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1. Introduction

The connections compatible with a symplectic form have been studied for several
decades, by now. They were introduced by Ph. Tondeur, in 1961 (see [12]), for the
more general situation of an almost-symplectic manifold. Nevertheless, they became
really important lately, in the early ninetieth, when Fedosov ([7]) discovered that they
may be useful in the deformation quantization. Therefore, a symplectic manifold en-
dowed with a symmetric connection, compatible with the symplectic form, has been
baptized with the name of Fedosov manifold. A recent review of the theory of sym-
plectic connections can be found in [5]. A few years later, the notion of symplectic
connection has been extended to symplectic supermanifolds and the corresponding
objects (namely symplectic supermanifolds, even or odd, endowed with a symplectic
connection) have been named Fedosov supermanifolds (see [9]). It is the aim of this
note to show that, as in the case of symplectic manifolds, on a symplectic supermani-
fold (odd or even, it doesn’t matter), symplectic connections exist in abundance. The
language we use is slightly different from that used in the original papers, because we
use a coordinate-free approach (see [2], [3], [4]).

As it is well-known, there are several approaches to supermanifolds, not entirely
equivalent. The differences are not very important for this paper. Nevertheless, to
avoid ambiguities, we state from the very beginning that for us “supermanifold”
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means “supermanifold in the sense of Berezin and Leites”!. For details, see [1], [6],
[10], [11].

2. Symplectic connections on supermanifolds

Definition 2.1. Let M be an arbitrary, finite dimensional, supermanifold. A connection
(a covariant derivative) on this supermanifold is a mapping V : X(M) x X(M) —
X (M) for which the following conditions are fulfilled:

(i) V is additive in both arguments:
Vxi+vY =Vx, Y +Vx,Y, Vx(Y1+Y3)=VxY) + VxYs;
(ZZ) Vny = vaY,'
(iii) Vx(fY)=X(f)-Y + (~)¥VIvyy,
where in the first two relations X,Y, X1, X2, Y1,Ys are arbitrary vector fields and f

an arbitrary superfunction, while in the last equality all the entries are assumed to be
homogeneous.

The torsion tensor can be defined here in a similar manner to the corresponding
tensor for connections on ordinary (ungraded) manifolds:

Definition 2.2. Let V be a connection on a supermanifold. The torsion of the connec-
tion is the tensor field (twice covariant and once contravariant) defined by

T(X,Y)=VxY — (-)XIVIyy x — [X7],

for any homogeneous vector fields X and Y. Also by analogy with the classical case, a
connection on a supermanifold is called symmetric if its torsion vanishes. Thus, the
connection is symmetric iff for any homogeneous vector fields X and Y we have

VxY — (-)XIYIvy x = [X,V].

It can be shown easily that, using the same methods from the classical differential
geometry, the covariant derivative on supermanifolds can be extended to arbitrary
tensor fields, not just vector fields. The interesting case for us is the one of twice
covariant tensor fields. Thus, if ¢ is a twice covariant homogeneous tensor field on a
supermanifold M, then we have

(Vx9)(Y, Z) = Vxg(Y. Z) = X(9(Y. 2)) = (-)*lg(Vx Y, 2)~
_ (_1)|X|'(|Y|+\Q\)g(y7 VxZ).
We are interested, in this paper, in the particular case of a homogeneous symplectic

supermanifold, i.e. a supermanifold endowed with a homogeneous 2-form w, which is
both closed and non-degenerate.

Definition 2.3. Let (M, w) be a homogeneous symplectic supermanifold (hereafter, it
will be called, simply, symplectic supermanifold). A connection V on M is called sym-
plectic it is both symmetric and compatible to the symplectic form. Thus, a symplectic
connection on a symplectic supermanifold is a connection V for which:

1These supermanifolds are also called “graded manifolds”, especially in the Western literature.
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(i) the torsion tensor vanishes, i.e.
VxY = (—)¥YIvy X = [X,Y]

and
(ii) it is compatible to the symplectic form, i.e.
Vxw(Y,Z) = X(w(Y, Z)) — (—1)X (v xY, 2)—
_ (_1)|X|~(|Y\+\w\)w(y7 VxZ) =0,

for any homogeneous vector fields X,Y, Z.

3. Existence and uniqueness results for symplectic connections

Theorem 3.1 (Existence). Let (M,w) be a symplectic supermanifold. Then on M
there is at least a symplectic connection.

