An asymptotic formula for Jain's operators

Anca Farcaş

Abstract. We investigate a class of linear positive operators of discrete type depending on a real parameter. By additional conditions imposed on this parameter, the considered sequence turns into an approximation process.

Mathematics Subject Classification (2010): 41A36.

Keywords: Approximation process, Voronovskaja theorem, Jain's operator.

1. Introduction

In 1970 G.C. Jain has introduced in [1] a new class of positive linear operators based on a Poisson-type distribution. In 1984 starting from Jain's operator, S.Umar and Q. Razi introduced in [6] a class of modified Szász-Mirakjan operators and studied their approximation properties. Later on, in 1995 L. Rempulska approached in [5] a Voronovskaja type result for some operators of Szász-Mirakjan type.

Present paper aims to prove a Voronovskaja type result for a class of linear positive operators of discrete type depending on a real parameter. In first section of this paper, we collect some basic results concerning Jain's operator, $P_n^{[\beta]}$, and we also compute other similar relations starting from those who are already proved by Jain.

In Section 2 will be highlighted the main results obtained and Section 3 will host the proofs of the stated results.

First of all, we recall the form of a Poisson-type distribution.

Lemma 1.1. ([1]) For $0 < \alpha < \infty$, $|\beta| < 1$, let

$$\omega_{\beta}(k,\alpha) = \alpha(\alpha + k\beta)^{k-1} e^{-(\alpha + k\beta)} / k! \; ; \; k \in \mathbb{N}_0.$$
 (1.1)

then

$$\sum_{k=0}^{\infty} \omega_{\beta}(k, \alpha) = 1. \tag{1.2}$$

Lemma 1.2. ([1]) *Let*

$$S(r,\alpha,\beta) = \sum_{k=0}^{\infty} (\alpha + \beta k)^{k+r-1} e^{-(\alpha+\beta k)} / k!, \ r = 0, 1, 2, \dots$$
 (1.3)

and

$$\alpha S(0, \alpha, \beta) = 1. \tag{1.4}$$

Then

$$S(r,\alpha,\beta) = \sum_{k=0}^{\infty} \beta^{k}(\alpha + k\beta)S(r - 1, \alpha + k\beta, \beta).$$
 (1.5)

The functions $S(r, \alpha, \beta)$ satisfy the recurrence formula

$$S(r,\alpha,\beta) = \alpha S(r-1,\alpha,\beta) + \beta S(r,\alpha+\beta,\beta). \tag{1.6}$$

The above formula implies

$$S(1,\alpha,\beta) = \sum_{k=0}^{\infty} \beta^k = \frac{1}{1-\beta}$$
(1.7)

and

$$S(2, \alpha, \beta) = \sum_{k=0}^{\infty} \frac{\beta^k (\alpha + k\beta)}{1 - \beta} = \frac{\alpha}{(1 - \beta)^2} + \frac{\beta^2}{(1 - \beta)^3}.$$
 (1.8)

We easily get

Lemma 1.3. Let S be the function defined in Lemma 1.2. Then, one has

(i)
$$S(3, \alpha, \beta) = \frac{\alpha^3}{(1-\beta)^3} + \frac{3\alpha\beta^2}{(1-\beta)^4} + \frac{\beta^3 + 2\beta^4}{(1-\beta)^5}$$

(ii)
$$S(4,\alpha,\beta) = \frac{\alpha^3}{(1-\beta)^4} + \frac{6\alpha^2\beta^2}{(1-\beta)^5} + \frac{\alpha\beta^3(11\beta+4)}{(1-\beta)^6} + \frac{6\beta^6+8\beta^5+\beta^4}{(1-\beta)^7}.$$

The operator defined by Jain is given by

$$(P_n^{[\beta]}f)(x) = \sum_{k=0}^{\infty} \omega_{\beta}(k, nx) \cdot f\left(\frac{k}{n}\right), \quad f \in C[0, \infty), \tag{1.9}$$

where $0 \le \beta < 1$ and $\omega_{\beta}(k, \alpha)$ has been defined in (1.1).

Remark 1.4. If we take $\beta = 0$ in (1.9) we obtain Szász -Mirakjan operator [3], [4].

$$(P_n^{[0]}f)(x) \equiv (S_n f)(x) = e^{-nx} \sum_{k=0}^{\infty} \frac{(nx)^k}{k!} \cdot \frac{k}{n}, \quad x \ge 0.$$
 (1.10)

We denote by $e_j(t)$ the monomial of degree j, $e_j(t) = t^j$.

