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1. Introduction

Some equivalance results for Cesàro submethods have been studied by Goffman
and Petersen [2], Armitage and Maddox [1] and Osikiewicz [5]. In this paper we
consider the same concept for four dimensional Cesàro method C1 := (C, 1, 1). First
we recall some definitions.

A double sequence [x] = (xjk) is said to be P − convergent (i.e., it is convergent
in Pringsheim sense) to L if for all ε > 0 there exists an n0 = n0(ε) such that
|xnm − L| < ε for all n, m ≥ n0 [7]. In this case we write P − lim

j,k
xjk = L. Recall that

[x] is bounded if and only if

‖x‖(∞,2) := sup
j,k

|xjk| < ∞.

By l(∞,2) we denote the set of all bounded double sequences.
Note that a P − convergent double sequence need not be in l(∞,2). Let

P − l(∞,2) :=

{
[x] = (xjk) : sup

n≥h1,m≥h2

|xjk| < ∞, for some h1, h2 ∈ N

}
and call it the space of all P − bounded double sequences where N denotes the set of
all positive integers. If a double sequence is P − convergent then it is P − bounded
and it is easy to see that P − lim [x] [y] = 0 whenever P − lim [x] = 0 and [y] is
P − bounded.
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Let A = (anm
jk ) be a four dimensional summability matrix and [x] = (xjk) be

a double sequence. If [Ax] := {(Ax)nm} is P − convergent to L then we say [x] is
A− summable to L where

(Ax)nm :=
∑
j,k

anm
jk xjk, for all n, m ∈ N.

A is said to be RH − regular if it maps every bounded P − convergent sequence into
a P − convergent sequence with the same P−limit [3]. Some recent developments
concerning the summability by four dimensional matrices may be found in [6].

Recall that four dimensional Cesàro matrix C1 = (cnm
jk ) is defined by

cnm
jk =

{
1

nm , j ≤ n and k ≤ m
0, otherwise.

The double index sequence β = β(n, m) is defined as β(n, m) = (λ(n), µ(m))
where λ(n) and µ(m) are strictly increasing single sequences of positive integers.
Let [x] = (xjk) be a double sequence. We say [y] = (yjk) is a subsequence of [x] if
yjk = xβ(j,k) for all j, k ∈ N.

Let β(n, m) = (λ(n), µ(m)) be a double index sequence and [x] = (xjk) be a
double sequence. Then the Cesàro submethod Cβ := (C

β
, 1, 1) is defined to be

(Cβx)nm =
1

λ(n)µ(m)

(λ(n),µ(m))∑
(j,k)=(1,1)

xjk

where
(λ(n),µ(m))∑
(j,k)=(1,1)

xjk =
λ(n)∑
j=1

µ(m)∑
k=1

xjk. Since
{
(Cβx)nm

}
is a subsequence of {(Cx)nm},

the method Cβ is RH − regular for any β.
Let x = (xk) be a single sequence and [xc] = (xc

jk), [xr] = (xr
jk) be two double

sequences such that
xc

jk = xj , for all k ∈ N
xr

jk = xk, for all j ∈ N.

It easy to see that the following statements are equivalent:
(a) lim x = L; (b) P − lim [xc] = L; (c) P − lim [xr] = L.
The next result follows easily.

Proposition 1.1. Let [x] = (xjk) be a double sequence such that xjk = yjzk for all
j, k ∈ N where y = (yj) and z = (zk) are single sequences (we call such a double
sequence as a factorable double sequence). If y, z are convergent to L1, L2 respectively
then [x] is P−convergent to L1L2.

2. Inclusion results

Let A and B two four dimensional summability matrix methods. If every double
sequence which is A summable is also B summable to the same limit, then we say B
includes A and we write A ⊆ B.
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In [1] Armitage and Maddox have given an inclusion theorem for submethods of
ordinary Cesàro method. Now, we give an analog of that result for four dimensional
Cesàro submethods.

