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Neighborhood and partial sums results
on the class of starlike functions involving
Dziok-Srivastava operator
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Abstract. In this paper, we introduce a new subclasses of univalent functions
defined in the open unit disc involving Dziok-Srivastava Operator. The results on
partial sums, integral means and neighborhood results are discussed.
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1. Introduction

Denote by A the class of functions of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}. Further, by S
we shall denote the class of all functions in A which are normalized by f(0) = 0 =
f ′(0)− 1 and univalent in U . Some of the important and well-investigated subclasses
of the univalent function class S include (for example) the class S∗(α) of starlike
functions of order α(0 ≤ α < 1) if <

(
zf ′(z)
f(z)

)
> α and the class K(α) of convex

functions of order α(0 ≤ α < 1) if <
(
1 + zf ′′(z)

f ′(z)

)
> α in U . It readily follows that

f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α).
Denote by T the subclass of S consisting of functions of the form

f(z) = z −
∞∑

n=2

anzn, an ≥ 0, z ∈ U (1.2)

studied extensively by Silverman [11].
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For positive real values of α1, . . . , αl and β1, . . . , βm (βj 6= 0,−1, . . . ; j =
1, 2, . . . ,m) the generalized hypergeometric function lFm(z) is defined by

lFm(z) ≡ lFm(α1, . . . αl;β1, . . . , βm; z) :=
∞∑

n=0

(α1)n . . . (αl)n

(β1)n . . . (βm)n

zn

n!
(1.3)

(l ≤ m + 1; l,m ∈ N0 := N ∪ {0}; z ∈ U)

where N denotes the set of all positive integers and (λ)k is the Pochhammer symbol
defined by

(λ)n =
{

1, n = 0
λ(λ + 1)(λ + 2) . . . (λ + n− 1), n ∈ N.

(1.4)

The notation lFm is quite useful for representing many well-known functions such as
the exponential, the Binomial, the Bessel, the Laguerre polynomial and others; for
example see [3].

Let H(α1, . . . αl;β1, . . . , βm) : A → A be a linear operator defined by

H(α1, . . . αl;β1, . . . , βm)f(z) := z lFm(α1, α2, . . . αl;β1, β2 . . . , βm; z) ∗ f(z)

= z +
∞∑

n=2

Γn an zn (1.5)

where

Γn =
(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1

1
(n− 1)!

, (1.6)

unless otherwise stated and ∗ the Hadamard product (or convolution) of two functions

f, g ∈ A where f(z) of the form (1.1) and g(z) be given by g(z) = z +
∞∑

n=2
bnzn then

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∞∑

n=2
anbnzn, z ∈ U .

For simplicity, we can use a shorter notation Hl
m[α1] for H(α1, . . . αl;β1, . . . , βm)

in the sequel. The linear operator Hl
m[α1] is called Dziok-Srivastava operator [3] (see

[6, 8]), includes (as its special cases) various other linear operators introduced and
studied by Carlson and Shaffer [2], Ruscheweyh [9] and Owa-Srivastava [7]. Motivated
by earlier works of Aouf et al.,[1] and Dziok and Raina[4] we define the following new
subclass of T involving hypergeometric functions.

For 0 ≤ λ ≤ 1, 0 < β ≤ 1,−1 ≤ B < A ≤ 1, 0 ≤ γ ≤ 1,we let HFλ
γ(α, β, A,B)

denote the subclass of T consisting of functions f(z) of the form (1.2) satisfying the
analytic condition∣∣∣∣∣∣∣

zF
′
λ(z)

Fλ(z) − 1

(B −A)γ
[

zF
′
λ(z)

Fλ(z) − α
]
−B

[
zF

′
λ(z)

Fλ(z) − 1
]
∣∣∣∣∣∣∣ < β, z ∈ U (1.7)

where
zF

′

λ(z)
Fλ(z)

=
zHf

′
(z) + λz2Hf

′′
(z)

(1− λ)Hf(z) + λzHf ′(z)
, 0 ≤ λ ≤ 1 (1.8)
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and

Hf(z) = z +
∞∑

n=2

anΓnzn (1.9)

where Γn is given by (1.6)
The main object of the present paper is to investigate (n, δ)- neighborhoods of

functions f(z) ∈ HFλ
γ(α, β, A,B). Furthermore, we obtain Partial sums fk(z) and

Integral means inequality of functions f(z) in the class HFλ
γ(α, β, A,B).

We state the following Lemma , due to Vijaya and Deppa [15] which provide the
necessary and sufficient conditions for functions f(z) ∈ HFλ

γ(α, β, A,B).