Proof. The proof we are going to give is an adaptation of the proof from the classical
symplectic geometry of manifolds. Namely, we notice, first of all, that on M there
is at least a symmetric connection, V°. To proof this, it is enough to consider a
Riemannian metric on M (which we know we can find) and take V° to be the Levi-
Civita connection associated to this metric, which, we also know, exists (and it is even
unique). Of course, V is not a symplectic connection, in most situations, and what
we shall do is to “correct” this connection to get a symplectic one.
We define now a twice covariant and once contravariant tensor field N through
the relation
V&w(Y, 2) = (-1)HNw(N(X,Y), 2). (3.1)
We shall proof some properties of N, for later use. First, we claim that
w(N(X,Y),Z) = —(-1)YMZlu(N(X, 2),Y). (3.2)
Indeed, we have
w(N(X,Y), Z) = (-)IHIVRw(y, 2) =
= (- )MHEIVS (2,Y) = ()TN (X, 2), V).

Another important property of N, which follows, this time, from the closeness of the
symplectic form, is the following:

Ww(N(X,Y), Z) + (-)XIVHZD (N (Y, Z), X)+

4 (,1)\Z|(|X\+\Y|)M(N(Z’X)’ Y) =0 (3.3)

As mentioned before, to prove (3.3), we shall start from the closeness of the symplectic
form and we shall use the symmetry of the connection V0, as well as the definition of
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the tensor N. Thus, we have
0=dw(X,Y,Z) = (-1)“I'¥ X (w(Y, 2))-
— (_1)|Y\(|w|+\XI)Y(w(X, 7)) + (_1)|Z\(\w|+\X|+|Y|)Z(w(X, Y))—
—w([X, Y], 2) + ()"l (X, 2], Y) — (-1)X 20y (ly, 2], X) =
= (~DMNIX (¥, 2)) = (-1 DY (X, 2)+
4 (=) ZHXHYD Z(5(X, Y)) — w (vg(y ()XY X, Z) +

)
+(—1)vHz] (V%Z _ ()XY x, y) _
1)|X|(|Y\+|Z\) (V%Z— (_1)|Y\~\Z|v%y’)() =
DIHXIX (w(Y, 2)) — (1)1 HXDy (u(X, 2))+
DIZIHIXIFYD 7(0(X,Y)) — w (V())(K Z)+

- (=
= (=
(=
(— 1)|X| Y] ( %X, Z) (-1 )IYHZI (VO Z, Y)—
—(=
(=
—(=

+ o+

1IXHYDIZI, (V9 X, V) — (—1)XIIYIHZDy, (V9 7, X)) +
XY IHZDHYTIZ], (99 Y, X) = (=D)HX X (w(Y, 2)) -
1)@l Xy, (VO Y,Z) - (- DI+, (v, v%Z)

_|_
= ()N Y (0, 2)) = (-1 (V). 2) -
= (—)MITH X (X, 99 2) |+ (— ) A0 20X, v)) -
(- 1)|w\ 1, (VO X, Y) _ (_1)\Z|(|w|+|X\w (X, v%y)} =

= (-)XIVSw(Y, Z) — (-1 IUHIXITE WX, Z)+

4 (—1)ZHX Y DGO o X, )

We define now a new connection, V, by letting

wjv Y, X). (3.4)

We start by proving that this is, indeed, a connection. V is, obviously, bi-additive and
homogeneous in the first variable. Moreover, we have

1
VxY =V%Y + gN(X, Y)+

V(1Y) = V(Y) + NG, )+ CTE
= VY + (=)VHXI X (f) - Y'i'f(;N(X, -
(=1)XIYI
A

N(fY, X) =

+ N(KX)) = fVxY + ()X (f) -y,

hence V is a connection.
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We claim that V is a symplectic connection. Let’s check first that V is symmetric.
Indeed, we have

(,1)\XI-\Y|

1
vxy_(_1)\xw-\Y|vYX:vg(y+§N(X,Y)+ N(Y, X)-

1 (fl)\YHXI
— (=DIXHYI (v@x + 3N X) + 3N(X,Y)> =
= V&Y - (D)X = [X, Y],
where we used the fact that the connection V° is symmetric. Finally, we show that
the connection is compatible with the symplectic form. We have
Vxw(Y,2) = X(w(Y, 2)) - (-1)"¥lw (VxY, Z) -
— ()Yl (v, 95 Z) = X(w(Y, 2)) — (-1 ¥ (V8 v+
(_1)\X|-\Y|

3
(—1)lXr12l

+
s
~

| = W =

N( )+

)

