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Abstract. We determine the minimum hyper-Wiener index of unicyclic graphs
with given number of vertices and matching number, and characterize the ex-
tremal graphs.
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1. Introduction

Let G be a simple connected graph with vertex set V(G). For u,v € V(G),
the distance dg(u,v) or dy, between u and v in G is the length of a shortest path
connecting them. The Wiener index of G is defined as [7, 13]

WG = Y duw

{u0}CV(G)

The Wiener index has found various applications in chemical research [11] and has
been studied extensively in mathematics [3, 4].

As a variant of the Wiener index, the hyper-Wiener index of the graph G is
defined as [§]

e - Y (duv2+ 1) _ % > (d, +duw)-
)

{uv}CV(G {uv}CV(G)

This graph invariant was proposed by Randi¢ [12] for a tree and extended by Klein et
al. [8] to a connected graph. It is used to predict physicochemical properties of organic
compounds [1], and has also been extensively studied, see, e.g., [2, 5, 9, 10, 14].

Du and Zhou [4] determined the minimum Wiener indices of trees and unicyclic
graphs with given number of vertices and matching number, respectively, and charac-
terize the extremal graphs. Recently, Yu et al. [15] gave the minimum hyper-Wiener
index of trees with given number of vertices and matching number, and characterized
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the unique extremal graph. We now determine the minimum hyper-Wiener index of
unicyclic graphs with given number of vertices and matching number, and characterize
the extremal graphs.

2. Preliminaries

For a connected graph G with v € V(G), let Wg(u Z dyy, and
veV(G)

duv+1
WWe(u) = > ( ) )
veV(G)

For u € V(G), let dg(u) be the degree of u in G, and the eccentricity of u, denoted
by ecc(u), is the maximum distance from u to all other vertices in G. Let S,, be the
n-vertex star.

Lemma 2.1. Let G be an n-vertex connected graph with a pendent vertexr x being
adjacent to vertex y, and let z be a neighbor of y different from x, where n > 4. Then

WW(G) = WW(G —z) > 6n— 8 — 3dg(y)
with equality if and only if ecc(y) = 2. Moreover, if dg(y) = 2, then
WW(G) —WW(G —z —y) > 16n — 36 — 7dg(z)
with equality if and only if ecc(z) = 2.

Proof. Note that

14 dyy +1
WWe() = Y < 5 )
eV (G)\{x}
duy + 1
- Y ( ) )+ > (duy+1)
weV(G@)\{z} ueV(G)\{z}
= WWely) —1+We(y) —1+n—1
= WWaly) +Waly) +n—3.
Then
WW(G) - WW(G—z) = WWg(x)=WWga(y) +Wely) +n—3

> (”1)G (2+1)(“—1—dc(3/))

+da(y) +2(n—1—dg(y)) +n—3
— 6n—8—3da(y)

with equality if and only if ecc(y) = 2.
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If dg(y) = 2, then Wg(y) = We(z) +n — 4,

WWew) — 1+ Y (1+d;z+1>

ueV(G)\{z,y}

Ly (du22+1>+ S D)

weV(@)\{z,y} ueV(@\{z,y}
= 14+4WWg(2)—1-3+Wg(z)—1—-24+n—2
= WWeg(z) +We(z) +n -8,

and thus
WW(G) - WW(G -z —1y)
= WWe(z) + WWe(y) —1=2WWe(y) + We(y) +n—4
= 2(WWea(2)+Wg(z) +n—8)+ (Wg(2)+n—4)+n—4
= 2WWg(z) + 3Wa(z) + 4n — 24
> 2 (13 e+ (73 - 1-daten)
+3[dg(2) +2(n — 1 —dg(z))] + 4n — 24
= 16n — 36 — 7dg(z)
with equality if and only if ecc(z) = 2. d

Let C,, be a cycle with n vertices.

Lemma 2.2. [6, 8] Let u be a vertex on the cycle C, with r > 3. Then

r’—1 . -
= ifr is odd
We, (u) = 4,2 f o
T if v is even,

C=DEHDEHS) it s odd,

WWe (u) = 24
. (u) {T(r+12)4(T+2) if v is even.