Lemma 1.1. A function f(z) ∈ T is in the class HFλ
γ (α, β, A,B) if and only if

∞∑
n=2

φA
B(n, λ, α, β, γ)ak ≤ 1 (1.10)

where

φA
B(n, λ, α, β, γ) =

(1 + nλ− λ)[(n− 1)(1− βB) + βγ(B −A)(n− α)]Γn

βγ(B −A)(1− α)
. (1.11)

2. Neighborhood results

In this section we discuss neighborhood results of the class HFλ
γ(α, β, A,B) due

to Goodman [5] and Ruscheweyh [10] . We define the δ− neighborhood of function
f(z) ∈ T .

Definition 2.1. For f ∈ T of the form (1.2) and δ ≥ 0. We define a δ−neighbourhood
of a function f(z) by

Nδ(f) =

{
g : g ∈ T : g(z) = z −

∞∑
n=2

cnzn and
∞∑

n=2

n|an − cn| ≤ δ

}
. (2.1)

In particular, for the identity function e(z) = z, we immediately have

Nδ(e) =

{
g : g ∈ T : g(z) = z −

∞∑
n=2

cnzn and
∞∑

n=2

n|cn| ≤ δ

}
. (2.2)

Theorem 2.2. If δ = 2
φA

B(2,λ,α,β,γ)
then HFλ

γ (α, β, A,B) ⊂ Nδ(e), where

φA
B(2, λ, α, β, γ) =

(1 + λ)[(1− βB) + βγ(B −A)(2− α)]Γ2

βγ(B −A)(1− α)
. (2.3)

Proof. For a function f(z) ∈ HFλ
γ (α, β, A,B) of the form (1.2), Lemma 1.1 immedi-

ately yields,
∞∑

n=2

(1 + nλ− λ)[(n− 1)(1− βB) + βγ(B −A)(n− α)]Γnan ≤ βγ(B −A)(1− α)
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(1 + λ)[1− βB + βγ(B −A)(2− α)]Γ2

∞∑
n=2

an ≤ βγ(B −A)(1− α)

∞∑
n=2

an ≤
βγ(B −A)(1− α)

(1 + λ)[1− βB + βγ(B −A)(2− α)]Γ2
=

1
φA

B(2, λ, α, β, γ)
. (2.4)

On the other hand, we find from (1.10) and (2.4) that
∞∑

n=2

(1 + nλ− λ)[(n− 1)(1− βB) + βγ(B −A)(n− α)]Γnan ≤ βγ(B −A)(1− α).

That is
∞∑

n=2

nan ≤
βγ(B −A)(1− α)[1− βB(1 + λ− λ + 1)]

(1 + λ)[1− βB + βγ(B −A)(2− α)](1− βB)
.

Hence
∞∑

n=2

nan ≤
2

φA
B(2, λ, α, β, γ)

= δ.

�

A function f ∈ T is said to be in the class HFλ
γ(ρ, α, β,A,B) if there exists a

function h ∈ HFλ
γ(ρ, α, β,A,B) such that∣∣∣∣f(z)

h(z)
− 1

∣∣∣∣ < 1− ρ, (z ∈ U, 0 ≤ ρ < 1). (2.5)

Now we determine the neighborhood for the class HFλ
γ(ρ, α, β,A,B).

Theorem 2.3. If h ∈ HFλ
γ(ρ, α, β,A,B) and

ρ = 1− δφA
B(2, λ, α, β, γ)

2[φA
B(2, λ, α, β, γ)− 1]

(2.6)

then Nδ(h) ⊂ HFλ
γ(ρ, α, β,A,B) where φA

B(2, λ, α, β, γ) is defined in (2.3).

Proof. Suppose that f ∈ Nδ(h) we then find from (2.1) that
∞∑

n=2

n|an − dn| ≤ δ

which implies that the coefficient inequality
∞∑

n=2

|an − dn| ≤
δ

2
.

Next, since h ∈ HFλ
γ(α, β, A,B), we have

∞∑
n=2

dn =
1

φA
B(2, λ, α, β, γ)
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so that

∣∣∣∣f(z)
h(z)

− 1
∣∣∣∣ <

∞∑
n=2

|an − dn|

1−
∞∑

n=2
dn

≤ δ

2
× φA

B(2, λ, αβ, γ)
φA

B(2, λ, α, β, γ)− 1

≤ δφA
B(2, λ, αβ, γ)

2(φA
B(2, λ, αβ, γ)− 1)

= 1− ρ

provided that ρ is given precisely by (2.6). Thus by definition, f ∈ HFλ
γ(ρ, α, β,A,B)

for ρ given by (2.6), which completes the proof. �

3. Partial sums

Silverman [14] determined the sharp lower bounds on the real part of the quo-
tients between the normalized starlike or convex functions , viz., <{f(z)/fk(z)} ,

<{fk(z)/f(z)} , <{f ′(z)/f ′k(z)} and Re
{

f ′k(z)/f
′
(z)

}
for their sequences of partial

sums fk(z) = z +
k∑

n=2
anzn of the analytic function f(z) = z +

∞∑
n=2

anzn. In the follow-

ing theorems we discuss results on partial sums for functions f(z) ∈ HFλ
γ (α, β, A,B).

