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Abstract. We define submethods of four dimensional Cesaro matrix. Comparisons
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1. Introduction

Some equivalance results for Cesaro submethods have been studied by Goffman
and Petersen [2], Armitage and Maddox [1] and Osikiewicz [5]. In this paper we
consider the same concept for four dimensional Cesaro method Cy := (C, 1,1). First
we recall some definitions.

A double sequence [x] = (z;1) is said to be P — convergent (i.e., it is convergent

in Pringsheim sense) to L if for all € > 0 there exists an ng = ng(e) such that
|Znm — L| < € for all n,m > ng [7]. In this case we write P — m;? xjr = L. Recall that
3

[x] is bounded if and only if

%]l 00,2y = sup |z;x] < oo.
Jik
By l(s0,2) we denote the set of all bounded double sequences.
Note that a P — convergent double sequence need not be in /(o 2). Let

P — (o) = {[m] = (zjk): sup |xjk| < oo, for some hy, hg € N}
n>hy,m>ho

and call it the space of all P — bounded double sequences where N denotes the set of

all positive integers. If a double sequence is P — convergent then it is P — bounded

and it is easy to see that P — lim[z][y] = 0 whenever P — lim[z] = 0 and [y] is

P — bounded.



44 Mehmet Unver

Let A = (a}}") be a four dimensional summability matrix and [z] = (z;;) be
a double sequence. If [Az] := {(Az),,,} is P — convergent to L then we say [z] is
A — summable to L where

(Ax),,,. = Za%”xjk, for all n,m € N.
gk
A is said to be RH — regular if it maps every bounded P — convergent sequence into
a P — convergent sequence with the same P—limit [3]. Some recent developments
concerning the summability by four dimensional matrices may be found in [6].
Recall that four dimensional Cesaro matrix C = (c;’,’f) is defined by

nm’ .
0, otherwise.

e { L j<nand k<m
iyt =

The double index sequence § = ((n,m) is defined as S(n,m) = (A(n), u(m))
where A(n) and p(m) are strictly increasing single sequences of positive integers.
Let [z] = (xjx) be a double sequence. We say [y] = (y;x) is a subsequence of [z] if
Yik = TB(j,k) for all 5,k € N.

Let B(n,m) = (A(n),u(m)) be a double index sequence and [x] = (x;x) be a

double sequence. Then the Cesaro submethod Cg := (C,, 1,1) is defined to be

(A(n),p(m))

1
(Cot)p = T D, Tk
Mru(m) =
(A(n),p(m)) A(n) p(m)
where > xjr= Y. Y xjj. Since {(Caz),, } is a subsequence of {(Cx),,.},
(4:k)=(1,1) i=1 k=1

the method Cjp is RH — regular for any (.
Let = (x1) be a single sequence and [2¢] = (2§, ), [2"] = (27,) be two double
sequences such that
x5y, = xj, forall k € N
xhy, = xy, for all j € N.
It easy to see that the following statements are equivalent:
(a) limz = L; (b) P —lim[z°] = L; (¢) P —lim[2"] = L.
The next result follows easily.

Proposition 1.1. Let [z] = (i) be a double sequence such that xj, = yjzx for all
J.k € N where y = (y;) and z = (zi) are single sequences (we call such a double
sequence as a factorable double sequence). If y, z are convergent to L1, Lo Tespectively
then [z] is P—convergent to LiLs.

2. Inclusion results

Let A and B two four dimensional summability matrix methods. If every double
sequence which is A summable is also B summable to the same limit, then we say B
includes A and we write A C B.
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In [1] Armitage and Maddox have given an inclusion theorem for submethods of
ordinary Cesaro method. Now, we give an analog of that result for four dimensional
Cesaro submethods.

