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Flow of Herschel-Bulkley fluid through a two
dimensional thin layer

Farid Messelmi and Boubakeur Merouani

Abstract. The paper is devoted to the study of asymptotic behaviour of the
solution of two dimensional steady flow of Herschel-Bulkley fluid through a thin
layer. We prove some convergence results when the thicness tends to zero and we
give the mechanical interpretation of the results.
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1. Introduction

The rigid, viscoplastic and incompressible fluid of Herschel-Bulkley has been
studied and used by many mathematicians, physicists and engineers, in order to model
the flow of metals, plastic solids and a variety of polymers. Due to existence of yield
limit, the model can capture phenomena connected with the development of discon-
tinuous stresses. A particularity of Herschel-Bulkley fluid lies in the presence of rigid
zones located in the interior of the flow and as the yield limit increases, the rigid
zones become larger and may completely block the flow, this phenomenon is known
as the blockage property. The literature concerning this topic is extensive; see e.g.
10, 11, 12, 13].

The purpose of this paper is to study the asymptotic behaviour of steady flow
of Herschel-Bulkley fluid in a two dimensional thin layer.

The paper is organized as follows. In Section 2 we present the mechanical prob-
lem of the steady flow of Herschel-Bulkley fluid in a two dimensional thin layer. We
introduce some notations and preliminaries. Moreover, we define some function spaces
and we recall the variational formulation. In Section 3, we are interested in the as-
ymptotic behaviour, to this aim we prove some convergence results concerning the
velocity and pressure when the thickness tends to zero. In addition, the uniqueness
of limit solution has been also established. Finally, we will discuss in Section 4 the
mechanical interpretation of the convergence results.
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2. Problem statement

Denoting by I the open interval I = ]0, 1. Introducing the function i : I — R*.
such that h € Ct (I).
Considering the following domains

Q={(z,y) eR* |z €] and 0 <y < h(z)},
Qs:{($173§2) €ER? |z €1 and 0 < a9 <5h(a;1)},

where € > 0. .
Remark that if (z1,z2) € Q° then (z,y) = (xl, ?2) € Q. This permits us to

define, for every function ¢° : 2° — R, the function &E : 2 — R given by

¢ (z,y) = ¢° (z1,22).

p
function. We define the function £¢ € L' (Q¢) such that fe=f.

We consider a mathematical problem modelling the steady flow of a rigid vis-
coplastic and incompressible Herschel-Bulkley fluid in the domain 2°. We suppose
that the consistency and yield limit of the fluid are respectively ueP, ge where p,
g > 0 and p represents the power law index. The fluid is acted upon by given volume
forces of density f¢. On 0€2¢ we suppose that the velocity is known and equal to zero.

We denote by Sy the space of symmetric tensors on R?. We define the inner
product and the Euclidean norm on R? and S», respectively, by

Let 1 < p < 2, p’ the conjugate p, (l + 1= 1) and f e L¥ (Q)2 a given

u-v=uv; Vu, veR? and o-T=04Ty; Vo, TESs.

1 1
lu| = (u-u)? Yu€R?® and |o|=(0-0)> Voe€S,.
Here and below, the indices 7 and j run from 1 to 2 and the summation convention
over repeated indices is used. We denote by o¢ the deviator of ¢ = (Ufj) given by
o° = (%) L 05 =05 0y,
where p° represents the hydrostatic pressure and 6 = (J;;) denotes the identity tensor.
We consider the rate of deformation operator defined for every v € WP (96)2 by

D(v) = (Dy (v)). Dy(v) =5 (1, +15,).

