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On some vertical cohomologies of complex
Finsler manifolds

Cristian Ida

Abstract. In this paper we study some vertical cohomologies of complex Finsler
manifolds as vertical cohomology attached to a function and vertical Lichnerowicz
cohomology. We also study a relative vertical cohomology attached to a function
associated to a holomorphic Finsler subspace.
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Introduction

The study of vertical cohomology of complex Finsler manifolds was initiated by
Pitiş and Munteanu in [13]. The main goal of this paper is to study some other vertical
cohomologies for forms of type (p, q, r, s) on complex Finsler manifolds as cohomology
attached to a function defined in [12] and Lichnerowicz cohomology studied by many
authors, e.g. [3, 8, 16]. In this sense, in the first section following [1, 2, 9] and [13],
we briefly recall some preliminaries notions about complex Finsler manifolds and v-
cohomology groups. In the second section, we define a vertical cohomology attached
to a function for forms of type (p, q, r, s) on a compex Finsler manifold (M,F ) and
we explain how this cohomology depends on the function. In particular, we show
that if the function does not vanish, then our cohomology is isomorphic with the
vertical cohomology of (M,F ). In the third section we define and we study a vertical
Lichnerowicz cohomology for forms of type (p, q, r, s) on a complex Finsler manifold
(M,F ) and in the last section, we construct a relative vertical cohomology attached
to a function associated to a holomorphic Finsler subspace. The methods used here
are closely related to those used by [4], [12] and [16].
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1. Preliminaries

1.1. Complex Finsler manifolds

Let π : T 1,0M → M be the holomorphic tangent bundle of a n-dimensional
complex manifold M . Denote by (π−1(U), (zk, ηk)), k = 1, . . . , n the induced complex
coordinates on T 1,0M , where (U, (zk)) is a local chart domain of M . At local change
charts on T 1,0M , the transformation rules of these coordinates are given by

z
′k = z

′k(z) , η
′k =

∂z
′k

∂zj
ηj , (1.1)

where z
′k are holomorphic functions and det(∂z

′k

∂zj ) 6= 0.
It is well known that T 1,0M has a natural structure of 2n-dimensional complex

manifold, because the transition functions ∂z
′k

∂zj are holomorphic.
Denote by M̃ = T 1,0M − {o}, where o is the zero section of T 1,0M , and we

consider TCM̃ = T 1,0M̃ ⊕ T 0,1M̃ the complexified tangent bundle of the real tangent
bundle TRM̃ , where T 1,0M̃ and T 0,1M̃ = T 1,0M̃ are the holomorphic and antiholo-
morphic tangent bundles of M̃ , respectively.

Let V 1,0M̃ = kerπ∗ be the holomorphic vertical bundle over M̃ and V1,0(M̃)
the module of its sections, called vector fields of v-type.

A given supplementary subbundle H1,0M̃ of V 1,0M̃ in T 1,0M̃ , i.e.

T 1,0M̃ = H1,0M̃ ⊕ V 1,0M̃ (1.2)

defines a complex nonlinear connection on M̃ , briefly c.n.c. and we denote by H1,0(M̃)
the module of its sections, called vector fields of h-type.

By conjugation over all, we get a decomposition of the complexified tangent
bundle, namely TCM̃ = H1,0M̃ ⊕ V 1,0M̃ ⊕H0,1M̃ ⊕ V 0,1M̃ .

The elements of the conjugates are called vector fields of h-type and v-type,
respectively.

If N j
k(z, η) are the local coefficients of the c.n.c. then the following set of complex

vector fields

{ δ

δzk
=

∂

∂zk
−N j

k

∂

∂ηj
} , { ∂

∂ηk
} , { δ

δzk
=

∂

∂zk
−N j

k

∂

∂ηj
} , { ∂

∂ηk
} (1.3)

are called the local adapted bases of H1,0(M̃) , V1,0(M̃) , H0,1(M̃) and V0,1(M̃), re-
spectively. The dual adapted bases are given by

{dzk} , {δηk = dηk +Nk
j dz

j} , {dzk} , {δηk = dηk +Nk
j
dzj}. (1.4)

Throughout this paper, we consider the abreviate notations ∂k = ∂
∂zk ,

.

∂k= ∂
∂ηk , δk =

δ
δzk and its conjugates ∂k = ∂

∂zk ,
.

