of revolution in R3 obtained by rotating a circle
in the plane xOz centered at a point on the x-axis around the z-axis. The radius of
the circle is supposed to be strictly smaller than the distance from the origin to its
center. A certain embedding of the surface Σg in R3, obtained from the one of Σ1 on
which we perform some surgery, will be useful in our approach. However the above
mentioned embedding of Σ1 in R3 has one circle on ’its top’ and one circle on ’its
bottom’, where the Gauss curvature vanishes. The two circles form the critical set of
the height function f~k in the direction of the z-axis, on the embedded copy of T 2 in
R3. Thus, this height function is not a Morse function.

In order to construct our suitable embedding of Σg we need to rotate around
the z-axis a closed convex curve of nonconstant curvature with a unique center of
symmetry, on the x-axis, which lies in the plane xOz and has no overlaps with the
z-axis, rather than a circle with the same properties except the requirement on the
curvature. This curve is also required to contain two segments mutually symmetric
with respect to the x-axis, one on ’its top’ and the other on ’its bottom’. These two
segments form the critical set of the height function f~k restricted to the curve itself.

Instead of rotating a circle within the plane xOz, we consider the embedding of
Σ1 obtained by rotating, around the z-axis a closed convex curve described above. The
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Figure 1. An embedded copy of Σ6 constructed out of an embedded
copy of Σ1

obtained copy of Σ1 is flat on the two annuli A and A′ generated by the two symmetric
segments of the generating curve, which lie in two horizontal parallel planes. Consider
the points p1, . . . pg−1 ∈ A and q1, . . . , qg−1 ∈ A′ such that the lines piqi, i = 1, . . . , g−
1 are vertical, i.e. parallel to the z-axis. In order to obtain a topological copy of the
surface Σg we next remove some small open discs D1, . . . , Dg−1 ⊆ A centered at
p1, . . . pg−1 and D′

1, . . . , D
′
g−1 ⊆ A′ centered at q1, . . . , qg−1 respectively. The radii of

the disks Di and D′
i are supposed to be the same. We next consider suitable planar

curves
γi : [0, 1] −→ cl (B) ∩ πi, i = 1, . . . , g − 1
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such that γi(0) ∈ ∂Di and γi(1) ∈ ∂D′
i, wherepiqi∩xOy = {(xi, yi, 0)}, πi is the plane

parallel to xOz through the point (xi, yi, 0) (i.e. πi : y = yi) and B is the bounded
component of the complement of the embedded copy of Σ1. The curves γi are chosen
in such a way to complete, by their rotation around the axes piqi, the embedded copy
of Σ1 \ [D1 ∪ . . . ∪Dg−1 ∪D′

1 ∪ . . . ∪D′
g−1] up to a smooth embedded copy of Σg.

2.1.2. The cardinality of the set C
(
f
∣∣
Σg

)
and the nondegeneracy of its points. Since

our embedded copy of Σg is constructed out of several surfaces of revolutions, we are
going to investigate the critical set of the restriction of the submersion (1.2) to such
a surface, by using the geometric interpretation coming from Proposition 1.2.

Proposition 2.3. card
(
C(f |Σg

)
)

= 2(g − 1).

Proof. Every surface of revolution Σ around a vertical line of equations x = x0, y = y0
can be parametrized as follows: x = x0 + α(v) cosu

y = y0 + α(v) sinu
z = β(v)

u ∈ (0, 2π), v ∈ [0, 1].

In our considerations the function α is supposed to be strictly positive. Recall that
a point p(u, v) = (x(u, v), y(u, v), z(u, v)) is, according to Proposition 1.3, critical for
the restriction f |Σ if and only if the tangent plane of Σ at p(u, v) contains the fiber
of f through p(u, v), i.e. its equation is y(u, v)x = x(u, v)y. On the other hand the
equation of the tangent plane of Σ at p(u, v) is

(x− x(u, v))α(v)β′(v) cosu+ (y − y(u, v))α(v)β′(v) sinu (2.3)