Theorem 2.1. Let 31(n,m) = (AN (n), uM(m)) and Ba(n,m) = (A (n), u® (m)) be
two double index sequences.

i) If EQ)N\E (AD) and E(W)\E(uV) are finite sets then Cg, C Ca,.

ii) If Cg, C Cp, then EQA@)\E (AD) or E(u)\E(uY) is finite set,
where

E (A(i)) = {)\(i)(n) 'n € N} and E (u(i)) = {u(i)(m) tm € N}; i=1,2.

Proof. 1) If EQA®)N\E (AM) and E(u®)\E(uV) are finite then there exists ng such
that {/\(2)(71) in>ng} CE (/\(1)) and {u@)(m) tm>ng} C E(p™M). Let n(j) and
m(k) be two increasing index sequences such that for all n,m > ng

A2 (m) = XD (n(j)) and p (m) = u (m(k)).

Then P —lim(Cp, 2)nm = L implies P — im(Cp, )y (j),m(x) = L. Hence this implies
P —1im(Cp, ) nm = L.

ii) Suppose that C, implies Cg, but that E(A@)\E (A1) and E(u@)\E(pM)
are infinite sets. Then there are strictly increasing sequences A(?) (n(5)) and p(? (m(k))
such that for all j, k € N A3 (n(j)) ¢ E(ADV) and pu® (m(k)) ¢ E(uM)). Define
[t] = (tnm) by

gk 0= A (n() and m = 4@ (m(k))
M= 0, otherwise

1 (n,m)
Let (C8)pm = tpm, 6. — > Sjp=tym.lfn e FE ()\(1)) and m € E(u™) then
T (j,k)=(1,1)
tnm = 0 which implies the sequence [s] is Cg, — summable to zero. Now we define a
double index sequence 3 as

Bs = (AP (n(5)), u® (m(k))).

Since
(A® (@) (m(k))))
1
—C .
BIEO) Z Spq A@) (n(5)),1 P (m(k))
NGO ) 2
and t,, = jk for n € {A\@(n(j))} and m € {u® (m(k))} we have [s] ¢ Cg, which
implies [s] & Cg,. O

Osikiewicz [5] has given a characterization for equivalence of Cesaro method
and its submethods. The following theorem is an analog for four dimensional Cesaro
method and its submethods.
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Theorem 2.2. Let 8 = (A(n), u(m)) be a double index sequence.
i) If
lim A(n+1) ~ lim pw(m+1)
n An) m - p(m)
then C, and Cg are equivalent for bounded double sequences.
it) If C1 and Cg are equivalent for bounded double sequences then

lim 7/\(71 +1) =1 or lim 7;1(771 +1)
n An) m - p(m)
Proof. i) By Theorem 2.1 we have C; C Cg. Let [z] = (z;1) be a bounded double
sequence that is Cz summable to L and assume

g M+ 1) p(m + 1)
n An) m - p(m)

Consider the sets F; = N\E()\) =: {a1(n)} and Fy = N\E(u) =: {aa(m)}.
Case I. If the sets F; and F} are finite, then Theorem 2.1 implies that Cg C Cf.
Case II. Assume F; and F5 are both infinite sets. Then there exists an ng such that for
n,m > ng, a1 (n) > A1) and as(m) > u(1). Since EAN)NFy = g and E(u)NFy, = &,
for all n,m > mng, there exist p,q € N such that A(p) < a1(n) < A(p+ 1) and
1(q) < ag(m) < p(g+1). It can be written that a1 (n) = A(p)+a and az(m) = pu(q)+9b,
where

=1 (2.1)

=1

=1

O0<a<Ap+1)—Ap) and 0 < b < u(g+1) — ulq). (2.2)
Now define a double index sequence 3’ as

B'(n,m) = (ax(n), az(m)).