N(Y, X), Z) _ (—1)'X‘<‘wl+\Y|w(y, Ve 7+

FIN(X,Z) + N(Z,X)) — X(w(Y, Z))—

—~ w0

— (~ D)Xy (VO Y, Z) — (—1)XI+YDy, (v, v, Z) —

(CDRXW(N(X,Y), 2) — 2 (~)X DN (Y, X), 2)-

I
W = W

(_1)\XI(\w\+IY\)w(y7N(X’ Z)) — %(_1)IXI(IwI+IY\+Z\)w(y7 N(Z,X)) =

|
<
><O

WY, Z) — %(—1)"“"‘X‘w(N(X7Y)7Z)+

%(-1)lw\~\xlw(zv(x, V), 2)4+

+

(=X Y IHZD (N (Y, Z), X)) —

(=Dl HXHZIXIHYI (N (7, X),Y) = (=) XN (X, Y), Z)—

_l_

(—D)Xl(N(X,Y), 2)+

Wl Wl W— W~

+

(—1)ll1x] ((_1)\Xl<\Yl+\Zl>w(N(Y, 7), X)+

1

+ (- 1) AN D (N (2, X), 7)) = g(—l)“‘""X'(w(N(X, Y), Z)+

—~

+ (—1)|X|(|Y‘+|Z‘)w(N(Y, Z),X) + (,1)\ZI(\XIHYI)W(]\/*(ZX)7 y)) =0,

which proves that, indeed, V is a symplectic connection.

Thus, on any symplectic supermanifold there is at least a symplectic connection.
As we shall prove next, there are, actually, infinitely many.

We notice, first of all, that the difference of two symplectic connections is allways

a symplectic connection. Let now V be a symplectic connection. Any other connection
on M should be of the form

ViV = VY + S(X,Y),
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where S is a (2,1) tensor field on M. If we want V' to be symplectic, first of all it
should be symmetric, which means:

KY = ()P X = (XY,
ie.
VxY +8(X,Y) — (—)XIVIvy X — (—)XIVIs(y, x) = [X,Y].
As V is symmetric, it follows that S should verify the relation
S(XY) = ()X HVIs(y, x),

meaning that S is supersymmetric. Now we should ask that V’ should, also, be com-
patible to the symplectic form. We have:

Vxw(Y, Z) = X (@(¥, 2)) = (=) ¥ w (Vi v, 2) -

()XW Y, (v, Ve Z) =

= X (@(¥,2) - ()M (Wxy, 2) - ()Ml (v, v Z) -
=0

_ (_1)Iw|-\X|w (S(X,Y),Z) — (_1)\X|(\w\+|Y\w (Y,8(X,2)) =
= (—1)l X [w (S(X,Y), Z) + (—1)XWw (v, S(X, Z))] =

= (=) o (S(X,Y), 2) = (<)Ml (8(X, 2),7)]
Thus, V’ is a symplectic connection if and only if
W(S(X,Y),Z) = (_1)‘Y||Z‘W(S(X7 Z)aY)a

i.e. the 3-covariant tensor field w (S(X,Y), Z) is totally graded symmetric. The con-
clusion is, as in the classical, ungraded, case, that the set of all symplectic connections
on a given symplectic supermanifold is an infinite dimensional affine space. O

References
[1] Bartocci, C., Bruzzo, U., Herndndez-Ruipérez, D., The Geometry of Supermanifolds,
Kluwer, 1991.

[2] Bejancu, A., A new viewpoint on differential geometry of supermanifolds (I), Universi-
tatea din Timisoara, Facultatea de Matematicd, Seminarul de Mecanica, 29(1990).

[3] Bejancu, A., A new viewpoint on differential geometry of supermanifolds (II), Universi-
tatea din Timisoara, Facultatea de Matematica, Seminarul de Mecanica, 30(1991).

[4] Blaga, P.A., Riemannian connections on supermanifolds: a coordinate-free approach,
Mathematica, 47(70)(2005), No. 1, 2734.

[5] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhofer, L., Symplectic connec-
tions, math/0511194.

[6] Constantinescu, F., de Groote, H.F., Geometrische und algebraische Methoden der
Physik, Supermannigfaltigkeiten und Virasoro-Algebren, Teubner, 1994.

[7] Fedosov, B.V., A simple geometrical construction of deformation quantization, J. Diff.
Geom., 40(1994), 213-238.



Symplectic connections 483

[8] Gelfand, I., Retakh, V., Shubin, M., Fedosov manifolds, Advan. Math., 136(1998), 104-
140.

[9] Geyer, B., Lavrov, P.M., Basic properties of Fedosov supermanifolds, TSPU Vestnik,
44N7(2004), 62-68.

[10] Kostant, B., Graded manifolds, graded Lie theory and prequantization, Lecture Notes in
Math., 570(1977), 177-306.

[11] Leites, D.A., Introduction to the theory of supermanifolds, Russian Mathematical Sur-
veys, 35(1980), 1-64.

[12] Tondeur, Ph., Affine Zusammenhinge auf Mannigfaltigkeiten mit fast-symplektischer
Struktur, Comment. Helv. Math., 36(1961), 234-244.

Paul A. Blaga

Babes-Bolyai University

Faculty of Mathematics and Computer Sciences
1, Kogalniceanu Street

400084 Cluj-Napoca, Romania

e-mail: pablaga@cs.ubbcluj.ro