∂k= ∂
∂ηk , δk = δ

δzk .
Let us consider M be a strongly pseudoconvex complex Finsler manifold [1], i.e.

M is endowed with a complex Finsler metric F : T 1,0M → R+ ∪ {0} satisfying:

(1) F 2 is smooth on M̃ ;
(2) F (z, η) > 0 for all (z, η) ∈ M̃ and F (z, η) = 0 if and only if η = 0;
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(3) F (z, λη) = |λ|F (z, η) for all (z, η) ∈ T 1,0M and λ ∈ C∗ = C− {0};
(4) the complex hessian (Gjk) = (

.

∂j

.

∂k (F 2)) is positive definite on M̃ .

Let (Gmj) be the inverse of (Gjm). According to [1] and [9], a c.n.c. on (M,F )
depending only on the complex Finsler metric F is the Chern-Finsler c.n.c., locally
given by

CF

N j
k= Gmj∂k

.

∂m (F 2) (1.5)

and it has an important property, namely

CF

Ri
kj= δk

CF

N i
j −δj

CF

N i
k= 0. (1.6)

In the sequel we will consider the adapted frames and coframes with respect to the
Chern-Finsler c.n.c. and the hermitian metric structure G on M̃ given by the Sasaki
type lift of the fundamental tensor Gjk, locally given by

G = Gjkdz
j ⊗ dzk +Gjkδη

j ⊗ δηk. (1.7)

1.2. Vertical cohomology

According to [13], the set A(M̃) of complex valued differential forms on M̃ is
given by the direct sum

A(M̃) =
n⊕

p,q,r,s=0

Ap,q,r,s(M̃), (1.8)

where Ap,q,r,s(M̃) or simply Ap,q,r,s is the set of all (p+ q+ r+s)-forms which can be
non zero only when these act on p vector fields of h-type, on q vector fields of h-type,
on r vector fields of v-type, and on s vector fields of v-type. The elements of Ap,q,r,s

are called (p, q, r, s)-forms on M̃ .
With respect to the adapted coframes {dzk, dzk, δηk, δηk} of T ∗CM̃ a form ϕ ∈

Ap,q,r,s is locally given by

ϕ =
1

p!q!r!s!
ϕIpJqKrHs

dzIp ∧ dzJq ∧ δηKr ∧ δηHs , (1.9)

where Ip denotes the ordered p-tuple (i1 . . . ip), Jq the ordered q-tuple (j1 . . . jq), Kr

the ordered r-tuple (k1 . . . kr), Hs the ordered s-tuple (h1 . . . hs) and dzIp = dzi1 ∧
. . .∧dzip , dzJq = dzj1∧. . .∧dzjq , δηKr = δηk1∧. . .∧δηkr and δηHs = δηh1∧. . .∧δηhs ,
respectively.

We notice that these forms are the (p+ r, q + s) complex type and according to
[13] if (M,F ) is a complex Finsler manifold endowed with the Chern-Finsler c.n.c.,
then by (1.6) the exterior differential d admits the decomposition

dAp,q,r,s ⊂ Ap+1,q,r,s ⊕Ap,q+1,r,s ⊕Ap,q,r+1,s ⊕Ap,q,r,s+1⊕

⊕Ap+1,q+1,r−1,s ⊕Ap+1,q,r−1,s+1 ⊕Ap+1,q+1,r,s−1 ⊕Ap,q+1,r+1,s−1 (1.10)
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which allows us to define eight morphisms of complex vector spaces if we consider the
different components, namely

∂h : Ap,q,r,s → Ap+1,q,r,s ; ∂v : Ap,q,r,s → Ap,q,r+1,s

∂h : Ap,q,r,s → Ap,q+1,r,s ; ∂v : Ap,q,r,s → Ap,q,r,s+1

∂1 : Ap,q,r,s → Ap+1,q+1,r−1,s ; ∂2 : Ap,q,r,s → Ap+1,q,r−1,s+1

∂3 : Ap,q,r,s → Ap+1,q+1,r,s−1 ; ∂4 : Ap,q,r,s → Ap,q+1,r+1,s−1

We remark that these operators and the classical operators ∂ and ∂ that appear
in the decomposition d = ∂ + ∂ of the differential on a complex manifold are related
by ∂ = ∂h + ∂v + ∂3 + ∂4 and ∂ = ∂h + ∂v + ∂1 + ∂2.

