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A kind of bilevel traveling salesman problem

Delia Goina and Oana Ruxandra Tuns (Bode)

Abstract. The present paper highlights a type of a bilevel optimization problem
on a graph. It models a real practical problem. Let N be a finite set, G = (N, E)
be a weighted graph and let I ⊂ N . Let C1, respectively C2, be the set of those
subgraphs G1 = (N1, E1), respectively G2 = (N2, E2), of G which fulfill some
given conditions in each case. Let a and b be positive numbers and let g be
a natural value function defined on the set of subgraphs of G. We study the
following bilevel programming problem:

ah(G1) + bh(G2) → min
such that
G1 ∈ C1,
G2 ∈ S∗(G1),

where h(Gi) represents the value of a Hamiltonian circuit of minimum value
corresponding to the subgraph Gi, i = 1, 2, and

S∗(G1) = argmin{g(G2) |G2 ∈ C2 and N1 ∩N2 ∩ I = ∅}.

Mathematics Subject Classification (2010): 90C29, 90C35, 90C90.

Keywords: Bilevel programming, lexicographic optimization, traveling salesman
problem.

1. Introduction

Multilevel programming and, subsequently bilevel programming, have lately be-
come important areas in optimization. The investigations of such types of problems
are strongly motivated by their actual real-life applications in areas such as econom-
ics, medicine, engineering etc. The increasing number of these applications have led
mathematicians to develop new theories and mathematical models.
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In mathematical terms, the bilevel programming problem is an optimization
problem where a subset of the variables is constrained to be an optimal solution of
a given optimization problem parameterized by the remaining variables. References
[2], [3] and [6] are useful papers for studies concerning the bilevel and multilevel
programming.

Also, as it is well known, the traveling salesman problem (TSP) is one of the
oldest and most studied combinatorial problem. From the mathematical point of view,
researches concerning the TSP had an important role in development of the graph
theory. Reference [1] presents various aspects of the TSP, especially the ones related
to the methods and algorithms of solving it. References [4] and [5] provide some of
the problems known under the generic name of The Vehicle Routing Problem, which
represent a generalization of the TSP.

In the present paper, a problem of generating new types of routes is studied,
using the bilevel optimization problem as a mathematical tool.

2. The practical problem

The problem studied in the present paper is based on an actual practical problem,
named by us The Milk Collection Problem:1 A dairy products manufacturing company
collects twice a day the milk from a certain area. Collection points are located only
on roads linking villages in the area. The milk is brought to the collection points by
the owners. The quantity of milk delivered depends on the time when the collection
is scheduled. Some providers can bring the milk to the collection points only in the
morning. Others only in the evening, and some of them both in the morning and
in the evening. There exists the possibility for some providers, who deliver milk in
the morning, to store it (in conditions that do not impair the milk quality) and to
offer it for delivery only in the evening. The others do not have this possibility. The
providers impose that, either, the entire quantity of milk offered will be collected by
the dairy products manufacturing company, or nothing. The milk is collected by the
dairy products manufacturing company, in the morning and in the evening, using a
collector tank, which has a capacity denoted by Q.

The problem that arises is that of planning the providers:
- those who bring milk to the collection points in the morning, and the milk is collected
by the collector tank in the morning;
- those who bring milk to the collection points in the morning, but it is necessary to
store it until evening, when it will be collected by the collector tank;
- those who bring milk to the collection points in the evening, and the milk is collected
by the collector tank in the evening,
such that the total cost required for milk collection in a day to be minimum and, a
collection point to be visited by the collector tank at most once in the morning and
at most once in the evening.

1This paper was presented at the ”Mathematics and IT: Research and Education (MITRE-2011)”

International Conference, Chisinau, Republic of Moldova, August 22-25, 2011.
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The providers planning must satisfy the following requirements:
a) the quantity of milk collected in the morning not to exceed the capacity Q of the
collector tank;
b) the quantity of milk collected in the evening (which may be from the evening milk
or from the stored one) not to exceed the capacity Q of the collector tank;
c) the quantity of milk collected in the morning, and the quantity collected in the
evening, must be greater than a specified quantity, denoted by Q, in order to ensure
the continuity in the production process;
d) the quantity of stored milk to be minimum and in the same time fulfilling the
conditions a)-c).