Then for n,m > ng,

) (a1 (n),az(m)) L O
(Cor),py — (C2) | = | o gk — e
’ 7 pal o (n)az(m) ng) T Np)la) (jgl,l)f
1 (A(p)+a,u(q)+d) 1 (Ap),n(9))
= > g D
(A(p) +a) (u(q) +b) A(p)p(q)

(4,k)=(1,1) (4,k)=(1,1)
(A(p),u(q)) (A(P);u(q))

1 1
N ERITrET P I R R IR

(J,k)=(1,1) (J,k)=(1,1)
1 (/\(p)i(q)%) (A(p)iu(q))
+ Tik + Tik
)\ b J J
(Ap) +a) (ula) +8) | 1y (i (k) =(\(p)+1,1)

(A(p)+a,u(q)+b)
+ Z Zjk
(G.k)=(A(p)+1,1(q)+1)
(A(p),u(a)) 1 1 ’

<Nl oogy X -

= QW)+ (@) + 0 Ap)ula)
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+ 1zl bA(p) + ap(q) + ab
(22 (\(p) + a) (u(q) +b)

bA(p) + ap(q) + ab
2 Apu(e)

By 2.2 we have

(€)= (o),

AN

N

3
8
2

Ap)u(q)
o () e
Since
|(C,3/£L‘ . L‘ ) Cﬁ/l‘)nm — (Cﬁ!)ﬁ)pq + )(Cﬁx pq L‘

it follows from 2.1, 2.3 and Proposition 1.1 that P — lim (Cg:x), = L.

As the double sequence {(Cyz),,,} may be partitioned into two subsequences
{(Cgx),,,} and {(Csx),, }, each having the common P-limit L, [z] must be C; —
summable to L. Hence Cg C (.

Case III. Assume F; is infinite set and F5 is finite set and define a double index
sequence 3’ as

B'(n,m) = (a1(n), u(m)) .

Now using the same argument in Case II with taking b = 0 we have

AMp+1)
Since
(Cyz),, —L| < } (Cra),, — (Coz), |+ )(cﬁx ) L‘

it follows from 2.1, 2.4 and Proposition 1.1 that P —lim (Cg:x), = L.

As the double sequence {(Cyz),,,} may be partitioned into two subsequences
{(Cgx),,,} and {(Csx),, }, each having the common P-limit L, [z] must be C; —
summable to L. Hence Cg C (.

Case IV. If F7 is finite set and F5 is infinite set, then we can get the proof as in Case
IIT by changing the roles of Fy and Fb.
Hence for all cases we get Cz C Cj.

A 1 1
ii) Assume that lim sup ()\n(Jr)) > 1 and lim sup m > 1. Then, we choose
n n m
two strictly increasing sequences of positive integers n(j) and m(k) such that
A 1 k
limM Ly >1and hmM =Ly >1 (2.5)

i An() p(m(k))
with A(n(j) + 1) — A(n(y)) and p(m(k) + 1) — p(m(k)) are odd. Let I; and Sy
be the intervals [A(n(j)) + 1, A\(n(j) + 1) — 1] and [u(m(k)) + 1, u(m(k) + 1) — 1], re-
spectively. |I;] and |Sk| will always be even by the choice of n(j) and m(k), where
|E| is the number of the integers in E. If we define a double sequence [x] by 2z, = 0
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it € [\ +LAwG) + 2 or g € om0 + Ltme) + 5]y =1

I; S
it (A + 1w+ 1) - 1) ot g e () + 5ty + 1) -1,
Tpqg =0if p & |I;| or ¢ & |Sk| and p or ¢ is odd, zpq =1 if p & |I;| or ¢ & |Sk|| a|1‘1d]i)
_ 4115k

and q are even, for j, k = 1,2, .... Then for given j, k we have > Tpq 1

(p,q)E€1; xSk
and for given n, m we have

Cax = — Tpg = H

(o) = Sty , 2= = Syt || 2

1 (A(n),p(m)) 1 A(n)

[

where [|K|] denotes the greatest integer that is not greater than K. Hence, we have
P —lim (Cgx)
n,m

= —. Now define a double index sequence o(j, k) by

nm 4
o(j,k) = (a(j), b (k))

where a(j) = A(n(y)) + % and b(k) = u(m(k)) + @ For all j we get

(a(k).b(k))
Cox),) = ——— T
(Cot)ye = Sy, 2=

(p,q)=(1,1)

I; S
(/\(n(j))+|2j|’#(m(k))+|;|>

! 1
- (3 + ) (wtmn + 1) PN .