Taking in view Lemma 1.2, in [1] has been established the following identities.

$$(P_n^{[\beta]}e_0)(x) = 1. (1.11)$$

$$(P_n^{[\beta]}e_1)(x) = xS(1, nx + \beta, \beta) = \frac{x}{1-\beta}.$$
 (1.12)

$$(P_n^{[\beta]}e_2)(x) = \frac{x}{n} \left[S(2, nx + 2\beta, \beta) + S(1, nx + \beta, \beta) \right]$$
$$= \frac{x^2}{(1-\beta)^2} + \frac{x}{n(1-\beta)^3}.$$
 (1.13)

2. Main results

In what follows, $C_2[0,\infty)$ represents the space of all continuous functions having the second derivative continuous.

In this section we first define the function

$$\varphi_x \in C_2[0,\infty), \ \varphi_x(t) = t - x.$$
 (2.1)

We also compute the values of $P_n^{[\beta]}$ on φ_x^3 and φ_x^4 .

In order to present our main theorem, we need the following lemmas.

Lemma 2.1. The operators defined by (1.9) verify the following identities.

(i)
$$(P_n^{[\beta]}e_3)(x) = \frac{x^3}{(1-\beta)^3} + \frac{3x^2}{n(1-\beta)^4} - \frac{x(6\beta^4 - 6\beta^3 - 2\beta - 1)}{n^2(1-\beta)^5}.$$

(ii)
$$(P_n^{[\beta]}e_4)(x) = \frac{x^4}{(1-\beta)^4} + \frac{6x^3}{n(1-\beta)^5} - \frac{x^2(36\beta^4 - 72\beta^3 + 36\beta^2 - 8\beta - 7)}{n^2(1-\beta)^6}$$
$$+ \frac{x(105\beta^5 - 14\beta^4 - 2\beta^3 + 12\beta^2 + 8\beta + 1)}{n^3(1-\beta)^7}.$$

Remark 2.2. Examining the relations (i) and (ii) in Lemma 2.1, based on Korovkin theorem [2] and Theorem 2.1 in [1], we may observe that $(P_n^{[\beta]})_{n\geq 1}$ does not form an approximation process. In order to transform it into an approximation process, we replace the constant β by a number $\beta_n \in [0,1)$.

If

$$\lim_{n \to \infty} \beta_n = 0, \tag{2.2}$$

then Lemma 2.1 ensures us that $\lim_{n\to\infty}(P_n^{[\beta_n]}e_j)(x)=x^j,\ j=\overline{0,2}$ uniformly in $C([0,\infty)).$

On the basis of relations (1.12), (1.13) and Lemma 1.2 we deduce the following identities.

$$(P_n^{[\beta_n]}\varphi_x)(x) = \sum_{k=0}^{\infty} (nx + k\beta_n)^{k-1} \cdot e^{-(nx+k\beta_n)} \frac{1}{k!} \cdot \frac{k-x}{n}$$

$$= (P_n^{[\beta_n]}e_1)(x) - x(P_n^{[\beta_n]}e_0)(x)$$

$$= \frac{x}{1-\beta_n} - x. \tag{2.3}$$

$$(P_n^{[\beta_n]}\varphi_x^2)(x) = \sum_{k=0}^{\infty} (nx + k\beta_n)^{k-1} \cdot e^{-(nx+k\beta_n)} \frac{1}{k!} \cdot \frac{(k-x)^2}{n^2}$$

$$= (P_n^{[\beta_n]}e_2)(x) - 2x(P_n^{[\beta_n]}e_1)(x) + x^2(P_n^{[\beta_n]}e_0)(x)$$

$$= \frac{x^2}{(1-\beta_n)^2} - \frac{2x^2}{1-\beta_n} + x^2 + \frac{x}{n(1-\beta_n)^3}.$$
(2.4)

where φ_x is defined by (2.1).