3. The mathematical model of the milk collection problem

Let n be the number of the providers. Let us denote by N = {1, ..., n}. As well,
let us denote by Li, i ∈ {0, 1, ..., n + 1}, the collection point where the provider i
brings the milk. Let L0 be the location where the collector tank starts and Ln+1 be
the location where the collector tank must return. We agree that they coincide, so we
have L0 = Ln+1. The collector tank transportation cost between each two locations
i, j ∈ {0, 1, . . . , n + 1} is known, and it is denoted by cij . By q1

i , respectively q2
i ,

we denote the quantity of milk that can be delivered by the provider i ∈ N in the
morning, respectively in the evening.

Let I1 be the set of indices corresponding to the collection points where providers
can deliver milk only in the morning, but can not store it. Let I2 be the set of indices
corresponding to the collection points where providers can deliver milk both in the
morning and in the evening, but in case they deliver milk in the morning, do not
accept to store it. Let I3 be the set of indices corresponding to the collection points
where providers can deliver milk both in the morning and in the evening, and accept to
store the morning milk in case it is required. Let I4 be the set of indices corresponding
to the collection points where providers can deliver milk only in the evening.

It is obvious that

I1 ∩ I2 = ∅, I1 ∩ I3 = ∅, I1 ∩ I4 = ∅, I2 ∩ I3 = ∅, I2 ∩ I4 = ∅, I3 ∩ I4 = ∅,

I1 ∪ I2 ∪ I3 ∪ I4 = N.

Now, let us consider the complete undirected graph G = (Ñ ;E), where

N = {1, . . . , n}, Ñ = N ∪ {0} ∪ {n + 1} = {0, 1, ..., n, n + 1}

and
E = {{ij} | i ∈ Ñ , j ∈ Ñ , j 6= i}.

The graph vertices correspond to the locations Li, i ∈ {0, 1, . . . , n+1}. Let us denote
by Λ the set of subgraphs Γ = (NΓ, EΓ) of G = (Ñ ;E). We weight the graph G using
the cost matrix C = [cij ]i,j∈Ñ , where ci,j , for i 6= j, is the minimum transport cost
(of the collector tank) from the location i to location j and cii = +∞, for each i ∈ Ñ .
As well, we attach to each node i ∈ {1, . . . , n} two positive weights, q1

i and q2
i .
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In order to elaborate the mathematical model for this problem, we consider two
subgraphs G1 = (N1, E1) and G2 = (N2, E2) of G as variables. The set of nodes of the
first subgraph, N1, corresponds to the indices of the collection points where the milk
is collected in the morning. The set of nodes of the second subgraph, N2, corresponds
to the indices of the collection points where the milk is collected in the evening.

The main objective is to determine the sets N1 and N2, such that the total
transport cost in one day to be minimum and the problem restrictions to be satisfied.

Let us note that, for a fixed set N1, it is obtained a minimum cost of the morning
collection if it is followed a Hamiltonian circuit of minimum value in G1. Analogous,
for a fixed set N2, it is obtained a minimum cost of the evening collection (stored milk
or delivered to the collection points only in the evening) if it is followed a Hamiltonian
circuit of minimum value in G2. Therefore, if for a subgraph Γ of G, we denote by h(Γ)
the value of a Hamiltonian circuit of minimum value corresponding to the subgraph
Γ, then the minimum cost of milk collection in one day it is equal to h(G1) + h(G2).

The graphs G1 and G2 can not be chosen randomly; they must fulfill the problem
restrictions. Thus, in the morning the collector tank can collect only from the nodes
in which the providers deliver milk only in the morning. Therefore, N1 ⊆ I1 ∪ I2 ∪ I3.
In the evening the collector tank can collect milk only from the nodes in which the
providers deliver milk only in the evening or in which the morning milk was stored
until evening. Therefore, N2 ⊆ I2 ∪ I3 ∪ I4.