− α(v)α′(v)(z − z(u, v)) = 0

The two planes are equal, i.e. p(u, v) ∈ C (f |Σ), if and only if{
α(v)β′(v) cosu · x(u, v) + α(v)β′(v) sinu · y(u, v) = 0
α(v)α′(v) = 0,

or equivalently {
x0 cosu+ y0 sinu+ α(v) = 0
α′(v) = 0. (2.4)

The equation x0 cosu+ y0 sinu+ α(v) = 0 is equivalent to cos(u− α) = −α(v)
x0

cosx,
and has two solutions on the interval (−x, 2π−x), where tanx = y0

x0
and x0 is assumed

to be nonzero. Since cosx = x0√
x2
0+y2

0

, the condition |α(v)
x0

cosx| < 1 is equivalent to

α(v) <
√
x2

0 + y2
0 . Up to now we use the fact that x2

0 +y2
0 > 0 several times. Note that

for x0 = y0 = 0 the restriction f |Σ has no critical points at all, as the first equation of
the system (2.4) has no solutions in such a case. In particular the restriction f |Σ1 has
no critical points at all as the embedded copy of Σ1 is a surface of revolution around
the z-axis, i.e. x0 = y0 = 0.

We now recall that piqi ∩ xOy = (xi, yi, 0) and choose

γi : [0, 1] −→ cl (B) ∩ πi, γi(t) = (αi(t), yi, βi(t)).
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such that αi(0) = αi(1), the equations α′i(v) = 0 has one solution in (0, 1), α′′i > 0
and lim

v→0
β′i(v) = −∞, lim

v→1
g′i(v) = +∞. With such choices of the functions αi and βi,

the revolution surfaces of the curves γi around the axes piqi completes the surface
Σ1\ [D1∪ . . .∪Dg−1∪D′

1∪ . . .∪D′
g−1] up to a smooth embedded copy of Σg. Moreover

the restriction of f to each of these revolution surfaces has exactly two critical points.
Thus, the restriction f |Σg

has precisely 2(g − 1) critical points. �

Proposition 2.4. The restriction f |Σg
is a circular Morse function, i.e. its critical

points are nondegenerated. Moreover the critical points of f |Σg
have all index 1.

Proof. The local representations of the restriction f |Σg
have one of the following form:

ϕ(u, v) = x0 + α(v) cosu or ψ(u, v) = y0 + α(v) sinu.

The nodegeneracy of a critical point (u0, v0), via the local representations ϕ or ψ, is
quite obvious as det

(
Hess(u0,v0)ϕ

)
or det

(
Hess(u0,v0)ψ

)
is either

−α(v0)α′′(v0) cos2 u0 − (α′(v0))2 sin2 u0 < 0

or
−α(v0)α′′(v0) sin2 u0 − (α′(v0))2 cos2 u0 < 0

respectively.
Thus the critical point (u0, v0) of the local representation ϕ or ψ of the restriction

f |Σg
is, indeed, non-degenerate of index one. �

Proof of Theorem 2.1 in the orientable case. We only need to treat the case g ≥ 2
as for g ∈ {0, 1} we obviously have γ

S1 (Σ0) = γ
S1 (S2) = γ(S2) = 2 and γ

S1 (Σ1) =
γ

S1 (T 2) = 0. For the inequality γ
S1 (Σg) ≥ 2(g − 1) we just need to use relation (2.2)

that is 2− 2g = µ0(F )− µ1(F ) + µ2(F ) ≥ −µ1(F ), for every circular Morse function
F : Σg −→ S1. This shows that 2(g−1) ≤ µ1(F ) ≤ µ0(F )+µ1(F )+µ2(F ) = µ(F ), for
every circular Morse function F : Σg −→ S1, and the inequality 2(g − 1) ≤ γ

S1 (Σg)
therefore. The opposite inequality is proved by the existence of the circular Morse
function f

∣∣
Σg

which has exactly 2(g − 1) critical points.