1 1 (A () (m(k)))
= Y, =@
, |7 | Skl pa
An(5) + == ) | u(m(k)) + —— (p.a)=(1,1)

2 2
< 1 1 A(n(4)) p(m(k))
() + ) (wtmery + B1) 22
__ AnG) p(m(k))
2M(n(5)) + 11| 2p(m(k)) + | S|
_ A(n(j)) u(m(k))
2A(n(7)) + A(n(5) + 1) = AMn(j)) — 1 2u(m(k)) + p(m(k) + 1) — p(m(k)) — 1
1 1
T AnG)+ D L1 u(m(k)+1)+1_ 1
A(n(4)) A7) pu(m(k)) pu(m(k))

From 2.5 and Proposition 1.1 we have

11 1
P —1lim(Cya)., = —
i (Com)jn = 727,71 < 1
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Since 4 (Cyx); and < (Cgx are two subsequences of {(Ciz with P —
7k BLY)nm nm

1
lim(C’ z)p, < 1 and P — lim (Cgx),,.. z] cannot be C; — summable.On the

1
= 7 [
4
other hand, we may choose n( /) and m(k) such that
A(n() + 1) — A(n(j)) and p(m(k) + 1) — p(m(k)) ave even
An(j) +1) — X(n(j)) is odd and p(m(k) +1) — p(m(k)) is even

An(j) +1) — A(n(j)) is even and p(m(k) + 1) — p(m(k)) is odd

and we will continue the proof in the same way. Hence, we have C; and Cjs are not
equivalent for bounded sequences. O

Osikiewicz [5] has given an inclusion result between submethods of the ordi-
nary Cesaro method. The following theorem gives similar results for four dimensional
Cesaro submethods.

Theorem 2.3. Let 51(n,m) = (A (n), ™M (m)) and Bz(n,m) = (A (n), u®(m)) be
two double index sequences such that

(1) 1)
by AV ) (m)

AR AV q
nm ) (1) @ (1m)

then Cg, and Cg, are equivalent for bounded double sequences.

Proof. Let [z] be a bounded double sequence, and define two double sequences T'(n, m)
and t(n,m) by

T(n,m) = max {AD ()™ (m), X (m)u® (m) }
and
= min { m), A® (n) @ (m)} .
t(n,
T (n,m) = (Ti(). Ta(m) and £ (n.m) = (t2(m).ta(m) by

T*(n,m) = { AV (), B (m)), AV (n)pt) (m) =T (n,m)
’ (A® (), 1@ (m) , XD ()@ (m) = T(n,m)

m)

It is easy to see that P — lim = 1. Now define two double index sequences

and
’ (A (), x®(m)), A (n) ) (m) = t(n, m).
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Note that T'(n,m) = T1(n)T2(m) and t(n,m) = t;(n)ta(m). Then for fixed n,m we
get

. (A ()1 (m))

|(Cﬁ l’) - (0,321:) | = — Z Tip —

1 nm nm (1) (1) J
AD()pD(m) =

1 ()\(2)("),/1,(2)(771))

) 2

(3:k)=(1,1)

T*(n,m)

1 1
- T(n,m) Z xjk_t(n,m) Z ik

(4,k)=(1,1)

t* (n,m)

- 2 (T<n1, m) t(n,lm>) o

(4,k)=(1,1)

1 (T1(n),t2(m)) (t1(n),T2(m))
+T(n, m) | Z ikt . Z ik
(4,k)=(t1(n)+1,1) (4,k)=(1,t2(m)+1)
(T1(n),T2(m))
+ Z Zjk
(4,k)=(t1(n)+1,t2(m)+1)

t*(n,m)