Theorem 2.1. Let β1(n, m) =
(
λ(1)(n), µ(1)(m)

)
and β2(n, m) =

(
λ(2)(n), µ(2)(m)

)
be

two double index sequences.
i) If E(λ(2))\E

(
λ(1)

)
and E(µ(2))\E(µ(1)) are finite sets then Cβ1 ⊆ Cβ2 .

ii) If Cβ1 ⊆ Cβ2 then E(λ(2))\E
(
λ(1)

)
or E(µ(2))\E(µ(1)) is finite set,

where

E
(
λ(i)

)
:=

{
λ(i)(n) : n ∈ N

}
and E

(
µ(i)

)
:=

{
µ(i)(m) : m ∈ N

}
; i=1,2.

Proof. i) If E(λ(2))\E
(
λ(1)

)
and E(µ(2))\E(µ(1)) are finite then there exists n0 such

that
{
λ(2)(n) : n ≥ n0

}
⊂ E

(
λ(1)

)
and

{
µ(2)(m) : m ≥ n0

}
⊂ E(µ(1)). Let n(j) and

m(k) be two increasing index sequences such that for all n, m ≥ n0

λ(2)(n) = λ(1)(n(j)) and µ(2)(m) = µ(1)(m(k)).

Then P − lim(Cβ1x)nm = L implies P − lim(Cβ1x)n(j),m(k) = L. Hence this implies
P − lim(Cβ2x)nm = L.

ii) Suppose that Cβ1 implies Cβ2 but that E(λ(2))\E
(
λ(1)

)
and E(µ(2))\E(µ(1))

are infinite sets. Then there are strictly increasing sequences λ(2)(n(j)) and µ(2)(m(k))
such that for all j, k ∈ N λ(2)(n(j)) 6∈ E

(
λ(1)

)
and µ(2)(m(k)) 6∈ E(µ(1)). Define

[t] = (tnm) by

tnm=

{
jk, if n = λ(2)(n(j)) and m = µ(2)(m(k))
0, otherwise

.

Let (Cs)nm = tnm, i.e.
1

nm

(n,m)∑
(j,k)=(1,1)

sjk = tnm. If n ∈ E
(
λ(1)

)
and m ∈ E(µ(1)) then

tnm = 0 which implies the sequence [s] is Cβ1 − summable to zero. Now we define a
double index sequence β3 as

β3 = (λ(2)(n(j)), µ(2)(m(k))).

Since

1
λ(2)(n(j))µ(2)(m(k))

((λ(2)(n(j))µ(2)(m(k))))∑
(p,q)=(1,1)

spq = Cλ(2)(n(j)),µ(2)(m(k))

and tnm = jk for n ∈
{
λ(2)(n(j))

}
and m ∈

{
µ(2)(m(k))

}
we have [s] 6∈ Cβ3 which

implies [s] 6∈ Cβ2 . �

Osikiewicz [5] has given a characterization for equivalence of Cesàro method
and its submethods. The following theorem is an analog for four dimensional Cesàro
method and its submethods.
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Theorem 2.2. Let β = (λ(n), µ(m)) be a double index sequence.
i) If

lim
n

λ(n + 1)
λ(n)

= lim
m

µ(m + 1)
µ(m)

= 1 (2.1)

then C1 and Cβ are equivalent for bounded double sequences.
ii) If C1 and Cβ are equivalent for bounded double sequences then

lim
n

λ(n + 1)
λ(n)

= 1 or lim
m

µ(m + 1)
µ(m)

= 1.

Proof. i) By Theorem 2.1 we have C1 ⊆ Cβ . Let [x] = (xjk) be a bounded double
sequence that is Cβ summable to L and assume

lim
n

λ(n + 1)
λ(n)

= lim
m

µ(m + 1)
µ(m)

= 1.

Consider the sets F1 = N\E(λ) =: {α1(n)} and F2 = N\E(µ) =: {α2(m)} .
Case I. If the sets F1 and F2 are finite, then Theorem 2.1 implies that Cβ ⊆ C1.
Case II. Assume F1 and F2 are both infinite sets. Then there exists an n0 such that for
n, m ≥ n0, α1(n) > λ(1) and α2(m) > µ(1). Since E(λ)∩F1 = ∅ and E(µ)∩F2 = ∅,
for all n, m ≥ n0, there exist p, q ∈ N such that λ(p) < α1(n) < λ(p + 1) and
µ(q) < α2(m) < µ(q+1). It can be written that α1(n) = λ(p)+a and α2(m) = µ(q)+b,
where

0 < a < λ(p + 1)− λ(p) and 0 < b < µ(q + 1)− µ(q). (2.2)
Now define a double index sequence β′ as

β′(n, m) = (α1(n), α2(m)) .