Remark 2.5. No real valued Morse function defined on a compact manifold Mm

(m ≥ 2) can merely have critical points of index one, as the global minimum of such
a function has index zero and its global maximum has index m. Thus the restriction
f |Σg

cannot be lifted to any map f̃ : Σg −→ R, i.e. exp ◦f̃ = f and the induced group
homomorphism f∗ : π(Σg) −→ Z = π(S1) is nontrivial therefore.

Proof of Theorem 2.1 in the non-orientable case. In this case we rely on Proposition
1.1 in order to prove the inequality

γ
S1

(
gRP2

)
≥ |χ

(
gRP2

)
|,

for g ≥ 2, where kRP2 stands for the connected sum RP2#RP2# · · ·#RP2 of k copies
of the projective plane. Indeed, by applying Proposition 1.1 to the orientable double
cover

Σg−1 → gRP2
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we obtain successively:

γ
S1

(
gRP2

)
≥ 1

2γS1

(
Σg−1

)
= 1

2 |χ
(
Σg−1

)
|

= 1
2 |2− 2(g − 1)| = |2− g| = |χ

(
gRP2

)
|.

For the opposite inequality we first recall that

f : RP2 −→ R, f([x1 , x2 , x3 ]) =
x2

1 + 2x2
2 + 3x2

3

x2
1 + x2

2 + x2
3

,

is a perfect Morse function with exactly three critical points of indices 0, 1, 2, i.e a
minimum point p, a maximum point q and a saddle point s. If ε > 0 is small enough,
then the inverse images D := f−1(−∞, f2(p)+ε) and D′ := f−1(f(q)−ε,∞) are open
disks and the inverse image f−1[f(p) + ε, f(q) − ε] = RP2 \ (D1 ∪D2) is a compact
surface with two circular boundary components f−1(f(p) + ε) and f−1(f(q) − ε).
Observe that the restriction

f
∣∣
RP2\(D∪D′)

: RP2 \ (D1 ∪D2) −→ [f(p) + ε, f(q)− ε]

has one critical point of index one, i.e the saddle point s. We next glue successively g
copies of RP2 \ (D ∪D′), say

M1 :=RP2\(D1∪D′
1), . . . ,Mg :=RP2\(Dg ∪D′

g),

along the circular boundaries

∂D′
i := f−1

i (fi(q)− ε)⊂Mi and ∂Di+1 := f−1
i+1(fi+1(p) + ε) ⊂Mi+1

of
D′

i := f−1
i (fi(q)− ε,∞) and Di+1 := f−1

i+1(−∞, fi+1(p) + ε),
where

fi := f + iL : RP2 −→ R, (i = 1, . . . , g − 1)
and

L := length([f(p) + ε, f(q)− ε]) = f(q)− f(p)− 2ε.
The obtained surface is gRP2 \ (D1 ∪D′

g). Note that fi is a Morse function with one
saddle point which is constant on each of the circular boundaries ∂Di = f−1

i (fi(p)+ε)
and ∂D′

i = f−1
i (fi(q) − ε) of Mi. Moreover, the equalities fi

∣∣
∂D′

i

= fi+1

∣∣
∂Di+1

hold
for every i = 1, . . . , g − 1, which shows that the function

F : gRP2 \ (D1 ∪D′
g) −→ R, F

∣∣
Mi

:= fi

is well defined. In fact, F is a Morse function with g saddle points which is constant
on the circle boundaries

∂D1 = f−1
1 (f1(p) + ε) ⊂M1 and ∂D′

g = f−1
g (fg(q)− ε) ⊂Mg.

Identifying the circle boundaries ∂D1 and ∂D′
g of gRP2 \ (D1 ∪ D′

g), via a suitable
diffeomorphism ϕ : ∂D1 −→ ∂D′

g, we get the non-orientable surface (g + 2)RP2.
Identifying minF with maxF in Im(F ) we obtain the circle S1. Also, the Morse
function

gRP2 \ (D1 ∪D′
g) −→ Im(F ), x 7→ F (x)
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descends to a circular Morse function

f0 : (g + 2)RP2 =gRP2 \ (D1 ∪D′
g)
/
{x = ϕ(x)}→S1 =Im(F )