The conjugated vertical differential operator ∂v is locally given by

∂vϕ =
∑

k

.

∂k (ϕIpJqKrHs
)δηk ∧ dzIp ∧ dzJq ∧ δηKr ∧ δηHs , (1.11)

where the sum is after the indices i1 ≤ . . . ≤ ip , j1 ≤ . . . ≤ jq , k1 ≤ . . . ≤ kr and
h1 ≤ . . . ≤ hs, respectively. Also it satisfies

∂v(ϕ ∧ ψ) = ∂vϕ ∧ ψ + (−1)deg ϕϕ ∧ ∂vψ

for any ϕ ∈ Ap,q,r,s and ψ ∈ Ap
′
,q

′
,r

′
,s

′

.
This operator has the property ∂2

v = 0 and in [13], a classical theory of de Rham
cohomology is developed for the conjugated vertical differential ∂v, see also [9] pag.
89. Namely, the sequence

0 −→ Φp,q,r i−→ Fp,q,r0 ∂v−→ Fp,q,r,1 ∂v−→ Fp,q,r,2 ∂v−→ . . .
∂v−→ . . . ,

is a fine resolution for the sheaf Φp,q,r of germs of ∂v-closed (p, q, r, 0)-forms on M̃ ,
where Fp,q,r,s are the sheaves of germs of (p, q, r, s)-forms. It is also given a de Rham
type theorem for the v-cohomology groups Hp,q,r,s(M̃) = Zp,q,r,s(M̃)/Bp,q,r,s(M̃) of
the complex Finsler manifold:

Hs(M̃,Φp,q,r) ≈ Hp,q,r,s(M̃),

where Zp,q,r,s(M̃) is the space of ∂v-closed (p, q, r, s)-forms and Bp,q,r,s(M̃) is the
space of ∂v-exact (p, q, r, s)-forms globally defined on M̃ .

2. Vertical cohomology attached to a function

In this section, we consider a new v-cohomology attached to a function on the
complex Finsler manifold (M,F ). This new cohomology is also defined in terms of
forms of type (p, q, r, s) on M̃ . More precisely, if (M,F ) is a complex Finsler manifold
and f is a function on M̃ , we define the coboundary operator

∂v,f : Ap,q,r,s → Ap,q,r,s+1 , ∂v,fϕ = f∂vϕ− (p+ q + r + s)∂vf ∧ ϕ. (2.1)

It is easy to check that ∂2
v,f = 0 and denote by Hp,q,r,s

f (M̃) the cohomology groups of

the differential complex (Ap,q,r,•(M̃), ∂v,f ), called the vertical de Rham cohomology
groups attached to the function f of complex Finsler manifold (M,F ).
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More generally, for any integer k, we define the coboundary operator

∂v,f,k : Ap,q,r,s → Ap,q,r,s+1 , ∂v,f,kϕ = f∂vϕ− (p+ q + r + s− k)∂vf ∧ ϕ. (2.2)

We still have ∂2
v,f,k = 0 and we denote by Hp,q,r,s

f,k (M̃) the cohomology of this complex.

We shall restrict our attention to the cohomology Hp,q,r,s
f (M̃) but most results readily

generalize to the cohomology Hp,q,r,s
f,k (M̃).

Using (2.1), by direct calculus we obtain

Proposition 2.1. If f, g ∈ F(M̃) then
(i) ∂v,f+g = ∂v,f + ∂v,g, ∂v,0 = 0, ∂v,−f = −∂v,f ;
(ii) ∂v,fg = f∂v,g + g∂v,f − fg∂v, ∂v,1 = ∂v, ∂v = 1

2 (f∂v, 1
f

+ 1
f ∂v,f ), and

(iii) ∂v,f (ϕ ∧ ψ) = ∂v,fϕ ∧ ψ + (−1)deg ϕϕ ∧ ∂v,fψ.

Dependence on the function

A natural question to ask about the cohomology Hp,q,r,s
f (M̃) is how it depends

on the function f . Similar with the Proposition 3.2. from [12], we explain this fact for
our vertical cohomology. We have

Proposition 2.2. If h ∈ F(M̃) does not vanish, then the cohomology groups
Hp,q,r,s

f (M̃) and Hp,q,r,s
fh (M̃) are isomorphic.