T1 (n)Tg (m) — tl (n)tg (m)
Z T1 (’I’L)TQ (m)t1 (n)t2 m)

IA

||x||(0072)
(4,k)=(1,1)

= 2[00, Ty (n)T2(m)
t1(n)ta(m

= 2 HﬁCH(oo,Q) (1 B TiEn;;z((m)))
i

= 2|zl (s (1 - T&%) . (2.6)

|(Cﬁlx)nm - L| S |(Cgll‘)nm - (Cﬁzx)nm| + |(Cﬂ2x)nm - L| )
2.6 implies that [z] is Cj3, summable to L provided that [z] is Cg, summable to L.
Hence, Cp, is equivalent to C'g, for bounded double sequences. O

Since

We have compared C3 and C; for bounded double sequences in Theorem 2.2.
Next, replacing the convergence condition in 2.1 by P — boundedness, we show that
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Cp is equivalent to € for nonnegative double sequences that are Cg — summable to
0.

Theorem 2.4. Let § = (A(n),u(m)) be a double index sequence. Then the following
statements are equivalent:
i) The double sequence [y] = (Ynm) defined by

(A +1Du(m+1)
y‘( Nn)a(m)

) , foralln,méeN (2.7)

is P — bounded.
i) [x] is C1 summable to O where [x] is a nonnegative double sequence that is
Cz summable to 0.

Proof. Let [z] is a nonnegative double sequence that is Cjzg summable to 0 and assume
that the double sequence [y] defined by 2.7 is P — bounded. Consider the sets

Fi =N\E(\) = {a1(n)} and F» = N\E(p) =: {aa(m)}.

Case I. If the sets F; and F5 are finite then Theorem 2.1 implies that Cg C Cf.
Case II. Assume F; and F5 are both infinite sets. Then there exists an ng such that for
n,m > ng, a(n) > A(1) and ag(m) > p(1). Since E(A\)NFy = @ and E(u) N Fy = &,
for all n,m > ng, there exist p,q¢ € N such that A(p) < a1(n) < A(p + 1) and
1(q) < as(m) < pu(g+1). It can be written that a1 (n) = A(p)+a and as(m) = u(q)+b,
where

O0<a<Ap+1)—Ap) and 0 < b < u(g+1) — ulq). (2.8)

Now define a double index sequence (3’ as
B'(n,m) = (a1(n), az(m)).
Then for n,m > ng we have,

(a1(n),az(m)) (A(p),n(a))

1 1
(Cpr),,,, = Tjk = DT
ai(n)az(m) e (A(p) +a) (u(q) +b) R
1 (A(p),n(q)+b) (Ap)+a,u(q))
+ Z Tk + Z Tk +
) b
(Ap) + @) (1la) +8) | (T (k) =(A(p)+1,1)

(Ap)+a,u(a)+b)
Ijk
(3,k)=(A(p)+1,1(q)+1)
(A(p),u(q))

3
Yo 2= e re ety | 2

(4,k)=(1,1) (4,k)=(1,1)

(A(p+1),u(q+1))

(A(p),n(q))
Tjk

< _
~ AP 8



52 Mehmet Unver

(AMp+1),p(q+1))
Tk
(J,k)=(1,1)

+3

Ap+Du(g+1) 1
(A(p) +a) (u(g) +b) AMp+ V(g + 1)

Ap+Dpla+1) o
A(p)p(q) (504101

Since P — lim [z] = 0 and [y] is P — bounded, from 2.9 we get
P — lim (C’g/x)n =0.

m

< (Cpa),, +3 (2.9)

As the double sequence {(Ciz),,,} may be partitioned into two subsequences
{(Cgx),, } and {(Csz),, }. each having the common P-limit 0, [z] must be
Cq — summable to 0.