/
{minF = maxF}

with g saddle points. This shows that the inequality γ
S1

(
(g + 2)RP2

)
≤ g holds for

all g ≥ 1.
Therefore, we provided the second proof of Theorem 2.1 in the non-orientable

cases gRP2 with g ≥ 3. On the other hand the Klein Bottle 2RP2 is a fibration over
S1 with fiber S1, which shows that γ

S1

(
2RP2

)
= 0 = |χ(2RP2)|. �

3. On the number of characteristic points

The horizontal distribution of the first Heisenberg group H1 = (R3, ∗) is H =
span(X,Y ) = {Hp := span(Xp, Yp)}p∈H1 , where X = ∂x + 2yi∂t and Y = ∂y − 2x∂t.
Let us consider a surface S ⊆ R3 which is C1 smooth. The characteristic set [5, 6] of
S with respect to H is defined as

C(S,H) := {p ∈ S : TpS = Hp}.

Definition 3.1. If S is a C1 smooth surface which can be embedded into R3, then the
minimum characteristic number of S relative to H on R3 is defined as

mcn(S,H) := min{card (C(f(S),H)) : f ∈ Embed(S,R3)},

where Embed(S,R3) stands for the set of all embeddings of S into R3.

Theorem 3.2. If g ≥ 2, then 2g − 2 ≤ mcn(Σg,H) ≤ 4g − 4.

For the lower bound 2g − 2 of mcn(Σg,H) we refer the reader to [4] and for the
upper bound 4g − 4 we need to construct an embedding of Σg in R3 with 4g − 4
characteristic points with respect to the horizontal distribution of the first Heisenberg
group H1 = (R3, ∗). In this respect we shall use the possibility to embed Σ1 in R3 as a
revolution surface and construct a suitable embedding of Σg out of Σ1 by performing
some surgery on Σ1. The handles we plan to glue are surfaces of revolution as well.
In fact, we shall use the embedding of Σg described in the previous section. Therefore
we need to investigate the size of the characteristic sets of revolution surfaces S ⊂ R3

with respect to the horizontal distribution of the first Heisenberg group H1 = (R3, ∗).

3.1. Revolution surfaces in H1 with low number of horizontal points

Every revolution surface S obtained by rotating a plane curve x = α(v), z = v (α > 0)
around the vertical line x = x0, y = y0 admits a local parametrization of type

x = x0 + α(v) cosu
y = y0 + α(v) sinu
z = v

, u ∈ I, v ∈ J,

where I is an open interval of length 2π and J will be symmetric with respect to the
origin, i.e. J = (−a, a). The function f is subject to the following requirements:

α is bounded , α′′ > 0 and lim
v→±a

α′(v) = ±∞. (3.1)
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The vector equation of our revolution surface is

~r = (x0 + α(v) cosu)∂x + (x0 + α(v) sinu)∂y + v∂t

and
~ru = −(α(v) sinu)∂x + (α(v) cosu)∂y

~r
v

= (α′(v) cosu)∂x + (α′(v) sinu)∂y + ∂t

~r
u
∧ ~r

v
= (α(v) cosu)∂x + (α(v) sinu)∂y − α(v)α′(v)∂

t
.

On the other hand the horizontal vector fields of the distributionH are X = ∂x+2y∂t ,
Y = ∂y − 2x∂t and their vector product is

X ∧ Y = −2y∂
x

+ 2x∂
y

+ ∂
t
.

Thus, the point r(u, v) := (x(u, v), y(u, v), z(u, v)) ∈ S is a horizontal point if and
only if the vectors ~r

u
∧ ~r

v
, X ∧ Y are linearly dependent at r(u, v), i.e.

sinu + 2α(v)α′(v) cosu = −2x0α
′(v)

2α(v)α′(v) sinu − cosu = −2y0α′(v).

Thus

sinu = −2α′(v)
x0 + 2y0α(v)α′(v)
1 + 4α2(v)(α′(v))2

cosu = −2α′(v)
2x0α(v)α′(v)− y0
1 + 4α2(v)(α′(v))2

.