Then for n, m ≥ n0,∣∣∣(Cβ′x)nm − (Cβx)pq

∣∣∣ =

∣∣∣∣∣∣ 1
α1(n)α2(m)

(α1(n),α2(m))∑
(j,k)=(1,1)

xjk −
1

λ(p)µ(q)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
(λ(p) + a) (µ(q) + b)

(λ(p)+a,µ(q)+b)∑
(j,k)=(1,1)

xjk −
1

λ(p)µ(q)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
(λ(p) + a) (µ(q) + b)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk −
1

λ(p)µ(q)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk

+
1

(λ(p) + a) (µ(q) + b)


(λ(p),µ(q)+b)∑

(j,k)=(1,µ(q)+1)

xjk +
(λ(p)+a,µ(q))∑

(j,k)=(λ(p)+1,1)

xjk

+
(λ(p)+a,µ(q)+b)∑

(j,k)=(λ(p)+1,µ(q)+1)

xjk


∣∣∣∣∣∣

≤ ‖x‖(∞,2)

(λ(p),µ(q))∑
(j,k)=(1,1)

∣∣∣∣ 1
(λ(p) + a) (µ(q) + b)

− 1
λ(p)µ(q)

∣∣∣∣



Inclusion results for four dimensional Cesàro submethods 47

+ ‖x‖(∞,2)

bλ(p) + aµ(q) + ab

(λ(p) + a) (µ(q) + b)

≤ 2 ‖x‖(∞,2)

bλ(p) + aµ(q) + ab

λ(p)µ(q)
.

By 2.2 we have∣∣∣(Cβ′x)nm − (Cβx)pq

∣∣∣ ≤ 2 ‖x‖(∞,2)

bλ(p) + aµ(q) + ab

λ(p)µ(q)

≤ 2 ‖x‖(∞,2)

(
λ(p + 1)µ(q + 1)

λ(p)µ(q)
− 1

)
. (2.3)

Since ∣∣(Cβ′x)nm − L
∣∣ ≤ ∣∣∣(Cβ′x)nm − (Cβx)pq

∣∣∣ +
∣∣∣(Cβx)pq − L

∣∣∣
it follows from 2.1, 2.3 and Proposition 1.1 that P − lim

n,m
(Cβ′x)nm = L.

As the double sequence {(C1x)nm} may be partitioned into two subsequences{
(Cβ′x)nm

}
and

{
(Cβx)nm

}
, each having the common P -limit L, [x] must be C1 −

summable to L. Hence Cβ ⊆ C1.
Case III. Assume F1 is infinite set and F2 is finite set and define a double index
sequence β′ as

β′(n, m) = (α1(n), µ(m)) .

Now using the same argument in Case II with taking b = 0 we have∣∣∣(Cβ′x)nm − (Cβx)pq

∣∣∣ ≤ 2 ‖x‖(∞,2)

(
λ(p + 1)

λ(p)
− 1

)
. (2.4)

Since ∣∣(Cβ′x)nm − L
∣∣ ≤ ∣∣∣(Cβ′x)nm − (Cβx)pq

∣∣∣ +
∣∣∣(Cβx)pq − L

∣∣∣
it follows from 2.1, 2.4 and Proposition 1.1 that P − lim

n,m
(Cβ′x)nm = L.

As the double sequence {(C1x)nm} may be partitioned into two subsequences{
(Cβ′x)nm

}
and

{
(Cβx)nm

}
, each having the common P -limit L, [x] must be C1 −

summable to L. Hence Cβ ⊆ C1.
Case IV. If F1 is finite set and F2 is infinite set, then we can get the proof as in Case
III by changing the roles of F1 and F2.