Theorem 3.1. If f of the form (1.2) satisfies the condition (1.10), then

<
{

f(z)
fk(z)

}
≥ φA

B(k + 2, λ, α, β, γ)− 1
φA

B(k + 2, λ, α, β, γ)
(3.1)

and

<
{

fk(z)
f(z)

}
≥ φA

B(k + 2, λ, α, β, γ)
φA

B(k + 2, λ, α, β, γ) + 1
(3.2)

where φA
B(k + 2, λ, α, β, γ) is given by (1.11). The results are sharp for every k, with

the extremal function given by

f(z) = z − 1
φA

B(k + 2, λ, α, β, γ)
zn+1. (3.3)

Proof. In order to prove (1.10), it is sufficient to show that

φA
B(k + 2, λ, α, β, γ)

[
f(z)
fk(z)

− φA
B(k + 2, λ, α, β, γ)− 1
φA

B(k + 2, λ, α, β, γ)

]
≺ 1 + z

1− z
(z ∈ U)
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we can write

φA
B(k + 2, λ, α, β, γ)


1−

∞∑
n=2

anzn−1

1−
k∑

n=2

anzn−1

− φA
B(k + 2, λ, α, β, γ)− 1
φA

B(k + 2, λ, α, β, γ)



= φA
B(k + 2, λ, α, β, γ)


1−

k∑
n=2

anzn−1 −
∞∑

n=k+1

anzn−1

1−
∑k

n=2 anzn−1
− φA

B(k + 2, λ, α, β, γ)− 1
φA

B(k + 2, λ, α, β, γ)


=

1 + w(z)
1− w(z)

.

Then

w(z) =
−φA

B(k + 2, λ, α, β, γ)
∑∞

n=k+1 anzn−1

2− 2
∑k

n=2 anzn−1 − φA
B(k + 2, λ, α, β, γ)

∑∞
n=k+1 anzn−1

.

Obviously w(0) = 0 and |w(z)| ≤ −φA
B(k+2,λ,α,β,γ)

∑∞
n=k+1 an

2−2
∑k

n=2 an−φA
B(k+2,λ,α,β,γ)

∑∞
n=k+1 an

. Now,|w(z)| ≤
1 if and only if

2φA
B(k + 2, λ, α, β, γ)

∞∑
n=k+1

an ≤ 2− 2
k∑

n=2

an

which is equivalent to
k∑

n=2

an + φA
B(k + 2, λ, α, β, γ)

∞∑
n=k+1

an ≤ 1. (3.4)

In view of (1.10), this is equivalent to showing that
k∑

n=2

(φA
B(n, λ, α, β, γ)− 1)an +

∞∑
n=k+1

(φA
B(n, λ, α, β, γ)− φA

B(k + 2, λ, α, β, γ))an ≥ 0.

To see that the function f given by (3.3) gives the sharp results, we observe for
z = re

2πi
n that

f(z)
fk(z)

= 1− 1
φA

B(k + 2, λ, α, β, γ)
zn → 1− 1

φA
B(k + 2, λ, α, β, γ)

where r → 1−. Thus, we have completed the proof of (3.1).
The proof of (3.2) is similar to (3.1) and will be omitted. �

Theorem 3.2. If f(z) of the from (1.2) satisfies (1.10) then

<

{
f
′
(z)

f
′
k(z)

}
≥ φA

B(k + 2, λ, α, β, γ)− k − 1
φA

B(k + 2, λ, α, β, γ)
(3.5)
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and

<

{
f
′

k(z)
f ′(z)

}
≥ φA

B(k + 2, λ, α, β, γ)
φA

B(k + 2, λ, α, β, γ) + k + 1
(3.6)

where φA
B(k + 2, λ, α, β, γ) is given by (1.11). The results are sharp for every k, with

the extremal function given by (3.3).