Lemma 2.3. Let the operator $P_n^{[\beta_n]}$ be defined by relation (1.9) and let φ_x be given by (2.1). Then

(i)
$$(P_n^{[\beta_n]} \varphi_x^3)(x) = \frac{x^3}{(1 - \beta_n)^3} - \frac{3x^3}{(1 - \beta_n)^2} + \frac{3x^3}{1 - \beta_n} - x^3 + \frac{3x^2}{n(1 - \beta_n)^4} - \frac{3x^2}{n(1 - \beta_n)^3} - \frac{x(6\beta_n^4 - 6\beta_n^3 - 2\beta_n - 1)}{n^2(1 - \beta_n)^5}.$$

(ii)
$$(P_n^{[\beta_n]} \varphi_x^4)(x) = \frac{x^4}{(1-\beta_n)^4} - \frac{4x^4}{(1-\beta_n)^3} + \frac{6x^4}{(1-\beta_n)^2} - \frac{4x^4}{1-\beta_n} + x^4$$

$$+ \frac{6x^3}{n(1-\beta_n)^5} - \frac{12x^3}{n(1-\beta_n)^4} + \frac{6x^3}{n(1-\beta_n)^3}$$

$$- \frac{x^2(36\beta_n^4 - 72\beta_n^3 + 36\beta_n^2 - 8\beta_n - 7)}{n^2(1-\beta_n)^6} + \frac{4x^2(6\beta_n^4 - 6\beta_n^3 - 2\beta_n - 1)}{n^2(1-\beta_n)^5}$$

$$+ \frac{x(105\beta_n^5 - 14\beta_n^4 - 2\beta_n^3 + 12\beta_n^2 + 8\beta_n + 1)}{n^3(1-\beta_n)^7} .$$

Lemma 2.4. Let $P_n^{[\beta_n]}$ be the Jain operator and let φ_x be defined in (2.1). In addition, if (2.2) holds, then

$$P_n^{[\beta_n]}\varphi_x^4 \le \frac{12x^3}{n(1-\beta_n)^5} + \frac{24x^2}{n^2(1-\beta_n)^5} + \frac{106x}{n^3(1-\beta_n)^7}.$$

We may now present the main result.

Theorem 2.5. Let $f \in C_2([0,\infty))$ and let the operator $P_n^{[\beta_n]}$ be defined as in (1.9). If (2.2) holds, then

$$\lim_{n \to \infty} n \left(P_n^{[\beta_n]}(f; x) - f(x) \right) = \frac{x}{2} f''(x), \quad \forall x > 0.$$

3. Proofs

Proof of Lemma 1.3.

(i)
$$S(3,\alpha,\beta) = \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) S(2,\alpha + k\beta,\beta)$$

$$= \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) \left(\frac{\alpha + k\beta}{(1-\beta)^{2}} + \frac{\beta^{2}}{(1-\beta)^{3}} \right)$$

$$= \frac{1}{(1-\beta)^{2}} \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) (\alpha + k\beta) + \frac{\beta^{2}}{(1-\beta)^{3}} \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta)$$

$$= \frac{1}{(1-\beta)^{2}} \left(\frac{\alpha^{2}}{1-\beta} + \frac{2\alpha\beta^{2}}{(1-\beta)^{2}} + \frac{\beta^{3}(1+\beta)}{(1-\beta)^{3}} \right)$$

$$+ \frac{\beta^{2}}{(1-\beta)^{3}} \left(\frac{\alpha}{1-\beta} + \frac{\beta^{2}}{(1-\beta)^{2}} \right) = \frac{\alpha^{3}}{(1-\beta)^{3}} + \frac{3\alpha\beta^{2}}{(1-\beta)^{4}} + \frac{\beta^{3} + 2\beta^{4}}{(1-\beta)^{5}}$$

(ii)
$$S(4, \alpha, \beta) = \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) S(3, \alpha + k\beta, \beta)$$

$$= \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta) \left[\frac{(\alpha + k\beta)^{2}}{(1 - \beta)^{3}} + \frac{3(\alpha + k\beta)\beta^{2}}{(1 - \beta)^{4}} + \frac{\beta^{3} + 2\beta^{4}}{(1 - \beta)^{5}} \right]$$

$$= \frac{1}{(1 - \beta)^{3}} \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta)^{3} + \frac{3\beta^{2}}{(1 - \beta)^{4}} \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta)^{2}$$

$$+ \frac{\beta^{3} + 2\beta^{4}}{(1 - \beta)^{5}} \sum_{k=0}^{\infty} \beta^{k} (\alpha + k\beta)$$

$$= \frac{\alpha^{3}}{(1 - \beta)^{4}} + \frac{6\alpha^{2}\beta^{2}}{(1 - \beta)^{5}} + \frac{\alpha\beta^{3}(11\beta + 4)}{(1 - \beta)^{6}} + \frac{6\beta^{6} + 8\beta^{5} + \beta^{4}}{(1 - \beta)^{7}}.$$

Proof of Lemma 2.1.