For integers n and r with 3 <r < n, let S, , be the graph formed by attaching
n — r pendent vertices to a vertex of the cycle Ci..

Lemma 2.3. [14] Let G be an n-vertex unicyclic graph with cycle length r, where
3<r<n. Then

72024 (2r2 +18r2 —98r—90)n—rt — 151342502487 . .
B —— n”+(2r°+18r T48)n7‘ 7o +257°+87r Zf’I’ZSOdd
(@) = 7212 +(2r3 +18r% —92r —72)n—r* —15r3 42212 4+ 721

if r is even

48

with equality if and only if G = Sy .
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3. Results

For integers n and m with 2 < m < [§], let U(n,m) be the set of unicyclic
graphs with n vertices and matching number m, and let U, ,, be the unicyclic graph
obtained by attaching a pendent vertex to m—2 noncentral vertices and adding an edge
between two other noncentral vertices of the star S,,_,, 2. Obviously, U, ., € U(n,m).
By direct calculation, WW (Uy,m) = 3(3n% + m? + 6nm — 19n — 23m + 42).

For integer m > 3, let Ui(m) be the set of graphs in U(2m,m) containing a
pendent vertex whose neighbor is of degree two. Let Uz(m) = U(2m, m) \ Uy (m). Let
Hg 5 be the graph obtained by attaching three pendent vertices to three consecutive
vertices of Cs. Let Hg g be the graph obtained by attaching two pendent vertices to
two adjacent vertices of Cs. Let Hg 5 be the graph obtained by attaching two pendent
vertices to two vertices of distance two of Cs. Let Hg s be the graph obtained by
attaching two pendent vertices to two vertices of distance three of Cy.

Lemma 3.1. Let G € Uz(m) with m > 4. Then WW (G) > $(25m?* — 61m + 42) with
equality if and only if G = Hgs.

Proof. Since G € Ua(m), it is easily seen that G = Cy,,, or G is a graph of maximum
degree three obtained by attaching some pendent vertices to a cycle. If G = Cyyp,
then by Lemma 2.2,

2m)%(2 1)(2 2 1
WW(C27IL) = ( m) ( ml—s )( mt ) = 6(2m4—|—3m3+m2)

1
> 5(25m2 — 61m + 42).

Suppose that G # Cy,. Then G is a graph of maximum degree three obtained by
attaching some pendent vertices to a cycle C,., where m < r < 2m — 1.
Case 1. 7 = m. Then every vertex on the cycle has degree three, and for any pendent
vertex x and its neighbor y, by Lemmas 2.1 and 2.2, we have
1
WW(G) = 5m(WWea(z) + WWa(y))

= Lm@W W) + Woly) +2m - 3)

; 5 Z (duy; 1>+2 Z <duy2+ 1)

ueV (Cm) ueV(G)\V(Cn)

I
!
3

+ Z duy + Z dyy +2m — 3

ueV(Cn) ueV(G\V(Cp)

1
3™ ( 2WWe, (y) +2 >

1+ dyy + 1)
uweV (Chny)

2

+We, W)+ Y (duy+1)+2m—3
uweV (Chny)
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1 duy + 1
= 5m | 2WWe, (y) +2 > ( ) )+2 > (duy+1)

wEV (Chy) u€V(Ch)

+We, )+ Y (duy+1)+2m—3
wueV (Chp,)

Il
N | = —AN— N —
w"‘w"“

m (AW We,, (y) +4W¢,, (y) +5m — 3)

m

5 (m* +9m3 + 29m? — 27m)  if m is odd
= (m* +9m3 + 32m? — 18m)  if m is even

> —(25m? — 61m + 42).

