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Compact composition operators on spaces
of Laguerre polynomials kernels

Yusuf Abu Muhanna and El-Bachir Yallaoui

Abstract. We study the action of the composition operator on the analytic func-
tion spaces whose kernels are special cases of Laguerre polynomials. These func-
tion spaces become Banach spaces when the kernels are integrated with respect to
the complex Borel measures of the unit circle. Necessary and sufficient conditions
for the composition operator to be compact are found.

Mathematics Subject Classification (2010): 30E20, 30D99, 47B33, 33C45.

Keywords: Exponential Cauchy transform, Convex space, composition operators,
Laguerre polynomials.

1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disc in the complex plane C. For z ∈ D,
t ∈ R and a > −1 the generating function of the associated Laguerre polynomials [7,
Formula 5.1.9] is given by

G (a, t, z) = (1− z)−a−1 exp
(
−tz

1− z

)
=

∞∑
n=0

L(a)
n (t)zn (1.1)

where L
(a)
n (t) is the generalized Laguerre polynomial of degree n given by

L(a)
n (t) =

n∑
k=0

(
n + a

n− k

)
(−t)k

k!
. (1.2)

Formula (1.2) can extended for a ≤ −1 by using the identity in [7, p. 102 , eq. 5.2.1],

L(−a)
n (t) = (−t)a Γ (n− a + 1)

n!
L

(a)
n−a (t) for a ≥ 1.
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The first few terms of L
(a)
n (t) (see [3, p. 114]) are given by,

L
(a)
0 (t) = 1

L
(a)
1 (t) = −t + a + 1

L
(a)
2 (t) = 1

2 t2 − (a + 2)t + (a+2)(a+1)
2

L
(a)
3 (t) = − 1

6 t3 + (a+3)
2 t2 − (a+2)(a+3)

2 t + (a+1)(a+2)(a+3)
6

(1.3)

and the recurrence relation for the coefficients L
(a)
n (x) in [3, p. 114, Eq. 4.5.5] is given

by
(n + 1) L

(a)
n+1(t) = (2n + a + 1− t) L(a)

n (t)− (n + a) L
(a)
n−1(t). (1.4)

The Laguerre generating function in (1.1) can be written in terms of the classical
Cauchy kernel K (z) = (1− z)−1 as follows

G (a, t, z) = [K (z)]a+1 exp [t− tK (z)] (1.5)

and special cases of the generating function G (a, t, z) give interesting kernels of ana-
lytic functions spaces. For instance we have:

G (0, 0, z) = K (z) = (1− z)−1

G (α− 1, 0, z) = Kα (z) = (1− z)−α, α > 0
eG (−1,−1, z) = Ke (z) = exp

[
(1− z)−1

] (1.6)

where it is known in the litirature that
K (z) = (1− z)−1 is the classical Cauchy kernel,
Kα (z) = (1− z)−α, α > 0 is the fractional Cauchy kernel and
Ke (z) = exp

[
(1− z)−1

]
is the exponential Cauchy kernel.

(1.7)

Using (1.1) the corresponding Taylor series of these kernels are:

K (z) =
∞∑

n=0

L(0)
n (0)zn =

∞∑
n=0

zn,

Kα (z) =
∞∑

n=0

L(α−1)
n (0)zn =

∞∑
n=0

An (α) zn, (1.8)

Ke (z) = e
∞∑

n=0

L(−1)
n (−1)zn = e

∞∑
n=0

Anzn.

The coefficients above have the following properties:

1. An (α) = (−1)n

(
−α

n

)
=
(

n + α− 1
n

)
2. An = L

(−1)
n (−1) =

n∑
i=0

1
i!

(
n− 1
n− i

)
where A0 = A1 = 1.

3. (n + 1) An+1 = (2n + 1) An − (n− 1) An−1.

4.
An+1

An
> 1, and

An+1

An
→ 1, as n →∞.

5. The sequence
{

1
An

}∞
n=0

is convex.

Results (1) is from [3] while (2)-(5) are in [8].



Compact operators on spaces of Laguerre kernels 191

2. Cauchy type analytic function spaces

Let T = ∂D be the boundary of D and let H (D) denotes the class of holomor-
phic functions on D. H (D) is a locally convex linear topological space with respect
to the topology given by uniform convergence on compact subsets of D. We denote
by M the set of all complex–valued Borel measures on T and M∗ the subset of M
consisting of probability measures. An analytic function f is subordinate to g in D,
written f (z) ≺ g (z) , if there exists an analytic self-map ϕ in D with ϕ (0) = 0 and
|ϕ (z)| < 1, satisfying f (z) = g [ϕ (z)]. If in particular g is also univalent in D, then
f (z) ≺ g (z) is equivalent to f (0) = g (0) and f (D) ⊂ g (D) .