Hence for all cases we get Cβ ⊆ C1.

ii) Assume that lim sup
n

λ(n + 1)
λ(n)

> 1 and lim sup
m

µ(m + 1)
µ(m)

> 1. Then, we choose

two strictly increasing sequences of positive integers n(j) and m(k) such that

lim
j

λ(n(j) + 1)
λ(n(j))

= L1 > 1 and lim
k

µ(m(k) + 1)
µ(m(k))

= L2 > 1 (2.5)

with λ(n(j) + 1) − λ(n(j)) and µ(m(k) + 1) − µ(m(k)) are odd. Let Ij and Sk

be the intervals [λ(n(j)) + 1, λ(n(j) + 1)− 1] and [µ(m(k)) + 1, µ(m(k) + 1)− 1] , re-
spectively. |Ij | and |Sk| will always be even by the choice of n(j) and m(k), where
|E| is the number of the integers in E. If we define a double sequence [x] by xpq = 0
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if p ∈
[
λ(n(j)) + 1, λ(n(j)) +

|Ij |
2

]
or q ∈

[
µ(m(k)) + 1, µ(m(k)) +

|Sk|
2

]
, xpq = 1

if p ∈
(

λ(n(j)) +
|Ij |
2

, λ(n(j) + 1)− 1
]

and q ∈
(

µ(m(k)) +
|Sk|
2

, µ(m(k) + 1)− 1
]
,

xpq = 0 if p 6∈ |Ij | or q 6∈ |Sk| and p or q is odd, xpq = 1 if p 6∈ |Ij | or q 6∈ |Sk| and p

and q are even, for j, k = 1, 2, .... Then for given j, k we have
∑

(p,q)∈Ij×Sk

xpq =
|Ij | |Sk|

4
and for given n, m we have

(Cβx)nm =
1

λ(n)µ(m)

(λ(n),µ(m))∑
(p,q)=(1,1)

xpq =
1

λ(n)µ(m)

[∣∣∣∣λ(n)
2

∣∣∣∣] [∣∣∣∣µ(m)
2

∣∣∣∣]
where [|K|] denotes the greatest integer that is not greater than K. Hence, we have

P − lim
n,m

(Cβx)nm =
1
4
. Now define a double index sequence σ(j, k) by

σ(j, k) = (a(j), b (k))

where a(j) = λ(n(j)) +
|Ij |
2

and b(k) = µ(m(k)) +
|Sk|
2

. For all j we get

(Cσx)jk =
1

a(j)b (k)

(a(k),b(k))∑
(p,q)=(1,1)

xpq

=
1(

λ(n(j)) +
|Ij |
2

) 1(
µ(m(k)) +

|Sk|
2

)
λ(n(j))+

|Ij |
2

,µ(m(k))+
|Sk|
2

∑
(p,q)=(1,1)

xpq

=
1(

λ(n(j)) +
|Ij |
2

) 1(
µ(m(k)) +

|Sk|
2

) (λ(n(j)),µ(m(k)))∑
(p,q)=(1,1)

xpq

≈ 1(
λ(n(j)) +

|Ij |
2

) 1(
µ(m(k)) +

|Sk|
2

) λ(n(j))
2

µ(m(k))
2

=
λ(n(j))

2λ(n(j)) + |Ij |
µ(m(k))

2µ(m(k)) + |Sk|

=
λ(n(j))

2λ(n(j)) + λ(n(j) + 1)− λ(n(j))− 1
µ(m(k))

2µ(m(k)) + µ(m(k) + 1)− µ(m(k))− 1

=
1

λ(n(j) + 1)
λ(n(j))

+ 1− 1
λ(n(j))

1
µ(m(k) + 1)

µ(m(k))
+ 1− 1

µ(m(k))

.

From 2.5 and Proposition 1.1 we have

P − lim
j,k

(Cσx)jk =
1

L1 + 1
1

L2 + 1
<

1
4
.
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Since
{

(Cσx)jk

}
and

{
(Cβx)nm

}
are two subsequences of {(C1x)nm} with P −

lim
j,k

(Cσx)jk <
1
4

and P − lim
n,m

(Cβx)nm =
1
4
, [x] cannot be C1 − summable.On the

other hand, we may choose n(j) and m(k) such that

λ(n(j) + 1)− λ(n(j)) and µ(m(k) + 1)− µ(m(k)) are even

or

λ(n(j) + 1)− λ(n(j)) is odd and µ(m(k) + 1)− µ(m(k)) is even

or

λ(n(j) + 1)− λ(n(j)) is even and µ(m(k) + 1)− µ(m(k)) is odd

and we will continue the proof in the same way. Hence, we have C1 and Cβ are not
equivalent for bounded sequences. �

Osikiewicz [5] has given an inclusion result between submethods of the ordi-
nary Cesàro method. The following theorem gives similar results for four dimensional
Cesàro submethods.