In each collection point, where the providers can deliver milk both in the morning
and in the evening, and where there exists the possibility to store the morning milk
until evening, the quantity of milk delivered in the morning is collected just once: in
the morning or in the evening. Therefore, the following condition occurs:

N1 ∩N2 ∩ I3 = ∅.

The quantity of milk collected in the morning, equal to
∑

i∈N1
q1
i , must be greater

than, or equal to, Q, and can not exceed the collector tank capacity Q. Also, the
quantity of milk collected in the evening, equal to

∑
i∈N2∩I3

q1
i +

∑
i∈N2

q2
i , can not exceed

the collector tank capacity Q and must be greater than, or equal to, Q.
Let S be the set of all pairs (G1, G2) of subgraphs of the weighted graph G,

G1 = (N1, E1) and G2 = (N2, E2), satisfying the conditions (3.1)-(3.5):

N1 ⊆ I1 ∪ I2 ∪ I3, (3.1)

N2 ⊆ I2 ∪ I3 ∪ I4, (3.2)

N1 ∩N2 ∩ I3 = ∅, (3.3)

Q ≤
∑
i∈N1

q1
i ≤ Q, (3.4)

Q ≤
∑

i∈N2∩I3

q1
i +

∑
i∈N2

q2
i ≤ Q. (3.5)

In order to plan the evening collection, it is necessary that the planning of the
morning collection and of the stored milk, to be done with respect to the capacity
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type restrictions (3.4) and (3.5). For a given N2, the quantity of stored milk is equal
to

∑
i∈N2∩I3

q1
i .

Let g be the real function defined on the set Λ of subgraphs of G, given by

g(Γ) =
∑

i∈NΓ∩I3

q1
i , ∀ Γ = (NΓ, EΓ) ∈ Λ. (3.6)

For each G1 ∈ Λ, let us denote by

S(G1) = {G2 ∈ Λ | (G1, G2) ∈ S}.

If S(G1) 6= ∅, then the minimum quantity of stored milk (which can be determined
taking into account the morning planning, i.e. knowing N1) is obtained solving the
following problem: {

g(G2) → min
G2 ∈ S(G1).

Let us denote by S∗(G1) the set of the optimal solutions of this problem; so,
S∗(G1) = argmin{g(G2) |G2 ∈ S(G1)}.

Under these circumstances, the milk collection problem is reduced to solve the
following bilevel programming problem:

(BP )


h(G1) + h(G2) → min
such that
(G1, G2) ∈ S,
G2 ∈ S∗(G1).

Furthermore, a method for solving the problem (BP ) is given, in a little more
general context.

4. Generalization of the mathematical model for the milk collection
problem

Let N be a finite set, G = (N,E) be a weighted graph and let I ⊂ N . Let Λ be
the set of subgraphs Γ = (NΓ, EΓ) of G with NΓ 6= ∅ and EΓ 6= ∅.

Let C1 be the set of those elements G1 = (N1, E1) of Λ which fulfill some given
conditions. Also, let C2 be the set of those elements G2 = (N2, E2) of Λ which fulfill
other given conditions. In both cases, the conditions are some restrictions imposed to
be fulfilled by the set of nodes N1, respectively N2. It can be defined, for example,
by inequalities or equalities, which are generated by some given functions, or by some
inclusions. For example, regarding the milk collection problem, C1 it is the set of those
subgraphs which verify the conditions (3.1) and (3.4), while C2 it is the set of those
subgraphs which verify the conditions (3.2) and (3.5).

Furthermore, for a subgraph Γ ∈ Λ, we denote by h(Γ) the value of a Hamiltonian
circuit of minimum value corresponding to it.

Now, let a and b be positive numbers and let F : Λ × Λ → R+ be the function
given by

F (G1, G2) = a · h(G1) + b · h(G2), ∀ (G1, G2) ∈ Λ× Λ. (4.1)
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Also, let g : Λ → N be a given function. For the milk collection problem, the
function g returns the quantity of stored morning milk which it is collected in the
evening.