Let z ∈ D and let k ∈ H (D) be one of the kernels in (1.6). We define X to be
the subspace of H (D) consisting of functions for which there exists a measure µ ∈ M
such that

fµ(z) =
∫
T

k(xz)dµ(x). (2.1)

where x = eit ∈ T. The norm on X defined by

‖fµ‖X = inf
µ∈M

{
‖µ‖ : fµ (z) =

∫
T

k (xz) dµ(x)
}

(2.2)

makes X into a Banach space. If the series expansion of the kernel function k is given
by,

k (z) =
∞∑

n=0

anzn

then the series of the function is given by

fµ(z) =
∫
T

k(xz)dµ(x) =
∞∑

n=0

anµnzn (2.3)

where

µn =
∫
T

xndµ (x) =
∫ +π

−π

eintdµ
(
eit
)
.

According to the Lebesgue decomposition theorem M = Ma ⊕ Ms, where Ma :=
{µa ∈ M : µa � m} where m is the normalized Lebesgue measure on the unit circle,
and Ms := {µs ∈ M : µs ⊥ m}. Thus any µ ∈ M can be written as µ = µa + µs

where µa ∈ Ma , µs ∈ Ms and ‖µ‖ = ‖µa‖+ ‖µs‖. Consequently the Banach space
X may be written as X = (X)a ⊕ (X)s, where (X)a is isomorphic to L1/H1

0 the
closed subspace of M of absolutely continuous measures, and (X)s is isomorphic to
Ms the subspace of M of singular measures. If f ∈ Xa, then the singular part is null
and the measure µ for which the integral in (2.1) holds reduces to dµ(eit) = g(eit)dt
where g(eit) ∈ L1 and dt is the Lebesgue measure on T. In this case the functions in
(X)a may be then written as,

fµ(z) =
∫ π

−π

k
(
eitz

)
g(eit)dt

where if g(eit) is nonnegative then ‖f‖X =
∥∥g(eit)

∥∥
L1 .
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If the kernel function in (2.1) is replaced by K(z) = (1−z)−1, Kα(z) = (1−z)−α

or Ke(z) = exp[K(z)] respectively then the corresponding analytic function spaces are
the classical Cauchy transform space K [5], the fractional Cauchy transform spaces
Fα [6] and the exponential Cauchy transform space Ke introduced in [8], thus using
(2.1) and replacing an by the appropriate coefficients from (1.8) in (2.3) we get the
following:

K =

{
fµ ∈ H (D) : fµ (z) =

∫
T

K(xz)dµ(x) =
∞∑

n=0

µnzn

}

Kα =

{
fµ ∈ H (D) : fµ (z) =

∫
T

Kα(xz)dµ(x) =
∞∑

n=0

An (α) µnzn

}
(2.4)

Ke =

{
fµ ∈ H (D) : fµ (z) =

∫
T

Ke(xz)dµ(x) =
∞∑

n=0

eAnµnzn

}
where

µn =
∫
T

xndµ (x) =
∫
T

eintdµ
(
eit
)

An (α) = (−1)n

(
−α

n

)
=
(

n + α− 1
n

)
(2.5)

An = L(−1)
n (−1) =

n∑
i=0

1
i!

(
n− 1
n− i

)
.

Clearly K is a special case of Kα when α = 1. It is also known that Kα ⊂ Kβ for
0 < α < β. It was also shown in [8] that K ⊂ (Ke)a and if f ∈ K then ‖f‖Ke

<

‖h‖L1 ‖f‖K where h ∈ L1.
The next result gives us examples of elements of Ke.

Lemma 2.1. Suppose that |w| ≤ 1 and let fw (z) = Ke (wz) = exp
[
(1− wz)−1

]
for

|z| < 1. Then fw (z) ∈ Ke and there exists a probability measure µ ∈ M∗ such that

fw (z) =
∫
T

Ke (xz) dµ(x) and ‖fw‖Ke
= ‖µ‖ = 1.