Proof. For each p, q, r, s ∈ N, consider the linear isomorphism

φp,q,r,s : Ap,q,r,s(M̃) → Ap,q,r,s(M̃) , φp,q,r,s(ϕ) =
ϕ

hp+q+r+s
. (2.3)

If ϕ ∈ Ap,q,r,s(M̃), one checks easily that

φp,q,r,s+1(∂v,fhϕ) = ∂v,f (φp,q,r,s(ϕ)), (2.4)

so φp,q,r,s induces an isomorphism between the cohomologies Hp,q,r,s
f (M̃) and

Hp,q,r,s
fh (M̃). �

Corollary 2.3. If the function f does not vanish, then Hp,q,r,s
f (M̃) is isomorphic to

the vertical de Rham cohomology Hp,q,r,s(M̃).

Proof. We take h = 1
f in the above proposition. �

3. Vertical Lichnerowicz cohomology

In this section we define a vertical Lichnerowicz cohomology for (p, q, r, s)-forms
on a complex Finsler manifold (M,F ) following the classical definition, e.g. [3, 8, 16].

Let ω ∈ A0,0,0,1(M̃) be a ∂v-closed (0, 0, 0, 1)-form on M̃ and the map

∂v,ω : Ap,q,r,s(M̃) → Ap,q,r,s+1(M̃) , ∂v,ω = ∂v − ω ∧ . (3.1)

Since ∂vω = 0, we easily obtain that ∂2
v,ω = 0. The differential complex

0 −→ Ap,q,r,0(M̃)
∂v,ω−→ Ap,q,r,1(M̃)

∂v,ω−→ . . .
∂v,ω−→ Ap,q,r,n(M̃) −→ 0 (3.2)
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is called v-Lichnerowicz complex of complex Finsler manifold (M,F ); its cohomol-
ogy groups Hp,q,r,s

ω (M̃) are called v-Lichnerowicz cohomology groups of the complex
Finsler manifold (M,F ).

This is a version adapted to our study of the classical Lichnerowicz cohomology,
motivated by Lichnerowicz’s work [8] or Lichnerowicz-Jacobi cohomology on Jacobi
and locally conformal symplectic geometry manifolds, see [3, 7]. We also notice that
Vaisman in [16] studied it under the name of ”adapted cohomology” on locally con-
formal Kähler (LCK) manifolds.

We notice that, locally, the v-Lichnerowicz complex becames the v-complex after
a change ϕ 7→ efϕ with f a function which satisfies ∂vf = ω, namely ∂v,ω is the unique
differential in Ap,q,r,s(M̃) which makes the multiplication by the smooth function ef

an isomorphism of cochain v-complexes ef : (Ap,q,r,•(M̃), ∂v,ω) → (Ap,q,r,•(M̃), ∂v).

Proposition 3.1. The v-Lichnerowicz cohomology depends only on the v-class of ω. In
fact, we have Hp,q,r,s

ω−∂vf (M̃) ≈ Hp,q,r,s
ω (M̃).

Proof. Since ∂v,ω(efϕ) = ef∂v,ω−∂vfϕ it results that the map [ϕ] 7→ [efϕ] is an
isomorphism between Hp,q,r,s

ω−∂vf (M̃) and Hp,q,r,s
ω (M̃). �

Example 3.2. Let us consider ω := γ to be the conjugated vertical Liouville 1-form
(the dual of the conjugated vertical Liouville vector field Γ = ηk ∂

∂ηk ). Then, by the
homogeneity conditions of complex Finsler metric, it is locally given by

γ =
Gjkη

j

F 2
δηk =

1
F 2

∂F 2

∂ηk
δηk = ∂v(logF 2). (3.3)

Then γ is a ∂v-closed (0, 0, 0, 1)-form on M̃ and we can consider the associated v-
Lichnerowicz cohomology groups Hp,q,r,s

γ (M̃).

As in the classical case, using the definition of ∂v,ω we easily obtain

∂v,ω(ϕ ∧ ψ) = ∂vϕ ∧ ψ + (−1)deg ϕϕ ∧ ∂v,ωψ.