The bilevel problem proposed to be solved is

(PBG)

 F (G1, G2) → min
G1 ∈ C1,
G2 ∈ S∗(G1),

where S∗(G1) it is the set of the optimal solutions of the problem

(P (G1))

 g(G2) → min
G2 ∈ C2,
N1 ∩N2 ∩ I = ∅.

Let us denote by

S = {(G1, G2) ∈ Λ× Λ |G1 ∈ C1, G2 ∈ C2, N1 ∩N2 ∩ I = ∅},
and

S1 = {G1 ∈ Λ | ∃ G2 ∈ Λ s. t. (G1, G2) ∈ S},
i.e.

S1 = {G1 ∈ C1 | ∃ G2 ∈ C2 s. t. N1 ∩N2 ∩ I = ∅}.
For each G1 ∈ S1 we consider the set

S(G1) = {G2 ∈ C2 | (G1, G2) ∈ S} = {G2 ∈ C2 | N1 ∩N2 ∩ I = ∅}.
It is easy to see that S(G1) it is the set of feasible solutions of the problem (P (G1)).

In what follows, we will use the lexicographic ordering relation in R2, denoted
by <lex, namely:

If we consider the points x = (x1, x2)T and y = (y1, y2)T , then we have x <lex y
if: (i) x1 < y1; or (ii) x1 = y1 and x2 < y2.

We denote x ≤lex y if x <lex y or x = y. The relation ≤lex is a total order
relation on R2.

If A it is a subset of R2, f = (f1, f2) : A → R2 it is a given function and B ⊆ A,
then the requirement to determine the minimum point of the set f(B) in relation to
the lexicographic ordering relation and to determine the points of B for which this
minimum is reached, is denoted by

(P )
{

f(x) → lex−min
x ∈ B.

The minimum point (f∗1 , f∗2 ) ∈ R2 of the set f(B) is called optimum of f on B or
optimal value of the problem (P ); the set of points b ∈ B, such that f(b) = (f∗1 , f∗2 ),
is called optimal solution of the problem (P ).

Recalling our problem, let H ∈ 2I . We consider the problems

(P1(H))

 h(G1) → min
G1 ∈ C1,
N1 ∩ I = H,
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and

(P2(H))


(

g(G2)
h(G2)

)
→ lex−min

G2 ∈ C2,
N2 ∩H = ∅.

Let us denote by hH
1 the optimal value of the problem (P1(H)) and by (gH

2 , hH
2 ) the

optimal value of the problem (P2(H)).
Also, we define the function F̃ : 2I → R,

F̃ (H) = a · hH
1 + b · hH

2 , ∀ H ∈ 2I , (4.2)

and we consider the problem

(PP )
{

F̃ (H) → min
H ∈ 2I .

Furthermore, we establish relations between the feasible solutions, and then be-
tween the optimal solutions, of the problems (PBG) and (PP ).
Lemma 4.1. If G0

1 ∈ C1, G0
2 it is a feasible solution of the problem (P (G0

1)) and
H0 = N0

1 ∩ I, then G0
2 it is a feasible solution of the problem (P2(H0)).

Proof. As G0
2 ∈ S(G0

1) we deduce that G0
2 ∈ C2 and N0

1 ∩N0
2 ∩ I = ∅. From the last

equality, considering that H0 = N0
1 ∩ I, we get that

N0
2 ∩H0 = N0

2 ∩N0
1 ∩ I = ∅.

So, G0
2 is a feasible solution of the problem (P2(H0)).�

Lemma 4.2. If (G0
1, G

0
2) it is a feasible solution of the problem (PBG) and H0 = N0

1∩I,
then
i) G0

1 it is a feasible solution of the problem (P1(H0)) and
ii) G0

2 it is a feasible solution of the problem (P2(H0)).
Proof. Since (G0

1, G
0
2) it is a feasible solution of the problem (PBG) and H0 = N0

1 ∩I,
immediately results that: i) G0

1 it is a feasible solution of the problem (P1(H0)); and
ii) G0

2 it is an optimal solution of the problem (P (G0
1)). Because any optimal solution

is a feasible one, applying Lemma 4.1, we deduce that G0
2 it is a feasible solution of

the problem (P2(H0)).�.
Lemma 4.3. If H0 ∈ 2I , G0

1 it is a feasible solution of the problem (P1(H0)) and G0
2 it

is an optimal solution of the problem (P2(H0)), then (G0
1, G

0
2) it is a feasible solution

of the problem (PBG).
Proof. Since G0

1 it is a feasible solution of the problem (P1(H0)), we have

G0
1 ∈ C1, (4.3)