The steady flow of Herschel-Bulkley fluid in the domain Q° is given by the
following mechanical problem.
Problem P.. Find the velocity field u® = (uf) : Q° — R?, the stress field 0 = (5;) :
Qf — S, and the pressure p® : 2° — R such that

dive® + f¢ = 0 in Q°. (2.1)
N B D (u®)
e — P e)|P—2 € —_ €
lo°| < ge if [D(u®)[=0

divu® =0 in Q°. (2.3)
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u® =0 on 00°. (2.4)

Here, the flow is given by the equation (2.1). Equation (2.2) represents the consti-
tutive law of Herschel-Bulkley fluid. (2.3) represents the incompressibility condition.
Equality (2.4) gives the velocity on the boundary 9€°.

Let us define now the following Banach spaces

Whe = {V e Wy (9°)* : div (v) = 0 in QE} , (2.5)
Wi, = {v e WiP (Q)? : div(v) =0 in Q}, (2.6)
Wp:{@EL”(Q):?;ZGLP(Q)}. (2.7)

LB (QF) = {(pg e LP(Q°): /E ©° (21, ) dx1dao = 0} : (2.8)

2@ ={pe @ [ ooty =0}, (2.9)

For the rest of this article, we will denote by ¢ possibly different positive constants
depending only on the data of the problem.

The use of Green’s formula permits us to derive the following variational formu-
lation of the mechanical problem (P.), see [13].

Problem PV.. For prescribed data £ € LP' (9°)%. Find (uf,p%) € WPE x Lg/ (QF)
satisfying the variational inequality

usp/ |D (u®)[P7* D (u®) - D (v — u) drydzo+
gs/ |D (v)| dz1dxs fge/ |D (u®)| dzidzy
> / £¢ - (v —u®)dzidas +/ pediv (v —u®)deidey,  Yv e WP (Q9)%. (2.10)

It is known that this variational problem has a unique solution (u®,p®) € Wi x
LY (9°), see for more details [10, 13].

3. Asymptotic behaviour

In this section we establish some results concerning the asymptotic behaviour of
the solution when ¢ tends to zero.
We begin by recalling the following lemmas, see [1, 3, 7).

Lemma 3.1. 1. Poincaré’s inequality. For every v € Wol’p (95)2 we have

ove
8$2

VoIl Lo (eye < € :
Lr(QF)?
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2. Korn’s inequality. For every v € Wol’p (QE)2 there exists a positive constant
Cy independent on e, such that

19V eyt < ColID (V)| ooy (3.2)

Lemma 3.2 (Minty). Let E be a Banach spaces, A: E — E’ a monotone and hemi-
continuous operator, J : E — ]—00,+00] a proper and convex functional. Let u € E
and f € E'. Then the following assertions are equivalent:

1 (Ausv —w) gy g +J () = J(w) > (fsv—u) g yp YveEE.
2. (Aviv—wy gy g +J (W) —J(u) > (f;v—uwp,p YveEE.

The main results of this section are stated by the following proposition.

Proposition 3.3. Let (u,p®) € Wi x Lg/ (QF) be the solution of variational problem
(PV.). Then, there exists (0,p) € W2 x Ly (Q) such that

W — 1 in W, weakly, (3.3)
OuE
(,;;2 in LP () weakly, (3.4)
pF—pin Lg/ (Q) weakly. (3.5)

Proof. Choosing v = 0 as test function in inequality (2.10), we deduce that

ue? D ()2, o0 < /Q £ - uday dy.

This permits us to obtain, making use of Poincaré’s and Korn’s inequalities and by
passage to variables = and y

HGEHLP(Q)Z <¢ (3.6)
-
%u <c, (3.7)
y Lr(Q)?
oue c
<= .
| ox e (3.8)
L (Q)?