Also, if ω1 and ω2 are two ∂v-closed (0, 0, 0, 1)-forms on M̃ then

∂v,ω1+ω2(ϕ ∧ ψ) = ∂v,ω1ϕ ∧ ψ + (−1)deg ϕϕ ∧ ∂v,ω2ψ,

which says that the wedge product induces the map

∧ : Hp,q,r,s1
ω1

(M̃)×Hp,q,r,s2
ω2

(M̃) → Hp,q,r,s1+s2
ω1+ω2

(M̃).

Corollary 3.3. The wedge product induces the following homomorphism

∧ : Hp,q,r,s
ω (M̃)×Hp,q,r,s

−ω (M̃) → Hp,q,r,2s(M̃).

Now, using an argument inspired from [16], we prove that the v-Lichnerowicz
cohomology spaces Hp,q,r,s

ω (M̃) can also be obtained as the v-cohomology spaces of
M̃ with the coefficients in the sheaf Φp,q,r

ω of germs of ∂v,ω-closed (p, q, r, 0)-forms.
Firstly, we notice that ∂v,ω satisfies a Dolbeault type Lemma for (p, q, r, s)-forms

on M̃ . Indeed, let ϕ be a local (p, q, r, s)-form such that ∂v,ωϕ = 0. Since ∂vω = 0
and the lemma has to be local, we may suppose ω = −(∂vα)/α, where α is a nonzero
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smooth function on M̃ . Then, ∂v,ωϕ = 0 means ∂v(αϕ) = 0, whence by Dolbeault
type lemma for the operator ∂v, see [13], we have ϕ = ∂v,ω(ψ/α) for some local
(p, q, r, s− 1)-form ψ. This is exactly the requested result.

Then, we see that

0 −→ Φp,q,r
ω

i−→ Ap,r,r,0(M̃)
∂v,ω−→ Ap,q,r,1(M̃)

∂v,ω−→ . . . (3.4)

is a fine resolution of Φp,q,r
ω , which leads to

Proposition 3.4. For every ∂v-closed (0, 0, 0, 1)-form ω, one has the isomorphisms

Hs(M̃,Φp,q,r
ω ) ≈ Hp,q,r,s

ω (M̃).

For every ω as above, let us consider now the auxiliary vertical operator

∂̃v = ∂v −
p+ q + r + s

2
ω∧, (3.5)

where (p, q, r, s) is the type of the form acted on. We notice that ∂̃v is an antiderivation
of differential forms and it is easy to see that ∂̃2

v = − 1
2ω∧∂v. Then ∂̃v defines a twisted

v-cohomology, [17], of (p, q, r, s)-forms on M̃ , which is given by

Hp,q,r,•
∂̃v

(M̃) =
Ker ∂̃v

Im ∂̃v ∩Ker ∂̃v

(3.6)

and is isomorphic to the cohomology of the v-complex (Ãp,q,r,•(M̃), ∂̃v) consisting of
the (p, q, r, s)-forms ϕ ∈ Ap,q,r,s(M̃) satisfying ∂̃2

vϕ = −ω ∧ ∂vϕ = 0.
The v-complex Ãp,q,r,•(M̃) admits a v-subcomplexAp,q,r,•

ω (M̃), namely, the ideal
generated by ω. On this subcomplex, ∂̃v = ∂v, which means that it is a v-subcomplex
of the usual v-de Rham complex of M̃ . Hence, one has the homomorphisms

a : Hs(Ap,q,r,•
ω (M̃)) → Hp,q,r,s

∂̃v
(M̃) , b : Hs(Ap,q,r,•

ω (M̃)) → Hp,q,r,s(M̃,C). (3.7)

Now, we can easily construct a homomorphism

c : Hp,q,r,s

∂̃v
(M̃) → Hp,q,r,s+1(M̃,C). (3.8)

Indeed, if [ϕ] ∈ Hp,q,r,s

∂̃v
(M̃), where ϕ is ∂̃v-closed (p, q, r, s)-form, then we put c([ϕ]) =

[ω∧ϕ], and this produces the homomorphism from (3.8). We notice that the existence
of c gives some relation between ∂̃v and the v-cohomology of M̃ with values in C.