N0
1 ∩ I = H0. (4.4)

Because any optimal solution it is a feasible one, we have

G0
2 ∈ C2, (4.5)

N0
2 ∩H0 = ∅. (4.6)

From (4.4) and (4.6), it results that

N0
1 ∩N0

2 ∩ I = N0
2 ∩H0 = ∅. (4.7)
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In view of (4.5) and (4.7), we deduce that G0
2 it is a feasible solution of the problem

(P (G0
1)), i.e. G0

2 ∈ S(G0
1). We must prove that G0

2 it is an optimal solution of this
problem. Let us suppose the opposite. Then, there exists G2 ∈ S(G0

1) such that
g(G2) < g(G0

2), which implies(
g(G2)
h(G2)

)
<lex

(
g(G0

2)
h(G0

2)

)
. (4.8)

Recalling Lemma 4.1, since G2 ∈ S(G0
1), we deduce that G2 it is a feasible solution

of the problem (P2(H0)); the inequality (4.8) contradicts the fact that G0
2 it is an

optimal solution of the problem (P2(H0)). So, G0
2 ∈ S∗(G0

1). Considering now the
fact that G0

1 ∈ C1, it results that (G0
1, G

0
2) it is a feasible solution of the problem

(PBG).�

Theorem 4.4. If (G0
1, G

0
2) it is an optimal solution of the problem (PBG), then taking

H0 = N0
1 ∩ I, the following sentences are true:

i) G0
1 it is an optimal solution of the problem (P1(H0));

ii) G0
2 it is an optimal solution of the problem (P2(H0));

iii) H0 it is an optimal solution of the problem (PP ).
Proof. i) Based on Lemma 4.2, we get that G0

1 it is a feasible solution of the prob-
lem (P1(H0)). Let us suppose that G0

1 it is not an optimal solution of the problem
(P1(H0)). Then, there exists a feasible solution G1 of the problem (P1(H0)), such
that

h(G1) < h(G0
1). (4.9)

As G1 it is a feasible solution of the problem (P1(H0)), we have G1 ∈ C1 and N1∩I =
H0. Then

N1 ∩N0
2 ∩ I = H0 ∩N0

2 = N0
1 ∩ I ∩N0

2 = ∅.
Therefore, G0

2 ∈ S(G1). Two cases can occur:
1) G0

2 ∈ S∗(G1); or 2) G0
2 6∈ S∗(G1).

If G0
2 ∈ S∗(G1), then (G1, G

0
2) it is a feasible solution of the problem (PBG).

Since a > 0, from (4.9), we deduce that

ah(G1) + bh(G0
2) < ah(G0

1) + bh(G0
2),

which contradicts the optimality of (G0
1, G

0
2).

Now, let us suppose that G0
2 6∈ S∗(G1). Then, there exists G2 ∈ S(G1) such that

g(G2) < g(G0
2). (4.10)

Because G2 ∈ S(G1), we have G2 ∈ C2 and N2 ∩N1 ∩ I = ∅. On the other hand, G1

being a feasible solution of (P1(H0)), we have N1 ∩ I = H0. It results that

N0
1 ∩N2 ∩ I = H0 ∩N2 = N1 ∩ I ∩N2 = ∅.

So, G2 ∈ S(G0
1). Therefore, (4.10) contradicts the fact that G0

2 ∈ S∗(G0
1).