Case III. Assume F) is infinite set and F5 is finite set and define a double index
sequence (3’ as

6/(n7m) = (al(n)zu(m)) .
Then for all n > ng and for all m € N

1 (a1 (n),p(m))

(Cot)py = —— . ik
o) 2
1 (A(p)ZMM)) (A(p)iu(m))
= ST T Zjp + Zjk
/\ J J
W) +a)um) | ;5500 () =(Mp)+1,1)
1 (A(p),u(m)) 1 (A(p+1),u(m+1))
< Tk + Tjk
DY A
(p)u(m) =) A@) +a)um) 5=
1 (Mp)i(m))
< —_ Tik
(p)p(m) R
Ap + Dp(m +1) 1 (/\(p+1),u(m+1))m
A Ap +1 1 ik
) +a) plm) AT Dp(m+ 1) 2
Ap+ Dp(m+1)
< (C’g:c)pq + Np)p(m) (Cﬁ$)p+17m+1 .
Then as in Case II we have P — lim (Cyz),,,, = 0.

Case IV. If Fj is finite set and F5 is infinite set, then we can get the proof as in Case
IIT by interchanging the roles of F} and Fb.

Conversely assume that [y] is not P — bounded. Then there exist two index
sequences n(j) and m(k) such that

i MG D) 41
B = ) (m (k)
A(n() +1) > 27 (n(j)) and p(m(k) + 1) > 2u(m(k)), (2.11)

= o0, (2.10)
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for all a, b € Ny := NU{0}
o AU lmm
lj A(n(j +a)) Land 1 pu(m(k +0)) ! (212)

and for all s € N

A((L)(m(L)) + . + Aln(s — D)p(m(s — 1)) < An(s))u(m(s).

Now define the double sequence [z] = (xpq) by

{ p € (A(n(1)), 2 (n(t))]
_ 1, and t=1,2,..
ra = q € (u(m(t)), 2u(m(t))]

0, otherwise

For fixed n,m such that A(n(1) +1) < A(n) and p(m(1) +1) < pu(m), there exist j, k
such that A(n(j) +1) < A(n) < A(n(j+ 1)) and p(m(k) +1) < p(m) < p(m(k +1)).
Then we have,

(A(n),p(m))

E Lpq

(p,a)=(1,1)

(Conm = Nyt

1 { (2X(n(1)),2p(m(1))) (2X(n(8)),2p(m(1))) }
(p»q)

N 14+.. 4+
K =(A(n(1)+1,p(m(k))+1) (P,)=(A(n()+1,1(m(i))+1)

A(n(@) + Dp(m(i) + 1) A1) p(m(1)) + ... + An(i) p(m(i))
A(n)p(m) A(n(@) + Dp(m(i) + 1)

2X\(n(3))p(m(i))
= Mn@) + D)p(m(i) + 1) (2.13)

where ¢ = min {3, k} . Hence, from 2.10 and 2.13 we get

P —lim (Cgz),,,, = 0. (2.14)

m

Now let 3'(j,k) = (a(j),v(k)) be a double index sequences where

a(j) = 2AM(n(j)) and y(k) = 2u(m(k)).
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Then we get
(a(ji(k))
Copa)y = —mmm Tk
k
a(j)( )(m:(m)
) (2A<n(j)§»(m<k>>>
= - Lk
An@)p(mk) 5=
) <A(n<j>>§,;:‘<m<k)>> (QA(n(j))Z»u(M(k)))
= . Tik + Tk
A\ k J J
(GDumE) | Gz UGB =(m())+1,1)
() 2u(m(k))) @A (n()),2n(m(k)))
+ Z T, + Z Tk

(4,k)=(1,pn(m(k))+1) G,k)=(A(n(5))+1,u(m(k))+1)
| 3 A(n(i))u(m(i))
= 2 (Cya),, + > 2n)tmiy))
19 T X0 alm ()

Since i = min{j, k}, there exist nonnegative integers a, b such that i = j + a and

Z.
Hence [z] is not Cy summable. O

1=k +b. Then 2.12, 2.14 and Proposition 1.1 imply that P — li_r]? (Cg/x)jk =
J,
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