Theorem 2.3. Let β1(n, m) = (λ(1)(n), µ(1)(m)) and β2(n, m) = (λ(2)(n), µ(2)(m)) be
two double index sequences such that

P − lim
nm

λ(1)(n)µ(1)(m)
λ(2)(n)µ(2)(m)

= 1

then Cβ1 and Cβ2 are equivalent for bounded double sequences.

Proof. Let [x] be a bounded double sequence, and define two double sequences T (n, m)
and t(n, m) by

T (n, m) = max
{

λ(1)(n)µ(1)(m), λ(2)(n)µ(2)(m)
}

and

t(n, m) = min
{

λ(1)(n)µ(1)(m), λ(2)(n)µ(2)(m)
}

.

It is easy to see that P − lim
nm

t(n, m)
T (n, m)

= 1. Now define two double index sequences

T ∗(n, m) = (T1(n), T2(m)) and t∗(n, m) = (t1(n), t2(m)) by

T ∗(n, m) =
{ (

λ(1)(n), µ(1)(m)
)
, λ(1)(n)µ(1)(m) = T (n, m)(

λ(2)(n), µ(2)(m)
)
, λ(2)(n)µ(2)(m) = T (n, m)

and

t∗(n, m) =
{ (

λ(1)(n), µ(1)(m)
)
, λ(1)(n)µ(1)(m) = t(n, m)(

λ(2)(n), µ(2)(m)
)
, λ(2)(n)µ(2)(m) = t(n, m).
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Note that T (n, m) = T1(n)T2(m) and t(n, m) = t1(n)t2(m). Then for fixed n, m we
get

∣∣(Cβ1x)nm − (Cβ2x)nm

∣∣ =

∣∣∣∣∣∣∣
1

λ(1)(n)µ(1)(m)

(λ(1)(n),µ(1)(m))∑
(j,k)=(1,1)

xjk −

1
λ(2)(n)µ(2)(m)

(λ(2)(n),µ(2)(m))∑
(j,k)=(1,1)

xjk

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
T (n, m)

T∗(n,m)∑
(j,k)=(1,1)

xjk −
1

t(n, m)

t∗(n,m)∑
(j,k)=(1,1)

xjk

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∗(n,m)∑

(j,k)=(1,1)

(
1

T (n, m)
− 1

t(n, m)

)
xjk

+
1

T (n, m)


(T1(n),t2(m))∑

(j,k)=(t1(n)+1,1)

xjk +
(t1(n),T2(m))∑

(j,k)=(1,t2(m)+1)

xjk

+
(T1(n),T2(m))∑

(j,k)=(t1(n)+1,t2(m)+1)

xjk


∣∣∣∣∣∣

≤ ‖x‖(∞,2)

t∗(n,m)∑
(j,k)=(1,1)

T1(n)T2(m)− t1(n)t2(m)
T1(n)T2(m)t1(n)t2(m)

+ ‖x‖(∞,2)

1
T1(n)T2(m)

{(T1(n)− t1(n)) t2(m)

+t1(n) (T2(m)− t2(m)) + (T1(n)− t1(n)) (T2(m)− t2(m))}

= 2 ‖x‖(∞,2)

T1(n)T2(m)− t1(n)t2(m)
T1(n)T2(m)

= 2 ‖x‖(∞,2)

(
1− t1(n)t2(m)

T1(n)T2(m)

)
= 2 ‖x‖(∞,2)

(
1− t(n, m)

T (n, m)

)
. (2.6)

Since ∣∣(Cβ1x)nm − L
∣∣ ≤ ∣∣(Cβ1x)nm − (Cβ2x)nm

∣∣ +
∣∣(Cβ2x)nm − L

∣∣ ,

2.6 implies that [x] is Cβ1 summable to L provided that [x] is Cβ2 summable to L.
Hence, Cβ1 is equivalent to Cβ2 for bounded double sequences. �

We have compared Cβ and C1 for bounded double sequences in Theorem 2.2.
Next, replacing the convergence condition in 2.1 by P − boundedness, we show that
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Cβ is equivalent to C1 for nonnegative double sequences that are Cβ − summable to
0.

