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On a certain class of analytic functions

Saurabh Porwal and Kaushal Kishore Dixit

Abstract. In this paper, authors introduce a new class R(3, «,n) of Salagean-
type analytic functions. We obtain extreme points of R((3, o, n) and some sharp

n n—1
bounds for Re {%(2)} and Re { fo(z) . Relevant connections of the results

presented here with various known results are briefly indicated.
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1. Introduction

Let A denote the class of functions f of the form
f2) =2+ az", (1.1)
k=2

which are analytic in the open unit disc U = {z : |z|] < 1} and normalized by the
condition f(0) = f/(0) —1=0.

Further, let S be the class of functions in A which are univalent in U. For
0<pf<l,a>0andn e Ny=NUO, we let

R(3,a,n) = {f(z) cA- Re{D”f(z) + (D" f(2) —D”f(z))} S8, ze U}7

z

where D™ stands for Salagean derivative operator introduced by Salagean [9].

By specializing the parameters in the subclass R(f3, «, n), we obtain the following
known subclasses of S studied earlier by various researchers.
(i) R(B, o, 1) = R(B, a) studied by Gao and Zhou [4].
(ii) R(0,1,1) = R(B) studied by various authors ([2], [3] and [8]), see also ([1], [6],
[11])
(iii) R(B8,0,1) = Rg studied by Hallenbeck [5].
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Now, we introduce Alexander operator I"™ f(z): A — A, n € Ny by
I°f(2) = f(2)
I'f(z) = / @dt
o ¢

Thus

It can be easily seen that

D™(I"f(2)) = f(2) = I"(D" f(2)).
In the present paper, we determine extreme points of R((,,n) and also to
obtain some sharp bounds for Re {%} and Re {%}

2. Main results

Theorem 2.1. A function f(z) is in R(B,a,n), if and only if f(2) can be expressed
as,

f(z) =/|=1 [(2ﬂ—1)z+2(1—ﬁ)xz (z2)*7 du(z), (2.1)

£ (k+ 1) (ko + 1)

where u(x) is the probability measure defined on the X = {x : |x| = 1}. For fized «,
B, n and R(B,a,n) the probability measure p defined on X are one-to-one by the
expression (2.1).

Proof. By the definition of R(S5,a,n), f(2) € R(8,a,n), if and only if

D" f(z)+a(D"*!f(2)=D"f(z)) _ 3
£ € P,
1-p
where P denotes the normalized well-known class of analytic functions which have
positive real part. By the aid of Herglotz expression of functions in P, we have

D"/@+alD =D G g 1+ 22

1-0 lzj=1 1 — x2

du(),
which is equivalent to

D"f(z) + a(D" 1 f(z2) — D" f(2)) :/ 1+ (1-28)xz
|z|=1

z 1—2xz

du(z).

So we have

MRpeCE s CELACHIE [ (Leti-se o

z 1—2zz
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) 2(1 — B)ak—1zk

f(2) +a(zf'(z) = (2)) /Il{ +Z kn }du(x),
that is,

Zlié ’ l / _ é*2
[ iRm0+ @ro- son i

_ l zl—% z B [e’e} xk—l(k %_2 N

_a[rl—l{ /o{<”<1 N2 }c }dm ).
We obtain

k1 k
f(Z)_/|x|1{Z+2 (1-p Mak:—i—l—a)}du(x)’

or equivalently

oo

f(z) = / (26 -Dz+201-0)zTy (o) du(z).
|zl =1 = (k+1)"(ak+1)

This deductive process can be converse, so we have proved the first part of the
theorem. we know that both probability measure p and class P, class P and R(3, a,n)
are one-to-one, so the second part of the theorem is true. Thus the proof of Theorem
2.1 is established. O

Corollary 2.2. The extreme points of the class R(8,a,n) are

oo (Z‘Z)k+1
fo(2) = (28 -1)z+2(1-p8)T z:w+1)@k+n’

=0

| = 1. (2.2)