Remark 3.5. From (2.1) and (3.5) one gets
1
f
∂v,f = ∂v −

p+ q + r + s

2
∂v(log f2)∧ = ∂̃v, with ω = ∂v(log f2). (3.9)

Then, if f does not vanish, we have the homomorphisms

ã : Hp,q,r,s
f (M̃) → Hp,q,r,s

∂̃v
(M̃). (3.10)

In particular, we can choose f = F to be the complex Finsler function, and so 1
F ∂v,F =

∂̃v with ω = γ.
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4. A relative vertical cohomology attached to a function

The relative de Rham cohomology was first defined in [4] p. 78. In this subsec-
tion we construct a similar version for our vertical cohomology of complex Finsler
manifolds.

For the begining we need some basic notions about holomorphic Finsler sub-
spaces. For more details see [9, 10, 11].

4.1. Holomorphic Finsler subspaces

Let (M,F ) be a complex Finsler space, (zk, ηk), k = 1, . . . , n complex coordi-
nates in a local chart, and i : M ↪→M a holomorphic immersion of an m-dimensional
complex manifold M into M , locally given by zk = zk(ξ1, . . . , ξm). Everywhere the
indices i, j, k, . . . run from 1 to n and α, β, γ, . . . run from 1 to m ≤ n. Let T 1,0M and
T 1,0M be the corresponding holomorphic tangent bundles. By i∗,C : T 1,0M→ T 1,0M
we denote the inclusion map between the manifolds T 1,0M and T 1,0M (the com-
plexified tangent inclusion map), that is i∗,C(ξ, θ) = (z(ξ), η(ξ, θ)), where ξ = (ξα),
θ = θα ∂

∂ξα , η = ηk ∂
∂zk . Then i∗,C has the following local representation [9]:

zk = zk(ξ1, . . . , ξm), ηk = θαBk
α(ξ) where Bk

α(ξ) =
∂zk

∂ξα
. (4.1)

The holomorphic immersion assumption implies that Bk
α = ∂zk

∂ξ
α = 0 and Bk

α = ∂zk

∂ξα =

0. In a point of the complexified tangent space TC(T 1,0M), the local frame { ∂
∂ξα ,

∂
∂θα }

is coupled to { ∂
∂zk ,

∂
∂ηk } as follows:

∂

∂ξα
= Bk

α

∂

∂zk
+Bk

0α

∂

∂ηk
,

∂

∂θα
= Bk

α

∂

∂ηk
, (4.2)

where Bk
0α = ∂Bk

α

∂ξβ θ
β . Its dual basis satisfies the conditions

dzk = Bk
αdξ

α, dηk = Bk
0αdξ

α +Bk
αdθ

α (4.3)

and their conjugates.
In view of (4.1) the complex Finsler function F , with the metric tensor

Gjk =
.

∂j

.

∂k (F 2), induces a complex Finsler function F : T 1,0M → R+ ∪ {0}
given by F(ξ, θ) = F (z(ξ), η(ξ, θ)) = F (zk(ξ), θαBk

α(ξ)) with the metric tensor
Gαβ = Bj

αB
k
β
Gjk. Here Gαβ =

.

∂α

.

∂β (F2) and
.

∂α= ∂
∂θα ,

.

∂β= ∂

∂θ
β . By these con-

siderations, the pair (M,F) is said to be a holomorphic subspace of the complex
Finsler space (M,F ).

From (4.2) it is deduced that the distribution V 1,0M̃, spanned locally by
{ ∂

∂θα }, α = 1, . . . ,m, is a subdistribution of the vertical distribution V 1,0M̃ spanned
in any point (z(ξ), η(ξ, θ)) by { ∂

∂ηk }, k = 1, . . . , n. We consider V 1,0⊥M an orthogonal

complement, namely V 1,0M̃ = V 1,0M⊕ V 1,0⊥M, spanned in any point by the set of
normal vectors {Na = Bk

a
∂

∂ηk }, a = 1, . . . , n−m, which we may assume orthonormal.
Therefore, the functions Bk

a(ξ, θ) (and their conjugates) will satisfy the conditions
Gjk(z(ξ), η(ξ, θ))Bj

αB
k
a = 0 and Gjk(z(ξ), η(ξ, θ))Bj

aB
k
b

= δab.
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Let us now consider the moving frame R = {Bk
α(ξ)Bk

a(ξ, θ)} along the complex
Finsler subspace (M,F) and let R−1 = (Bα

kB
a
k)t be the inverse matrix associated to

the moving frame R. Evidently, Bα
k and Ba

k are functions of ξ, θ and

Bα
kB

k
β = δα

β , B
α
kB

k
a = 0, Ba

kB
k
b = δa

b , B
k
αB

α
j +Bk

aB
a
j = δk

j . (4.4)

Let N = (Nα
β (ξ, θ)) be a c.n.c. on T 1,0M and consider its adapted basis {δα := δ

δξα =
∂

∂ξα −N β
α

∂
∂θβ ,

.