Moreover, we get using the incompressibility condition (2.3) and Green’s formula, for
any function ¢ € Wy ? (QF)

/—gpfdxdy—s/ulaa

Which gives, making use (2.6)

€
ous

< ce. .
Y ce (3.9)

W-1p(Q)




Herschel-Bulkley through a thin layer 123

We can then extract a subsequence still denoted by ﬁg’ such that

W — U in LP (Q)° weakly, (3.10)
aa‘; — g—‘yl in LP ()% weakly, (3.11)
ou .
5 0 in L? () weakly, (3.12)
Y

Let now v € Wg P Qe )27 we obtain by setting u® — v® as test function in inequal-
ity (2.10), using the incompressibility condition (2.3), Green’s formula and Holder’s
inequality

e

Vp® - vedridry < pe? (/ |D (u®)[? dxldx2> ’ (/ |D (v¥)|P dwldx2>
QE

Qe

1
L 41 X e\|P i
+e?" g (meas (Q2))? |D (v®)|" derdze | +¢
Qe

~

fe

(X3 v
(3.13)

On the other hand, it is easy to check that after some algebraic manipulations we find

Lr' ()2

1
(/ |D (V5)|p d;z;ld;pQ) v < E%_l ||‘/IE||W01”’(Q)2 . (314)

Thus, from (3.7), (3.8), (3.13) and (3.14) we get

o Vp® - vidxidrs < ce H{fEHW&,p(Q)Q . (3.15)
Passing to the variables z and y in (3.15) we find the following estimates
HPAEHLg’(Q) <c, (3.16)
Haps <c, (3.17)
O |y -1 ()
H o < ce. (3.18)
9 Mlw-10r()
Consequently, we can extract a subsequence still denoted by p® such that
P — pin LE (Q) weakly, (3.19)
which achieves the proof. O

This proof permits also to deduce that the limit pressure verify p(z,y) = p(z).
Proposition 3.4. The velocity limit given by (3.3) verifies
h(zx)

/ ur (z,y)dy =0 Vz € 1. (3.20)
0
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Proof. We know from the incompressibility condition (2.3) that
/ divu® (z1, z2) ¢ (x1) dr1dzy =0 for all ¢ € D (I).

This implies, using Green’s formula
£

d ou
[ o) S (@) dordon = [ 52 o1 0) o) dod

Hence, by passage to the variables  and y and using Fubini’s theorem and Green’s
formula, we can infer

h(z)
d —
~[ew |2 [@Ee|a=o0veenn).
0

0

Then
h(z)
d [ -
o | uwilzy)dy=0.
0
Moreover, the fact that u/\i € LP () and h € C! (I) gives, using the Sobolev embedding
whr (1) c ¢’ (1)

h(zx)
/ s (z,y) dy € C° (T) .
0

Thus, by passage to the limit when ¢ tends to zero, taking into account the boundary
condition (2.4), the assertion (3.20) can be deduced.
We derive in the proposition below the strong equation verified by the limit

solution (@, p) € W2 x L5 (). O
ouy SR )
Proposition 3.5. If% # 0, then the limit point (u1,p) given by (3.3) and (3.5) verify
Y

the limit problem

o (p|ow|PPour V2 o fow\\ + db . .

Proof. Introducing the operator A defined as follows
ATWEP () — W (@2,
AV D eyt = 0 [ DO D) D () dasds

It is easy to verify that A is monotone and hemi-continuous (see for more details
the reference [13]). Moreover, we know that the functional

v e WP () — ge/ |D (v®)| dx1dxs
QE
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is proper and convex. Then, the use of Minty’s lemma permits us to affirm that (2.10)
is equivalent to the following inequality

,usp/ D (v9)[P"? D (v°) - D (v¢ — u®) dzydwa+
QE
gs/ |D (v®)| dzydas — ge/ |D (u®)| dxydxs
€ QE
> / fe . (v¢ —u®) dzidas —l—/ pediv (v6 —u®) daydzy WvE € WP (Q°)°.
€ QE

Our goal now is to pass to the limit when e tends to zero. To this aim, we
use Proposition 3.4 and the weak lower semi-continuity of the convex and continuous

functional v¢ € W,y (Q°) — ge/ |D (v®)| dxidzs. We find the following limit
Qs

inequality
1 ||oa | a@ 1av1 (01 — ) | 00 (63 — )
— — dxd
M/92¥ U 28y oy oy oy o
95; |2 8@ 273 o\ 2 PR
dxd — | = o dxd
+g/ [ 8y rdy — g oy + ay zdy
> / f.-(V—10)dedy + [ pdiv(v — Q) dedy Y € WyP (). (3.22)
Q Q
Furthermore, from (3.3) and (3.4) we find
%—1;2 —0in Q.