(3.2)

Remark 3.3. No revolution surface around the z-axis has H-tangency points, as the
equations (3.2) have no solutions at all for x0 = y0 = 0.

The identity sin2 u+ cos2 u = 1 leads us to the equation

(α′(v))2 =
1

4 (||(x0, y0)||2 − α2(v))
, (3.3)

which has at least two solutions on the interval J = (−a, a), as the right hand side of
(3.3) is bounded and (α′)2 covers the positive real half line [0,∞) twice, once on the
interval (−a, o] and once on the interval [0, a). For suitable choices of the function α,
the equation (3.3) has precisely two solutions. Such a choice is

α(v) = 2−
√

2− v2

2
(3.4)

for a =
√

2 and ||(x0, y0)|| = 3. Indeed, for the choice (3.4) of the function α the
equation (3.3) becomes:

4v2
√

2(2− v2) = −v4 − 9v2 + 2. (3.5)

Note that the equation (3.5) has precisely two solutions, as can be easily checked.
Proof of Theorem 3.2. The closed convex curve in the plane xOz described at the
beginning of the section (2.1.1) is supposed to have its unique center at the point
(3, 0, 0). The coordinates of the points pi and qi have the forms (xi, yi, zi) and
(xi, yi,−zi) respectively, for i = 1, . . . , g − 1. Moreover ||(xi, yi)||2 := x2

i + y2
i = 3
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for all i = 1, . . . , g − 1. The handles we use within our surgery process are revolution
surfaces around the vertical lines x = xi, y = yi of parametrized equations

x = xi + α(v) cosu
y = yi + α(v) sinu
z = v

, u ∈ I, v ∈ J,

We denote by vi and v′i the roots of the equations

(α′(v))2 =
1

4(||(xi, yi)||2 − α2(v))
, (3.6)

with the choice (3.4) for the function f . The equations which corresponds to (3.2)
sinu = −2α′(vi)

xi + 2yiα(vi)α′(vi)
1 + 4α2(vi)(α′(vi))2

cosu = −2α′(vi)
2xiα(vi)α′(vi)− yi

1 + 4α2(vi)(α′(vi))2
,

(3.7)


sinu = −2α′(v′i)

xi + 2yiα(v′i)α
′(v′i)

1 + 4α2(v′i)(α′(v
′
i))2

cosu = −2α′(v′i)
2xiα(v′i)α

′(v′i)− yi

1 + 4α2(v′i)(α′(v
′
i))2

.

(3.8)

Since the graphs of the sine and cosine functions on each interval of length 2π are
intersected at most twice by any straight line parallel to the u-axis, it follows that the
equations (3.7) as well as (3.8) have at most two roots for each i = 1, . . . , g−1. On the
other hand the surface Σg embedded in H1 the way described right after Theorem 3.2
has no other H-characteristic points. Indeed, on the two annuli A and A′ the tangent
planes to Σg are parallel to the xOy plane, a parallelism relation which happens for
the planes of the distribution H just along the z-axis. This shows that Σg, embedded
in R3\Oz as described before, has no extra characteristic points as two annuli have no
common points with the z-axis. The remaining part of our embedded Σg is completely
contained in Σ1 which is, in its turn, a revolution surface around the z-axis and has
no H-tangency points, as we saw in Remark 3.3. Thus, our embedded surface Σg has
at most 4(g − 1) H-tangency points. �
Acknowledgement. Cornel Pintea was supported by a grant of the Romanian Na-
tional Authority for Scientific Research CNCS - UEFISCDI, project number PN-II-
ID-PCE-2011-3-0024. The authors are grateful to Louis Funar for several useful e-mail
exchanges.

References

[1] Andrica, D., Critical Point Theory and Some Applications, Cluj University Press, 2005.

[2] Andrica, D., Mangra, D., Morse-Smale characteristic in circle-valued Morse theory, Acta
Universitatis Apulensis, 22(2010), 215-220.



The minimum number of critical points of circular Morse functions 495

[3] Andrica, D., Mangra, D., Some remarks on circle-valued Morse functions, Analele Uni-
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