∂α:= ∂
∂θα } and {δα,

.

∂α} as well as its dual {dξα, δθα = dθα −Nα
β dξ

β}

and {dξα
, δθ

α
= dθ

α −Nα
β
dξ

β}.
The c.n.c. N on T 1,0M is said to be induced by the c.n.c. N on T 1,0M if

δθα = Bα
k δη

k. This condition implies [9], Nα
β = Bα

k (Bk
0β +Nk

j B
j
β).

Proposition 4.1. ([9, 10]). The adapted bases are tied by

δα = Bk
αδk +Bk

aH
a
α

.

∂k,
.

∂α= Bk
α

.

∂k,

dzk = Bk
αdξ

α, δηk = Bk
αδθ

α +Bk
aH

a
αdξ

α

with Ha
α = Ba

j (Bj
0α +N j

kB
k
α).

By above proposition we easily deduce that δα = Bk
αδk +Ha

αNa and
.

∂k= Bα
k

.

∂α

+Ba
kNa. A notable result in [9] asserts that the induced c.n.c. by the Chern-Finsler

c.n.c. coincides with the intrinsic Chern-Finsler c.n.c. of the holomorphic subspace
(M,F).

4.2. Relative vertical cohomology

Now we return to the construction of a relative vertical cohomology attached to
a function of complex Finsler manifolds. Let us denote by

JCi = i∗,C .

By Proposition 4.1. we easily deduce that if ϕ ∈ Ap,q,r,s(M̃) is locally given by (1.9)
then

(JCi)∗ϕ ∈ Ap,q,r,s(M̃)⊕
⊕

h=1,r;k=1,s

Ap+h,q+k,r−h,s−k(M̃). (4.5)

Thus, (JCi)∗ does not preserves the (p, q, r, s) type components of a form ϕ ∈
Ap,q,r,s(M̃), but we can eliminate this inconvenient if we take p = q = m = dimCM.
Then, we easily obtain

Proposition 4.2. If ϕ ∈ Am,m,r,s(M̃) then (JCi)∗ϕ ∈ Am,m,r,s(M̃).

Proposition 4.3. If ϕ ∈ Am,m,r,s(M̃) then

∂v(JCi)∗ϕ = (JCi)∗∂vϕ. (4.6)

Proof. Let ϕ = ϕImJmKrHs
dzIm ∧dzJm ∧δηKr ∧δηHs ∈ Am,m,r,s(M̃). By Proposition

4.1. we have

(JCi)∗ϕ = ϕAmBmCrDs
(ξ, θ)dξAm ∧ dξBm ∧ δθCr ∧ δθDs

,

where
ϕAmBmCrDs

(ξ, θ) = BIm

Am
BJm

Bm
BKr

Cr
BHs

Ds
ϕImJmKrHs

(z(ξ), η(ξ, θ)) (4.7)
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and BIm

Am
= Bi1

α1
(z(ξ)) · . . . ·Bim

αm
(z(ξ)) etc. Applying ∂v from (1.11) it results

∂v(JCi)∗ϕ =
∑
α

.

∂α (ϕAmBmCrDs
)δθ

α ∧ dξAm ∧ dξBm ∧ δθCr ∧ δθDs
. (4.8)

Similarly, we have

(JCi)∗∂vϕ =
.

∂k (ϕImJmKrHs
)Bk

αδθ
α ∧BIm

Am
dξAm ∧BJm

Bm
dξ

Bm ∧BKr

Cr
δθCr ∧BHs

Ds
δθ

Ds

and by (4.2) and (4.7) one gets

(JCi)∗∂vϕ =
∑
α

.