Theorem 2.4. Let β = (λ(n), µ(m)) be a double index sequence. Then the following
statements are equivalent:

i) The double sequence [y] = (ynm) defined by

ynm =
(

λ(n + 1)µ(m + 1)
λ(n)µ(m)

)
, for all n, m ∈ N (2.7)

is P − bounded.
ii) [x] is C1 summable to 0 where [x] is a nonnegative double sequence that is

Cβ summable to 0.

Proof. Let [x] is a nonnegative double sequence that is Cβ summable to 0 and assume
that the double sequence [y] defined by 2.7 is P − bounded. Consider the sets

F1 = N\E(λ) =: {α1(n)} and F2 = N\E(µ) =: {α2(m)} .

Case I. If the sets F1 and F2 are finite then Theorem 2.1 implies that Cβ ⊆ C1.
Case II. Assume F1 and F2 are both infinite sets. Then there exists an n0 such that for
n, m ≥ n0, α1(n) > λ(1) and α2(m) > µ(1). Since E(λ)∩F1 = ∅ and E(µ)∩F2 = ∅,
for all n, m ≥ n0, there exist p, q ∈ N such that λ(p) < α1(n) < λ(p + 1) and
µ(q) < α2(m) < µ(q+1). It can be written that α1(n) = λ(p)+a and α2(m) = µ(q)+b,
where

0 < a < λ(p + 1)− λ(p) and 0 < b < µ(q + 1)− µ(q). (2.8)

Now define a double index sequence β′ as

β′(n, m) = (α1(n), α2(m)) .

Then for n, m ≥ n0 we have,

(Cβ′x)nm =
1

α1(n)α2(m)

(α1(n),α2(m))∑
(j,k)=(1,1)

xjk =
1

(λ(p) + a) (µ(q) + b)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk

+
1

(λ(p) + a) (µ(q) + b)


(λ(p),µ(q)+b)∑

(j,k)=(1,µ(q)+1)

xjk +
(λ(p)+a,µ(q))∑

(j,k)=(λ(p)+1,1)

xjk +

(λ(p)+a,µ(q)+b)∑
(j,k)=(λ(p)+1,µ(q)+1)

xjk


≤ 1

λ(p)µ(q)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk +
3

(λ(p) + a) (µ(q) + b)

(λ(p+1),µ(q+1))∑
(j,k)=(1,1)

xjk

≤ 1
λ(p)µ(q)

(λ(p),µ(q))∑
(j,k)=(1,1)

xjk
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+3
λ(p + 1)µ(q + 1)

(λ(p) + a) (µ(q) + b)
1

λ(p + 1)µ(q + 1)

(λ(p+1),µ(q+1))∑
(j,k)=(1,1)

xjk

≤ (Cβx)pq + 3
λ(p + 1)µ(q + 1)

λ(p)µ(q)
(Cβx)p+1,q+1 . (2.9)

Since P − lim [x] = 0 and [y] is P − bounded, from 2.9 we get

P − lim
n,m

(Cβ′x)nm = 0.

As the double sequence {(C1x)nm} may be partitioned into two subsequences{
(Cβ′x)nm

}
and

{
(Cβx)nm

}
, each having the common P -limit 0, [x] must be

C1 − summable to 0.
Case III. Assume F1 is infinite set and F2 is finite set and define a double index
sequence β′ as

β′(n, m) = (α1(n), µ(m)) .

Then for all n ≥ n0 and for all m ∈ N

(Cβ′x)nm =
1

α1(n)µ(m)

(α1(n),µ(m))∑
(j,k)=(1,1)

xjk

=
1

(λ(p) + a) µ(m)


(λ(p),µ(m))∑
(j,k)=(1,1)

xjk +
(λ(p)+a,µ(m))∑

(j,k)=(λ(p)+1,1)

xjk


≤ 1

λ(p)µ(m)

(λ(p),µ(m))∑
(j,k)=(1,1)

xjk +
1

(λ(p) + a)µ(m)

(λ(p+1),µ(m+1))∑
(j,k)=(1,1)

xjk

≤ 1
λ(p)µ(m)

(λ(p),µ(m))∑
(j,k)=(1,1)

xjk

+
λ(p + 1)µ(m + 1)
(λ(p) + a)µ(m)

1
λ(p + 1)µ(m + 1)

(λ(p+1),µ(m+1))∑
(j,k)=(1,1)

xjk

≤ (Cβx)pq +
λ(p + 1)µ(m + 1)

λ(p)µ(m)
(Cβx)p+1,m+1 .