Proof. For |w| ≤ 1 and |z| < 1 we have Re {K (wz)} = Re
{

(1− wz)−1
}

> 1
2 . The

Riesz-Herglotz formula implies that there exists a probability measure µ = µw ∈ M∗

such that

K (wz) = (1− wz)−1 =
∫
T

K(xz)dµ(x) =
∫
T

(1− xz)−1
dµ(x). (2.6)

The left hand side of the above equation is (1− wz)−1 =
∑∞

n=0 wnzn and right hand

is
∞∑

n=0
µnzn. Equating coefficients of the power series of both sides of (2.6) we get that
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wn = µn =
∫
T

xndµ(x) for n = 0, 1, 2, . . . and thus

fw (z) = Ke (wz) = e
∞∑

n=0

Anwnzn

= e
∞∑

n=0

An

(∫
T

xndµ(x)
)

zn

=
∫
T

(
e

∞∑
n=0

Anxnzn

)
dµ(x)

=
∫
T

Ke (xz) dµ(x)

Hence fw ∈ Ke and since µ ∈ M∗, we have ‖fw‖Ke
= ‖µ‖ = 1. �

Corollary 2.2. A special case of the previous result is

Ke (xz) ∈ Ke for all x ∈ T and ‖Ke (xz)‖Ke
= 1.

Lemma 2.3. Suppose {fµn
}∞n=1 is a sequence of functions in Ke such that there is

a constant A for which which ‖fµn‖Ke
≤ A for n = 1, 2, ..... If fµ (z) = lim

n→∞
fµn (z)

exists for |z| < 1, then f ∈ Ke and ‖f‖Ke
≤ A.

Proof. Let z ∈ D suppose fµn
∈ Ke for n = 1, 2, ... then by definition we have,

fµn
(z) =

∫
T

Ke (xz) dµn (x) and µn ∈ M, ‖fµn
(z)‖Ke

= ‖µn‖ ≤ A

The Banach-Alaoglu theorem yields a subsequence {µnk
} for k = 1, 2, . . . , ‖µnk

‖ ≤ A
and µ ∈ M, ‖µ‖ ≤ A such that µnk

→ µ ∈ M as k → ∞ in the weak* topology.
Hence we get, ∫

T

Ke (xz) dµnk
(x) −→

∫
T

Ke (xz) dµ (x) as k →∞.

Since we also have that fµ (z) = lim
k→∞

fµnk
(z) then

fµ (z) =
∫
T

Ke (xz) dµ (x) ∈ Ke and ‖fµ‖ ≤ A. �

3. The composition operator on Ke

If ϕ is an analytic self map of the unit disc D, we say that ϕ induces a bounded
composition operator Cϕ on X if there exists a positive constant A such that for
all f ∈ X , ‖Cϕ(f)‖X = ‖(f ◦ ϕ)‖X ≤ A ‖f‖X . A bounded operator Cϕ will be a
compact operator if the image of every bounded set of X is relatively compact (i.e.
has compact closure) in X. Equivalently Cϕ is a compact operator on X if and only if
for every bounded sequence {fn} of X, {Cϕ(fn)} has a convergent subsequence in X.

The composition operator Cϕ has been thoroughly studied on the Cauchy space
K such as in [4, 5] and on the fractional Cauchy spaces Kα such as in [2, 6]. In
particular it is known that;
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1. If α > 0 and ϕ is conformal automorphism of D, then Cϕ (f) = f ◦ ϕ ∈ Kα for
every f ∈ Kα.

2. If α ≥ 1 and ϕ is an analytic self map of the unit disc D,
then Cϕ (f) = f ◦ ϕ ∈ Kα for every f ∈ Kα.

3. Let Gα denote the set of functions that are subordinate to Kα (z) = (1− z)−α

in D. If α ≥ 1 then a function f belongs to the closed convex hull of Gα if and
only if there is a probability measure µ ∈ M∗ such that f (z) =

∫
T

Kα(xz)dµ(x).
4. Cϕ is compact on K if and only if Cϕ (K) ⊂ (K)a .
5. If α ≥ 1 then Cϕ is compact on Kα if and only if Cϕ [Kα (xz)] ∈ (Kα)a for all
|x| = 1.

Results (1)-(3) are in [6], result (4) it is known from [4] and was extended to
result (5) in [2]. The operator Cϕ is also bounded and Möbius invariant on Ke. There
is no loss of generality in assuming that ϕ (0) = 0, and we will assume so throughout
the article. Our focus then is only on when the composition operator is compact
on Ke.

We need the following interesting two results due to Y. Abu Muhanna and D.
Hallenbeck in [1] .