Proof. Using the notation f,(z) equation (2.1) can be written as

ful2) = /Iw_l Ful2)dpa).
By Theorem 2.1, the map 1 — f,, is one-to-one so the assertion follows (see [5]). O
Corollary 2.3. If f(2) = 24+ > pepanz® € R(B,a,n), then

2(1-p)
—, (k>2).
lax(2)] < k(ak+1—a)’ (k=22)
The results are sharp.
Proof. The coefficient bounds are maximized at an extreme point. Now from (2.2),
fz(2) can be expressed as

klk

fo(2) =z +2(1 anakH ),|x|=1, (2.3)

and the result follows. O
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Corollary 2.4. If f(z) € R(f,a,n), then for |z\ =r<l1
k
r

< 21-p0 —_—
1f) <7+ k”(ozk+1704)

The result follows from (2.3).

Next, we determine the sharp lower bound of Re {%} and Re {u}

for f(z) € R(B,a,n). Since R(8,a,n) is rotationally invariant, we may restrict our
attention to the extreme point of
o0 k

9(2) =z+2(1—5)2m. (2.4)

Theorem 2.5. If f(z) € R(8,a,n), then for |z| <r <1 we have

z k:2a(k71)+1 k=2a(k71)+1
and
D" f(2) o ()t o~ (D!
Red ———= 5 <1+42(1— — < 14+2(1— — . (2.6
AT s o0 S <09 ) it e
These inequalities are both sharp.
Proof. We need only consider g(z) defined by (2.4). We have
D & k 1
% 142(1— Z o (2.7)
k=2
It can be written as
D"g(z) e
~ = ; ta (2.8)
So we have
Re{Dg(Z)} 1420 / {1 }dt. (2.9)
z —tz

Since k(z) = 12

- is convex in U, k(Z) = k(z) and k(z) maps real axis to real axis,
we have

1J7rntr {lt } (2l < 7).

Substituting the last inequalities in (2.9) and expandmg the integrand into the power
series of ¢ and integrating it, we can obtain the inequalities (2.5) and (2.6).
The sharpness can be seen from (2.7). O

Theorem 2.6. D"~ [R(3,a,n)] C S for 3 > By and this result can not be extended to

B < By , where )
(& (R
50_”2(;:2@(1@1)“) '
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Proof. Let f(z) € R(fB, o, m).
Now using (2.5)

D" f(2) =1+201 D 2.10
( f(z) =1+2( *5);m_ . (2.10)

D" 1f(2) € S, that is, if 8 > (o, we have D"! [R(3,,n)] C S . The result can not
be extended to 3 < By because (D"~ f(~1)) = 0at 8 = o . Thus (D"~ f(~r)) =0
for some r = r() < 1 when 3 < fy. O

Theorem 2.7. If f(z) € R(0,a,n), then for|z| <r <1

D) = (o
> k: 1
>1+2(1-7 kZ:Qk _1+1]

The result is sharp.

Proof. According to the same reasoning as in Theorem 2.5, we need only consider
g(z) defined by (2.4). We have

pn—1 & k—1
D9 o Z

z

+1]

1+2(1_ / (/11_m )dt.

Thus
Dn—l 1— 1 1
Re{g(’z)} 142129 m/té(/ vRe{ : }dv)dt
z 0 0 1—tvz
L 1
/ta( )
0 1+ tor
=1+2(1
* Z K[ a(k - 1 )+ 1]
k=2
1+2(1
st Z i a(k Tk
The sharpness can be seen from (2.4). O

Remark 2.8. If we put n = 1 in Theorem 2.1, 2.5 and 2.7 then we obtain the corre-
sponding results due to Gao and Zhou [4].
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Remark 2.9. If we put n = 1, = 1 in Theorem 2.1, 2.5, 2.7 then we obtain the
corresponding results due to Silverman [10].

Remark 2.10. If we put n = 1,a = 0 in Theorem 2.1, 2.5, 2.7 then we obtain the
corresponding results due to Hallenbeck [5].
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