Then as in Case II we have P − lim
n,m

(C1x)nm = 0.

Case IV. If F1 is finite set and F2 is infinite set, then we can get the proof as in Case
III by interchanging the roles of F1 and F2.

Conversely assume that [y] is not P − bounded. Then there exist two index
sequences n(j) and m(k) such that

P − lim
λ(n(j) + 1)µ(m(k) + 1)

λ(n(j))µ(m(k))
= ∞, (2.10)

λ(n(j) + 1) > 2λ (n(j)) and µ(m(k) + 1) > 2µ(m(k)), (2.11)
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for all a, b ∈ N0 := N∪{0}

lim
j

λ(n(j))
λ(n(j + a))

= 1 and lim
k

µ(m(k))
µ(m(k + b))

= 1 (2.12)

and for all s ∈ N

λ(n(1))µ(m(1)) + ... + λ(n(s− 1))µ(m(s− 1)) < λ(n(s))µ(m(s)).

Now define the double sequence [x] = (xpq) by

xpq =

 1,

 p ∈ (λ(n(t)), 2λ (n(t))]
and

q ∈ (µ(m(t)), 2µ(m(t))]
t = 1, 2, ...

0, otherwise

.

For fixed n, m such that λ(n(1) + 1) ≤ λ(n) and µ(m(1) + 1) ≤ µ(m), there exist j, k
such that λ(n(j) + 1) ≤ λ(n) ≤ λ(n(j + 1)) and µ(m(k) + 1) ≤ µ(m) ≤ µ(m(k + 1)).
Then we have,

(Cβx)nm =
1

λ(n)µ(m)

(λ(n),µ(m))∑
(p,q)=(1,1)

xpq

=
1

λ(n)µ(m)


(2λ(n(1)),2µ(m(1)))∑

(p,q)=(λ(n(1))+1,µ(m(k))+1)

1 + ... +
(2λ(n(i)),2µ(m(i)))∑

(p,q)=(λ(n(i))+1,µ(m(i))+1)


=

λ(n(i) + 1)µ(m(i) + 1)
λ(n)µ(m)

λ(n(1))µ(m(1)) + ... + λ(n(i))µ(m(i))
λ(n(i) + 1)µ(m(i) + 1)

≤ λ(n(i) + 1)µ(m(i) + 1)
λ(n)µ(m)

2λ(n(i))µ(m(i))
λ(n(i) + 1)µ(m(i) + 1)

≤ 2λ(n(i))µ(m(i))
λ(n(i) + 1)µ(m(i) + 1)

(2.13)

where i = min {j, k} . Hence, from 2.10 and 2.13 we get

P − lim
n,m

(Cβx)nm = 0. (2.14)

Now let β′(j, k) = (α(j), γ(k)) be a double index sequences where

α(j) = 2λ(n(j)) and γ(k) = 2µ(m(k)).
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Then we get

(Cβ′x)jk =
1

α(j)γ(k)

(α(j),γ(k))∑
(j,k)=(1,1)

xjk

=
1

4λ(n(j))µ(m(k))

(2λ(n(j)),2µ(m(k)))∑
(j,k)=(1,1)

xjk

=
1

4λ(n(j))µ(m(k))


(λ(n(j)),µ(m(k)))∑

(j,k)=(1,1)

xjk +
(2λ(n(j)),µ(m(k)))∑
(j,k)=(λ(n(j))+1,1)

xjk

+
(λ(n(j)),2µ(m(k)))∑

(j,k)=(1,µ(m(k))+1)

xjk +
(2λ(n(j)),2µ(m(k)))∑

(j,k)=(λ(n(j))+1,µ(m(k))+1)

xjk


=

1
4

(Cβx)jk +
3
4

λ(n(i))µ(m(i))
λ(n(j))µ(m(k))

.

Since i = min{j, k}, there exist nonnegative integers a, b such that i = j + a and

i = k + b. Then 2.12, 2.14 and Proposition 1.1 imply that P − lim
j,k

(Cβ′x)jk =
3
4
.

Hence [x] is not C1 summable. �
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