Proof. In order to prove (3.5) it is sufficient to show that

φA
B(k + 2, λ, α, β, γ)

k + 1

[
f
′
(z)

f
′
k(z)

− φA
B(k + 2, λ, α, β, γ)− n− 1

φA
B(k + 2, λ, α, β, γ)

]
≺ 1 + z

1− z
(z ∈ U)

we can write

φA
B(k + 2, λ, α, β, γ)

k + 1

[
f
′
(z)

f
′
k(z)

− φA
B(k + 2, λ, α, β, γ)− n− 1

φA
B(k + 2, λ, α, β, γ)

]

=
φA

B(k + 2, λ, α, β, γ)
k + 1

[
1−

∑∞
n=2 nanzn−1

1−
∑k

n=2 nanzn−1
− φA

B(k + 2, λ, α, β, γ)− k − 1
φA

B(k + 2, λ, α, β, γ)

]

=
1 + w(z)
1− w(z)

.

Then

w(z) =
−φA

B(k + 2, λ, α, β, γ)(k + 1)−1
∑∞

n=k+1 nanzn−1

2− 2
∑k

n=2 nanzn−1 − φA
B(k + 2, λ, α, β, γ)(k + 1)−1

∑∞
n=k+1 nanzn−1

.

Obviously w(0) = 0 and

|w(z)| ≤
φA

B(k + 2, λ, α, β, γ)(n + 1)−1
∑∞

n=k+1 nan

2− 2
∑k

n=2 nan − φA
B(k + 2, λ, α, β, γ)(n + 1)−1

∑∞
n=k+1 nan

.

Now,|w(z)| ≤ 1 if and only if

2
φA

B(k + 2, λ, α, β, γ)
(k + 1)

∞∑
n=k+1

nan ≤ 2− 2
k∑

n=2

nan

which is equivalent to
k∑

n=2

nan +
φA

B(k + 2, λ, α, β, γ)
(k + 1)

∞∑
n=k+1

nan ≤ 1. (3.7)

In view of (1.10), this is equivalent to showing that

k∑
n=2

(φA
B(n, λ, α, β, γ)−n)an +

∞∑
n=k+1

(
φA

B(n, λ, α, β, γ)− φA
B(k + 2, λ, α, β, γ)

(k + 1)n

)
an ≥ 0

which completes the proof of (3.5).
The proof of (3.6) is similar to (3.5) and hence we omit proof . �
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4. Integral means inequality

In 1975, Silverman [13] found that the function f2(z) = z− z2

2 is often extremal
over the family T and applied this function to resolve his integral means inequality,
conjectured in Silverman [12] that

2π∫
0

∣∣f(reiθ)
∣∣η dθ ≤

2π∫
0

∣∣f2(reiθ)
∣∣η dθ,

for all f ∈ T , η > 0 and 0 < r < 1. and settled in Silverman (1997), also proved his
conjecture for the subclasses S∗(α) and K(α) of T .

Lemma 4.1. If f(z) and g(z) are analytic in U with f(z) ≺ g(z), then∫ 2π

0

|f(reiθ)|µdθ ≤
∫ 2π

0

|g(reiθ)|µdθ

where µ ≥ 0, z = reiθ and 0 < r < 1.

Application of Lemma 4.1 to function of f(z) in the class HFλ
γ (α, β, A,B) gives

the following result.

Theorem 4.2. Let µ > 0. If f(z) ∈ HFλ
γ (α, β, A,B) is given by (1.2) and f2(z) is

defined by

f2(z) = z − 1
φA

B(2, λ, α, β, γ)
z2 (4.1)

where φA
B(2, λ, α, β, γ) is defined by (2.3).Then for z = reiθ, 0 < r < 1, we have

2π∫
0

|f(z)|η dθ ≤
2π∫
0

|f2(z)|η dθ. (4.2)

Proof. For functions f of the form (1.2) is equivalent to proving that

2π∫
0

∣∣∣∣∣1−
∞∑

n=2

anzn−1

∣∣∣∣∣
η

dθ ≤
2π∫
0

∣∣∣∣1− 1
φA

B(2, λ, α, β, γ)
z

∣∣∣∣η dθ.

By Lemma 4.1, it suffices to show that

1−
∞∑

n=2

anzn−1 ≺ 1− 1
φA

B(2, λ, α, β, γ)
z.

Setting

1−
∞∑

n=2

anzn−1 = 1− 1
φA

B(2, λ, α, β, γ)
w(z), (4.3)
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and using (1.10), we obtain

|w(z)| =

∣∣∣∣∣
∞∑

n=2

φA
B(n, λ, α, β, γ)anzn−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

φA
B(n, λ, α, β, γ)an

≤ |z|,

where φA
B(n, λ, α, β, γ) is given by (1.11 ) which completes the proof. �

Remark 4.3. We observe that for λ = 0, if µ = 0 the various results presented in this
chapter would provide interesting extensions and generalizations of those considered
earlier for simpler and familiar function classes studied in the literature .The details
involved in the derivations of such specializations of the results presented in this
chapter are fairly straight- forward.
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