Theorem 3.1. Let ∆ be a bounded convex body, with 0 ∈ ∆ and let H be a covering
function mapping the unit disk onto the exterior of the bounded convex body Ω = c∆.
Suppose that log H is univalent and also maps the unit disk onto the compliment of
a convex set. Then any analytic function f subordinate to H can be expressed as

f(z) =
∫
T

H(xz)dµ(x), (3.1)

for some positive Borel measure µ on the unit circle with ||µ|| = 1.

The previous theorem includes the following special case.

Theorem 3.2. If ϕ is analytic self map of the unit disc D, with ϕ(0) = 0 then there
exist probability measures µ, ν ∈ M∗ such that

Cϕ [Ke (z)] = Ke(ϕ(z)) =
∫

exp (K(xz)) dµ(x) = exp
(∫

T

K(xz)dν(x)
)

.

Then λKe, with |λ| = 1 are all of the universal coverings of cD.

Lemma 3.3. Suppose gx

(
eit
)

is a nonnegative L1−continuous function of x and let
{µn} be a sequence of nonnegative Borel measures that are weak* convergent to µ.
Define

wn(t) =
∫
T

gx

(
eit
)
dµn (x) and w(t) =

∫
T

gx

(
eit
)
dµ (x)

then ‖wn − w‖L1 −→ 0.
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Proof. Suppose gx

(
eit
)

is a nonnegative L1continuous function of x and for z ∈ D
let,

gx (z) =
∫

Re
(

1 + eitz

1− eitz

)
gx

(
eit
)
d(t) ,

wn(z) =
∫

gx (z) dµn (x) and

w(z) =
∫

gx (z) dµ (x) .

Notice that all functions are positive and harmonic in D and that the radial limits of
wn(z) and w(z) are wn(t) and w(t) respectively. Then, for |z| ≤ ρ < 1,

|gx (z)− gy (z)| ≤ 1
1− ρ

∥∥gx

(
eit
)
− gy

(
eit
)∥∥

L1

The continuity condition implies that gx (z) is uniformly continuous in x for all |z| ≤
ρ < 1. Weak star convergence, implies that wn(z) → w(z) uniformly on |z| ≤ ρ < 1
and consequently the convergence is locally uniformly on D. In addition, we have∥∥wn(ρeit)

∥∥
L1 →

∥∥w(ρeit)
∥∥

L1 .

Hence we conclude that∥∥wn(ρeit)− w(ρeit)
∥∥

L1 −→ 0 as n →∞.

Now using Fatou’s Lemma we conclude that∥∥wn(eit)− w(eit)
∥∥

L1 −→ 0. �

Lemma 3.4. Let gx

(
eit
)

be a nonnegative L1 continuous function of x such that
‖gx‖L1 ≤ a < ∞ and gx(eit) defines a bounded operator on H1

0 .

Let f(z) =
∫
T

Ke (xz) dµ(x) , and let L be the operator given by

L [f(z)] =
∫∫

gx

(
eit
)
Ke

(
eitz

)
dtdµ(x)

then L is compact operator on Ke.

Proof. First note that the condition that gx(eit) defines a bounded operator on H1
0

implies that the L operator is a well defined function on Kα. Let {fn(z)} be a
bounded sequence in Kα and let {µn} be the corresponding norm bounded sequence
of measures in M. Since every norm bounded sequence of measures in M has a weak
star convergent subsequence, let {µn} be such subsequence that is convergent to
µ ∈ M. We want to show that {L(fn)} has a convergent subsequence in Kα. First,
let us assume that dµn (x) >> 0 for all n, and let wn(t) =

∫
gx

(
eit
)
dµn (x) and

w(t) =
∫

gx

(
eit
)
dµ (x) ,then we know from the Lemma 3.3 that wn(t), w(t) ∈ L1 for

all n, and wn(t) → w(t) in L1. Now since gx

(
eit
)

is a nonnegative continuous function
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in x and {µn} is weak star convergent to µ, then