It follows, keeping in mind (3.20), that
u(z,y) = (ur (2,9),0).

This permits also to choose v = 0 in (3.22).
Considering now the operator A such that

AW, — W'
<AA ,\> 1% 8u1 p=2 8’&1 (%1
U1, 1)y = —
LEwWoxw, T oF | oy | 9y oy
It is clear that the operator A is monotone and hemi-continuous and the func-

tional 07 € W, — i

—dxdy.

dacdy is proper and convex. Hence, we deduce using
again Minty’s lemma
our [P~ 0wy 0

(5% (5% (Ul d d L Ve /

d Vs / 8’11,1
Oy oy 3@/

/ f1 (01 — uy) dady — / e (01 —wy) dedy Y01 € W, (3.23)

M 61}1

dxdy
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This yields, via Green’s formula

_ﬁ/ 9
2% Jo Oy

81}1

ouy

p—2 am
dy

6y> (01 — ur) dzdy+

dd——/

dp , .
/ f1 (01 — uy) daedy — / o (01 —wy) dedy Y01 € W,
Q dl‘

811,1

dxdy

(3.24)

Due to the fact that W, * () is dense in W, see [1], we can take 0, = a5 + ¢
in (3.24), where ¢ € W,"” (Q) to obtain the following inequalities

w [0 [low|P? ouy V2 (u1+cp)‘ V2 / ouy
- | = dd+— dudy—~= e
22/9%(‘83/ oy )T Jo |y 27 Jo |0y |7
N dﬁ 1,p
fipdedy — | —e@dzdy Yo € WP (Q).
Q o dx
and
w [0 (lour|P? ouy ) /8u1
Nt odzd 7dd - = dad
2%/98 ( By | oy |t ey ey

~ dp
—/ flgpda:dy—F/ *p%lxdy Yo € Wol’p ().
Q Q de

Replacing in these two inequalities the test function ¢ by Ap, A > 0, dividing

the obtained inequalities by A. The passage to the limit when X\ tends to 0 implies
P

under the hypothesis % = 0, that

Y

_ﬂ 9 "7 gy ﬂ/ our\ dy
5‘y< n pdrdy + 59 sign By )y ——dxdy

Z/flcpdxdyf/ —pgodzdy Vo e WP ().
Q Q dl'
p—2 6u1

0 ouy V2 Ouy \ Jy
zs/ﬂayﬂ 9y ay> sty =30 [ sen (1) 5ot

—/ flgod;vdy—i—/ —pgodxdy chGWOI’p Q).
Q 0 dl’

8U1
dy

and

|=
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Consequently, we get combining these two inequalities and using a simple inte-

gration by parts
o | pn (low|P? our V2 (8?)

| = |== + = dzd

/Qay [22 <‘ ay | oy 5 gsien | - ) | wdedy

~ d
:/Q(fl—digo) dxdy VQDEWOLP(Q).

Which eventually gives (3.21). O

From now on we will denote by (@,p) € W, x Lg/ (Q) the solution of the limit
problem (3.21).
The following proposition shows the uniqueness of the limit solution (@, D).

Proposition 3.6. The limit strong problem (3.21) has a unique, solution (u,p) in W x
LY () with the condition (3.20).