Hence, G0
1 it is an optimal solution of the problem (P1(H0)).

ii) From Lemma 4.2, ii), G0
2 it is a feasible solution of (P2(H0)). Let us suppose

that G0
2 it is not an optimal solution of (P2(H0)). Since the set of solutions of the

problem (P2(H0)) is a finite and nonempty set, the problem will have optimal solu-
tions. Let G̃2 = (Ñ2, Ẽ2) be an optimal solution of this problem. Based on Lemma 4.3,
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(G0
1, G̃2) it is a feasible solution of the problem (PBG). As we supposed the contrary,

we have (
g(G̃2)
h(G̃2)

)
<lex

(
g(G0

2)
h(G0

2)

)
. (4.11)

Two cases can occur:
1) g(G̃2) < g(G0

2); or 2) g(G̃2) = g(G0
2) and h(G̃2) < h(G0

2).
In the first case, we deduce that G0

2 6∈ S∗(G0
1), which contradicts the fact that

(G0
1, G

0
2) it is a feasible solution of (PBG).

In the second case, we have

F (G0
1, G̃2) = ah(G0

1) + bh(G̃2) < ah(G0
1) + bh(G0

2) = F (G0
1, G

0
2),

which contradicts the optimality of (G0
1, G

0
2).

iii) Since the set 2I is a nonempty and finite set, the problem (PP) has an optimal
solution. Let us suppose that H0 it is not an optimal solution of the problem (PP ),
and let H∗ be the optimal solution of the problem (PP ). Under these circumstances,
we have

F̃ (H∗) < F̃ (H0). (4.12)

Let us notice that, from i) and ii), taking into account the way in which the functions
F and F̃ are defined (see (4.1), (4.2)), we have

F̃ (H0) = ahH0

1 + bhH0

2 = ah(G0
1) + bh(G0

2) = F (G0
1, G

0
2). (4.13)

Now, let G∗
1 be an optimal solution of the problem (P1(H∗)) and G∗

2 be an optimal
solution of the problem (P2(H∗)). Then,

F̃ (H∗) = ahH∗

1 + bhH∗

2 = ah(G∗
1) + bh(G∗

2) = F (G∗
1, G

∗
2). (4.14)

From (4.12)-(4.14), it results that

F (G∗
1, G

∗
2) < F (G0

1, G
0
2). (4.15)

On the other hand, applying Lemma 4.3, we deduce that (G∗
1, G

∗
2) it is a feasible

solution of the problem (PBG). Hence, (4.15) contradicts the optimality of (G0
1, G

0
2).�

Theorem 4.5. If H0 it is an optimal solution of the problem (PP ) and G0
1, respectively

G0
2, it is an optimal solution of the problem (P1(H0)), respectively (P2(H0)), then

(G0
1, G

0
2) it is an optimal solution of the problem (PBG).

Proof. As G0
1, respectively G0

2, it is an optimal solution of (P1(H0)), respectively
(P2(H0)), we get that hH0

1 = h(G0
1) and hH0

2 = h(G0
2). Therefore,

F̃ (H0) = ah(G0
1) + bh(G0

2) = F (G0
1, G

0
2). (4.16)

On the other hand, applying Lemma 4.3, we get that (G0
1, G

0
2) it is a feasible solution

of (PBG). If (G0
1, G

0
2) it is not an optimal solution of the problem (PBG), then there

exists (G̃1 = (Ñ1, Ẽ1), G̃2 = (Ñ2, Ẽ2)) feasible solution of (PBG), such that

ah(G̃1) + bh(G̃2) = F (G̃1, G̃2) < F (G0
1, G

0
2) = ah(G0

1) + bh(G0
2). (4.17)

From (4.17) we deduce that: h(G̃1) < h(G0
1) or h(G̃2) < h(G0

2).
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Let H̃ = Ñ1 ∩ I. As (G̃1, G̃2) it is a feasible solution of (PBG), we have G̃2 ∈
S∗(G̃1); this implies that hH̃

2 = F (G̃1, G̃2). Hence, (4.17) implies F̃ (H̃) < F̃ (H0).
This contradicts the optimality of H0.�

Let
λ ≥ 1 + max{F (G1, G2), ∀ (G1, G2) ∈ Λ}. (4.18)

Let G1 ∈ S1 and H ∈ 2I , fulfilling the following condition

N1 ∩ I = H. (4.19)

Let us consider the problem

(PL2(H))

 λ · g(G2) + F (G1, G2) → min
G2 ∈ C2,
H ∩N2 = ∅.