∂α (ϕAmBmCrDs
)δθ

α ∧ dξAm ∧ dξBm ∧ δθCr ∧ δθDs (4.9)

which completes the proof. �

Now, if f ∈ F(M) then by (4.6) one gets

∂v,(JCi)∗f (JCi)∗ϕ = (JCi)∗∂v,fϕ, for any ϕ ∈ Am,m,r,s(M̃). (4.10)

Indeed, for ϕ ∈ Am,m,r,s(M̃) by direct calculus we have

∂v,(JCi)∗f ((JCi)∗ϕ)
= (JCi)∗f∂v((JCi)∗ϕ)− (2m+ r + s)∂v((JCi)∗f) ∧ (JCi)∗ϕ
= (JCi)∗f(JCi)∗(∂vϕ)− (2m+ r + s)(JCi)∗(∂vf) ∧ (JCi)∗ϕ
= (JCi)∗(f∂vϕ)− (JCi)∗((2m+ r + s)∂vf ∧ ϕ)
= (JCi)∗(∂v,fϕ).

We define the differential complex

. . .
∂̃v,f−→ Am,m,r,s(JCi)

∂̃v,f−→ Am,m,r,s+1(JCi)
∂̃v,f−→ . . .

where Am,m,r,s(JCi) = Am,m,r,s(M̃)⊕Am,m,r,s−1(M̃) and

∂̃v,f (ϕ,ψ) = (∂v,fϕ, (JCi)∗ϕ− ∂v,(JCi)∗fψ). (4.11)

Taking into account ∂2
v,f = ∂2

v,(JCi)∗f = 0 and (4.10) we easily verify that ∂̃2
v,f = 0.

Denote the cohomology groups of this complex by Hm,m,r,s
f (JCi).

Now, if we regraduate the complex Am,m,r,s(M̃) as

Ãm,m,r,s(M̃) = Am,m,r,s−1(M̃),

then we obtain an exact sequence of differential complexes

0 −→ Ãm,m,r,s(M̃) α−→ Am,m,r,s(JCi)
β−→ Am,m,r,s(M̃) −→ 0 (4.12)

with the obvious mappings α and β given by α(ψ) = (0, ψ) and β(ϕ,ψ) = ϕ, respec-
tively. From (4.12) we have an exact sequence in cohomologies

. . . −→ Hm,m,r,s−1
(JCi)∗f (M̃) α∗

−→ Hm,m,r,s
f ((JCi)∗)

β∗

−→ Hm,m,r,s−1
f (M̃) δ∗−→

δ∗−→ Hm,m,r,s
(JCi)∗f (M̃) α∗

−→ . . . .
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It is easily seen that δ∗ = (JCi)∗. Here µ∗ denotes the corresponding map be-
tween cohomology groups. Let ϕ ∈ Am,m,r,s(M̃) be a ∂v,f -closed form, and (ϕ,ψ) ∈
Am,m,r,s(JCi). Then ∂̃v,f (ϕ,ψ) = (0, (JCi)∗ϕ − ∂v,(JCi)∗fψ) and by the definition of
the operator δ∗ we have

δ∗[ϕ] = [(JCi)∗ϕ− ∂v,(JCi)∗fψ] = [(JCi)∗ϕ] = (JCi)∗[ϕ].

Hence we finally get a long exact sequence

. . . −→ Hm,m,r,s−1
(JCi)∗f (M̃) α∗

−→ Hm,m,r,s
f ((JCi)∗)

β∗

−→ Hm,m,r,s−1
f (M̃)

(JCi)∗−→

(JCi)∗−→ Hm,m,r,s
(JCi)∗f (M̃) α∗

−→ . . . .

Finally, similar to [14], we have

Corollary 4.4. If (M,F) is an m-dimensional holomorphic Finsler subspace of an
n-dimensional complex Finsler space (M,F ), then

(i) β∗ : Hm,m,r,m+1
f (JCi) → Hm,m,r,m+1

f (M̃) is an epimorphism;

(ii) α∗ : Hm,m,r,n
(JCi)∗f (M̃) → Hm,m,r,n+1

f (JCi) is an epimorphism;

(iii) β∗ : Hm,m,r,s
f (JCi) → Hm,m,r,s

f (M̃) is an isomorphism for s > m+ 1;

(iv) α∗ : Hm,m,r,s
(JCi)∗f (M̃) → Hm,m,r,s+1

f (JCi) is an isomorphism for s > n;
(v) Hm,m,r,s

f (JCi) = 0 for s > max{m+ 1, n}.
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