Proof. Suppose that the limit problem (3.21) has at least two solutions (uy,pi),

(uz,p2) € W, x Lg/ (Q). In particular, (uy,p1), (uz,p2) are solutions of the weak
formulation (3.23). Then

p—2 ~
ﬂ %uyl a(;;l Al ay dxdy—|— 79/ 8v dxdy — / ‘aul dxdy
FL (0 — ) dady — / i © — @) dedy Yo € W, (3.25)
Q o dx
and
2 5
u ous |P~ Buga( / oo / 8u2
— d dy + — dxdy — — dxd
3y ay 8y + X xdy
/ f1 (0 —ug) dady — / dps (U —ug)dzdy YU € W, (3.26)
O dI

Setting © = Uz, ¥ = Wy as test functions in (3.25) and (3.26), respectively.
Subtracting the two obtained inequalities, we can infer

[ o P ouz  |our P our | 0 (us — wy)
Na =2 2|2 | gy
25 Jo || Oy oy dy dy dy
d(pr —p2) — .
< / M(m—ul)dazdy Vo € W, (3.27)
O d.%'

Observe that for every x,y € R™,

2

_ _ T—y
(22— )@= > -V 1cp<a

(1 + o)
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This leads, making use (3.27), to
2

0 (ug — uy)
u(p—l)/ Jdy /d(ﬁl—ﬁz) —
> dxdy < ————== (ug — uy) dxd
IR
y Jy

1 i — 5) h(x)
- (1722 [ @@ |
0 0

The use of (3.20) gives
2

‘3(@?1)
dy
dady = 0. 3.28
Jo o .
oy dy

On the other hand, the application of Holder’s inequality leads to

—~ P
/75’@2 ) dxdy
Q y
Wl TAGAREAIEDR
<c dxd —_— — dxd .
e A AR
dy y

Which gives, keeping in mind (3.28)
9 (s — ur)

dy
Since Uy (z,h (z)) =0y (z,h (z)) = 0, we deduce that uz = uy a.e. in .

Finally, to prove the uniqueness of the pressure, we use equation (3.21) with the
two pressures p; and p>. We find

=0.

d(p1 — p2)
dx
Then, due to fact that p1, ps € Lgl (), the result can be easily deduced. O

=0.

4. Mechanical interpretation

o~

o

dy

the constitutive law of Herschel-Bulkley fluid, we can infer

Suppose that — # 0 and let 0° be the stress tensor associated to u®. Then using

/

/ ‘8\5|p dx1dxs §/ (uep\D(us)V’_QD(uE) +g£)p dxidxs.
Qe Qe
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We can then easily prove, by passage to the variables = and y, that
]
€

o~

0-6

Lo (@)t
Thus, we can extract a subsequence still denoted by ¢° such that

1/\
Zo¢ — 5 in L* (Q)* weakly.
€

On the other hand, we know from the flow equation (2.1) that

E

2 —~
Z 74 < i=1,2in Q°.

Z; 8%

By passage to the variables z and y, taking into account the fact that p (z,y) = p(z),
we obtain the following equations

0%, , 1005 _dF
Or e 0y _ dx !
905, 1005, _
ox e oy 2
The passage to the limit leads

in Q. (4.1)

on  dp -

By comparison with equation (3.21), we find

p2%+@s1n ou
Oy 9 I8 ay )

ou
dy

—~ _ K
021 =

ou
Which means that 1f — 7é 0 then |oa1| > % ¥2 4 Hence, if |21 <2 ¥2g we get

ou

dy
This permits us to deduce that at the limit the flow can be described by the following
one dimensional constitutive law

=0.

~|p—2 ~ ~
2
T= ,u gu gu + £gsign <gu) if ? #£0
f Y y 2 Y pod in Q, (4.3)
7] < 79 if o =0

where 7 is the stress of the limit model. Such constitutive law has been studied by
many engineers for the particular case of Bingham fluid i.e. p = 2, see for example
[9]. Indeed, the case p = 2 corresponds to the Bingham flow. For u = 2u*, g = V2g*
and p = 2 the result in [4] are recovered.
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