Theorem 4.6. If G1 ∈ S1 and H ∈ 2I such that the condition (4.19) is fulfilled, then
an element G2 it is an optimal solution of the problem (PL2(H)) if and only if it is
an optimal solution of the problem (P2(H)).
Proof. First, let us remark that both problems have the same set of feasible solutions.

Necessity. Let G2 be an optimal solution of the problem (PL2(H)). Let us sup-
pose that G2 it is not an optimal solution of the problem (P2(H)). Two cases can
occur:
1) there exists G∗

2 a feasible solution of the problem (P2(H)), such that g(G∗
2) < g(G2);

or
2) there exists G∗

2 a feasible solution of the problem (P2(H)), such that g(G2) = g(G∗
2)

and F (G1, G
∗
2) < F (G1, G2).

As λ > 0, in the first case we obtain that

λ · g(G∗
2) < λ · g(G2). (4.20)

If F (G1, G
∗
2) ≤ F (G1, G2), then λ · g(G∗

2) + F (G1, G
∗
2) < λ · g(G2) + F (G1, G2).

This contradicts the hypothesis that (G1, G2) it is an optimal solution of the problem
(PL2(H)).

Let us now suppose that F (G1, G
∗
2) > F (G1, G2). As g(G2) ∈ N and g(G∗

2) ∈ N,
based on g(G∗

2) < g(G2), we have g(G2)− g(G∗
2) ≥ 1. Therefore,

F (G1, G2)− F (G1, G
∗
2)

g(G2)− g(G∗
2)

≤ F (G1, G2)− F (G1, G
∗
2)

1
≤ F (G1, G2) < λ. (4.21)

It follows that λ · g(G∗
2) + F (G1, G

∗
2) < λ · g(G2) + F (G1, G2), which contradicts the

hypothesis that (G1, G2) it is an optimal solution of the problem (PL2(H)).
If we consider case 2), then we immediately get that λ · g(G∗

2) + F (G1, G
∗
2) <

λ · g(G2) + F (G1, G2), which contradicts the optimality of (G1, G2) for the problem
(PL2(H)).

Sufficiency. Let G2 be an optimal solution of the problem (P2(H)) and let G∗
2

be a feasible solution of the problem (PL(H)). Since G∗
2 it is a feasible solution of the

problem (P2(H)), we get that(
g(G2)
F (G1, G2)

)
<lex

(
g(G∗

2)
F (G1, G

∗
2)

)
.
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Three cases are possible:
1) g(G2) < g(G∗

2);
2) g(G2) = g(G∗

2) and F (G1, G
∗
2) < F (G1, G2);

3) g(G2) = g(G∗
2) and F (G1, G

∗
2) = F (G1, G2).

Since g(G2) ∈ N and g(G∗
2) ∈ N, in the first case we have

g(G2)− g(G∗
2) ≤ −1.

Therefore,
λ · g(G2) + F (G1, G2)− (λg(G∗

2) + F (G1, G
∗
2))

= λ · (g(G2)− g(G∗
2)) + F (G1, G2)− F (G1, G

∗
2)

≤ −λ + F (G1, G2)− F (G1, G
∗
2)

≤ −1− F (G1, G
∗
2) < 0.

In the cases 2) and 3) it results that

λ · g(G2) + F (G1, G2) ≤ λg(G∗
2) + F (G1, G

∗
2).

Since G∗
2 it is a feasible solution chosen arbitrary, it results that G2 it is an optimal

solution of the problem (PL2(H)).�
Based on Theorem 4.6, we can reduce the solving of the problem (PBG) to

solving 2|I| couples of problems (P1(H), P2(H)), where the parameter H belongs to
the set 2I . Based on Theorem 4.6, the solving of the problem (P2(H)) can be replaced
by solving the problem (PL2(H)).
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