(i)
$$P_n^{[\beta]}(e_3; x) = xn \sum_{k=0}^{\infty} (nx + k\beta)^{k-1} \cdot e^{-(nx+k\beta)} \frac{1}{k!} \cdot \frac{k^3}{n^3}$$
$$= \frac{x}{n^2} \left[S(3, nx + 3\beta, \beta) + 3S(2, nx + 2\beta, \beta) + S(1, nx + \beta, \beta) \right]$$
$$= \frac{x^3}{(1-\beta)^3} + \frac{3x^2}{n(1-\beta)^4} - \frac{x(6\beta^4 - 6\beta^3 - 2\beta - 1)}{n^2(1-\beta)^5}.$$

(ii)
$$(P_n^{[\beta]}e_4)(x) = xn \sum_{k=0}^{\infty} (nx+k\beta)^{k-1} \cdot e^{-(nx+k\beta)} \frac{1}{k!} \cdot \frac{k^4}{n^4}$$

$$= \frac{x}{n^3} \left[S(4,nx+4\beta,\beta) + 6S(3,nx+3\beta,\beta) \right]$$

$$+7S(2,nx+2\beta,\beta) + S(1,nx+\beta,\beta)$$

$$= \frac{x^4}{(1-\beta)^4} + \frac{6x^3}{n(1-\beta)^5} - \frac{x^2(36\beta^4 - 72\beta^3 + 36\beta^2 - 8\beta - 7)}{n^2(1-\beta)^6}$$

$$+ \frac{x(105\beta^5 - 14\beta^4 - 2\beta^3 + 12\beta^2 + 8\beta + 1)}{n^3(1-\beta)^7}.$$

Proof of Lemma 2.3.

(i)
$$(P_n^{[\beta_n]}\varphi_x^3)(x) = (P_n^{[\beta_n]}e_3)(x) - 3x(P_n^{[\beta_n]}e_2)(x) + 3x^2(P_n^{[\beta_n]}e_1)(x) - x^3(P_n^{[\beta_n]}e_0)(x)$$

$$= \frac{x^3}{(1-\beta_n)^3} - \frac{3x^3}{(1-\beta_n)^2} + \frac{3x^3}{1-\beta_n} - x^3 + \frac{3x^2}{n(1-\beta_n)^4}$$

$$- \frac{3x^2}{n(1-\beta_n)^3} - \frac{x(6\beta_n^4 - 6\beta_n^3 - 2\beta_n - 1)}{n^2(1-\beta_n)^5} .$$

(ii)
$$(P_n^{[\beta_n]} \varphi_x^4)(x) = (P_n^{[\beta_n]} e_4)(x) - 4x (P_n^{[\beta_n]} e_3)(x) + 6x^2 (P_n^{[\beta_n]} e_2)(x)$$

$$-4x^3 (P_n^{[\beta_n]} e_1)(x) + x^4 (P_n^{[\beta_n]} e_0)(x)$$

$$= \frac{x^4}{(1-\beta_n)^4} - \frac{4x^4}{(1-\beta_n)^3} + \frac{6x^4}{(1-\beta_n)^2} - \frac{4x^4}{1-\beta_n} + x^4$$

$$+ \frac{6x^3}{n(1-\beta_n)^5} - \frac{12x^3}{n(1-\beta_n)^4} + \frac{6x^3}{n(1-\beta_n)^3}$$

$$- \frac{x^2 (36\beta_n^4 - 72\beta_n^3 + 36\beta_n^2 - 8\beta_n - 7)}{n^2(1-\beta_n)^6}$$

$$+ \frac{4x^2 (6\beta_n^4 - 6\beta_n^3 - 2\beta_n - 1)}{n^2(1-\beta_n)^5}$$

$$+ \frac{x(105\beta_n^5 - 14\beta_n^4 - 2\beta_n^3 + 12\beta_n^2 + 8\beta_n + 1)}{n^3(1-\beta_n)^7} .$$