L(fn(z)) =
∫∫

Ke

(
eitz

)
gx

(
eit
)
d(t)dµn (x) =

∫
Ke

(
eitz

)
wn(t)dt

L(f(z)) =
∫∫

Ke

(
eitz

)
gx

(
eit
)
d(t)dµ (x) =

∫
Ke

(
eitz

)
w (t) dt

Furthermore because wn(t) is nonnegative then

‖L(fn)‖Ke
= ‖wn‖L1

‖L(f)‖Ke
= ‖w‖L1

Now since‖wn − w‖L1 → 0 then ‖L(fn)− L(f)‖Ke
→ 0 which shows that {L(fn)}

has a convergent subsequence in Ke and thus L is a compact operator for the case
where µ is a positive measure.
In the case where µ is complex measure we write

dµn (x) = (dµ1
n (x)− dµ2

n (x)) + i(dµ3
n (x)− dµ4

n (x))

where each dµj
n (x) >> 0 and define wj

n(t) =
∫

gx

(
eit
)
dµj

n (x) then

wn(t) =
∫

gx

(
eit
)
dµn (x) =

(
w1

n(t)− w2
n(t)

)
+ i
(
w3

n(t)− w4
n(t)

)
.

Using an argument similar to the one above we get that

wj
n(t), wj(t) ∈ L1, and

∥∥wj
n − wj

∥∥
L1 −→ 0.

Consequently, ‖wn − w‖L1 −→ 0, where

w(t) =
(
w1(t)− w2(t)

)
+ i
(
w3(t)− w4(t)

)
=
∫

gx

(
eit
)
dµ (x) .

Hence,
‖L(fn)− L(f)‖Fα

≤ ‖wn − w‖L1 −→ 0.

Finally, we conclude that the operator L is compact. �

Now we are ready to prove our main theorem which characterizes compact com-
position operators on Ke.

Theorem 3.5. If ϕ is analytic self map of the unit disc D, with ϕ(0) = 0 then the
operator Cϕ is compact in Ke if and only if Cϕ [Ke (xz)] ∈ (Ke)a for all x such that
|x| = 1.

Proof. Assume that Cϕ is compact on Ke and let {fj (z)}∞j=1 be the bounded sequence
of functions defined as

fj(z) = Ke (ρjxz) = exp
(

1
1− ρjxz

)
= exp [K (ρjxz)] ,

where 0 < ρj < 1 and limj→∞ ρj = 1. Clearly, fj ∈ H∞ ∩ Ke and there exist
probability measures µj ∈ M∗ such that

fj (z) =
∫
T

Ke (xz) dµj(x)
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where ‖fj‖Ke
= ‖µj‖ = 1. Since Cϕ is compact on Ke, then Cϕ (fj) ∈ Ke and

‖Cϕ (fj)‖ ≤ ‖Cϕ‖ ‖fj‖Ke
= ‖Cϕ‖ for all j. Furthermore Cϕ (fj) ∈ H∞ ∩Ke ⊂ (Ke)a

for every j and thus there exists a nonnegative L1 function gj (x) such that dµj(x) =
gj (x) dt and

Cϕ [fj (z)] =
∫
T

Ke (xz) gj (x) dt.

Since the operator Cϕ is compact then the sequence {Cϕ (fj)}∞j=1 has a convergent
subsequence that converges to Cϕ [Ke (z)] ∈ (Ke)a because of Lemma 2.3 and the
fact that (Ke)a is a closed subspace of Ke.

For the converse let f ∈ Ke then there exists a measure in M such that

f (z) =
∫
T

Ke (xz) dµ (x) .

Then

(f ◦ ϕ) (z) = Cϕ [f (z)] =
∫
T

Ke [xϕ (z)] dµ (x) =
∫
T

Cϕ [Ke (xz)] dµ (x)

where by assumption Cϕ [Ke (xz)] ∈ (Ke)a and thus can be written as

Cϕ [Ke (xz)] =
∫
T

gx

(
eit
)
Ke

(
eitz

)
dt

where gx

(
eit
)

is a positive L1−continuous function of x. Hence

Cϕ (f) (z) =
∫
T

Cϕ [Ke (xz)] dµ (x)

=
∫
T

∫
T

gx

(
eit
)
Ke

(
eitz

)
dtdµ (x)

which was proven to be compact in Ke in the the previous Lemma 3.4. �

Corollary 3.6. We have the following.

1. The operator Cϕ is compact in Ke if and only if Cϕ (Ke) ⊂ (Ke)a.
2. Let ϕ ∈ H(D), with ‖ϕ‖∞ < 1. Then Cϕ is compact on Ke.

Proof. Cϕ [Ke(xz)] = Ke [xϕ (z)] ∈ H∞ ∩Ke ⊂ (Ke)a and is subordinate to Ke (z)
hence

Cϕ [Ke(xz)] =
∫
T

Ke(eitz)gx

(
eit
)
dt ∈ (Ke)a

where gx

(
eit
)

is a nonnegative L1 function. �
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