Proof of Lemma 2.4. Starting from relation (ii) in Lemma 2.3, the entire proof of Lemma 2.4 is based on the following simple increases:

$$\frac{6x^3}{n(1-\beta_n)^3} \le \frac{6x^3}{n(1-\beta_n)^5},$$

 $6\beta_n^4 - 6\beta_n^3 - 2\beta_n - 1 \le 6$, $105\beta_n^5 - 14\beta_n^4 - 2\beta_n^3 + 12\beta_n^2 + 8\beta_n + 1 \le 106$. \square Proof of Theorem 2.5. Let $f, f', f'' \in C_2([0, \infty))$ and $x \in [0, \infty)$ be fixed. By the

$$f(t) = f(x) + f'(x)(t-x) + \frac{1}{2}f''(x)(t-x)^2 + r(t;x)(t-x)^2,$$
 (3.1)

where r(t;x) is the Peano form of the remainder, $r(\cdot;x) \in C_2([0,\infty))$ and

$$\lim_{t \to x} r(t; x) = 0$$

Let φ_x be given by (2.1). We apply $P_n^{[\beta_n]}$ to (3.1) and we get

$$(P_n^{[\beta_n]}f)(x) - f(x) = (P_n^{[\beta_n]}\varphi_x)(x) \cdot f'(x) + \frac{1}{2}(P_n^{[\beta_n]}\varphi_x^2)(x) \cdot f''(x) + (P_n^{[\beta_n]}\varphi_x^2 \cdot r(\cdot; x))(x).$$
(3.2)

Using the relations (2.3) and (2.4) one obtains

Taylor formula we have

$$(P_n^{[\beta_n]}f)(x) - f(x) = \left(\frac{x}{1-\beta_n} - x\right)f'(x) + \frac{1}{2}\left[\frac{x^2}{(1-\beta_n)^2} - \frac{2x^2}{1-\beta_n} + x^2 + \frac{x}{n(1-\beta_n)^3}\right]f''(x) + (P_n^{[\beta_n]}\varphi_x^2 \cdot r(\cdot; x))(x)$$
(3.3)

For the last term, by applying the Cauchy-Schwartz inequality, we get

$$0 \le |(P_n^{[\beta_n]} \varphi_x^2 \cdot r(\cdot; x))(x)| \le \sqrt{(P_n^{[\beta_n]} \varphi_x^4)(x)} \cdot \sqrt{(P_n^{[\beta_n]} r^2(\cdot; x))(x)}$$
(3.4)

We have marked that $\lim_{t\to x} r(t,x) = 0$. In harmony with Remark 2.2 we have

$$\lim_{n \to \infty} P_n^{[\beta_n]}(r^2(x, x); x) = 0. \tag{3.5}$$

On the basis of (2.2), (3.4), (3.5) and Lemma 2.4, we get that

$$\lim_{n \to \infty} n \left(P_n^{[\beta_n]}(f; x) - f(x) \right) = \frac{x}{2} f''(x).$$

Remark 3.1. Considering Jain's operator P_n^{β} and taking $\beta = \beta_n$, with β_n satisfying (2.2) we have rediscovered the genuine Voronovskaja result for Szász operators (1.10). The same genuine Voronovskaja result was found once again in in [5, Eq. (20)] while studying some operators of Szász-Mirakjan type.

Acknowledgement. This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

References

- [1] Jain, G.C., Approximation of functions by a new class of linear operators, Journal of Australian Math. Society, 13(1972), no. 3, 271-276.
- [2] Korovkin, P.P., Linear Operators and Approximation Theory, Hindustan Publ. Corp., Delhi, India, 1960.
- [3] Mirakjan, G.M., Approximation of continuous functions with the aid of polynomials, Dokl. Akad. Nauk SSSR, 31(1941), 201-205.
- [4] Szász, O., Generalization of S. Bernsteins polynomials to the infinite interval, J. of Research of the Nat. Bur. of Standards, 45(1950), 239-245.
- [5] Rempulska, L., Skorupka, M., The Voronovskaja theorem for some operators of the Szász-Mirakjan type, Le Matematiche, 50(2)(1995), 251-261.
- [6] Umar, S., Razi, Q., Approximation of function by a generalized Szász operators, Communications de la Faculté des Sciences de l'Université d'Ankara, Serie A1: Mathematique, 34(1985), 45-52.

Anca Farcaş

"Babes-Bolyai" University

Faculty of Mathematics and Computer Sciences

1, Kogălniceanu Street

400084 Cluj-Napoca, Romania

e-mail: anca.farcas@ubbcluj.ro