Case 2. 7 = m + 1. Then there are precisely two adjacent vertices on the cycle of
degree two in G. Let G’ be the graph obtained from G by attaching two pendent
vertices to the two adjacent vertices of degree two in G. For any pendent vertex x
and its neighbor y in G’, by the above conclusion and Lemma 2.2, we have

WW(G) = WW(G’)—ZWWG/(JJ)+<3_;1>

1
= 5(m+1) (4WWe,, ., (y) +4We,, ., (y) +5(m + 1) = 3)
_2(2WWCm+1 (y) + 3WCm+1 (y) +4m + 1) +6

((4m — HYWWe,,,, (y) + (4m — 8)We,, ., (y) + 5m® — 9m + 10)

m+1

(m* + 11m? + 35m? — T7Tm + 42) if m is odd

1
12
& (m* 4+ 11m? + 32m? — 86m + 60) if m is even

> —(25m? — 61m + 42)

Il
l\')\i—‘/—/H[\')\)—l

with equality if and only if m =4, i.e., G = Hgs.
Case 3. m + 2 < r < 2m — 1. First we consider the subcase m > 5. By Lemma 2.3,

Ww(G) = WW(Szm r)
2= (=7* + (4m — 15)r% + (36m + 25)r?
B +(87 — 196m)r + 288m? — 180m) if r is odd,
B 15 (=r* + (4m — 15)r3 + (36m + 22)r?
+(72 — 184m)r + 288m? — 144m) if r is even.

Let f(r) = 48WW (Sapm,-). For odd r, we have

F(r) = —4r® + (12m — 45)r% + (72m + 50)r + 87 — 196m,
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from which it is easy to check that f'(r) > 0, and thus f(r) is increasing with respect
to 7, implying that

s
=
Q
N

£(r) > 5 fm +2)

(3m* + 37m® + 195m? — 421m + 138)

—~ 00

> —(25m? — 61m + 42).

o] |

For even r, by similar arguments as above,
1 1
> >
WW(G) > 4Sf(r) > 48f(m +2)
1
= @(37714 + 37m® + 204m? — 388m + 96)
1
> 5(25m2 — 61m + 42).

Now we consider the subcase m = 4. Then r = 6,7, G = Hg, Hg 5, H{ g or Hg 7, and
the hyper-Wiener indices of these four graph are respectively equal to 106, 110, 115,
and 109, all larger than 99 = (25 x 4% — 61 x 4 + 42).

The result follows by combining Cases 1-3. O

Let Hg 3 be the graph obtained by attaching a vertex to every vertex of a triangle.
Let Hg 4 be the graph obtained by attaching two pendent vertices to two adjacent
vertices of a quadrangle. Let Hg 5 be the graph obtained by attaching a pendent vertex
to C5. Then the following Lemma may be checked easily.

Lemma 3.2. Among the graphs in U(6,3), Hg 5 is the unique graph with minimum
hyper-Wiener index 39, and Us 3, He 3z, Hea and Cs are the unique graphs with the
second minimum hyper- Wiener index 42.

For G € Uy(m), a vertex triple of G, denoted by (z,y, z), consist of three vertices
x, y and z, where z is a pendent vertex of G whose neighbor y is of degree two, and
z is the neighbor of y different from z. For the vertex triple (z,y, z) and a perfect
matching M with |M| = m, we have xy € M and dg(z) < m+ 1.

Lemma 3.3. Let G € U(8,4). Then WW(G) > 99 with equality if and only if G = Ug 4
or H875 .

Proof. Tf G € Uy(4), then by Lemma 3.1, WW(G) > 1(25 x 42 — 61 x 4 4 42) = 99
with equality if and only if G = Hgj. Suppose that G € U;(4). Let (z,y,2) be a
vertex triple of G. Then G —x —y € U(6, 3). If G —x —y # Hg 5, then by Lemma 2.1,

WW(G) > WW(G -z —y)+16 x 8 —36 — Tdg(2) > 42+ 92 — 7 x 5 = 99

with equalities if and only if G — x —y = Us 3, He3, Hea or Cg, dg(z) = 5 and
ecc(z) =2,1e, G =Usys. If G—2 —y = Hgs, then dg(z) < 4, and by Lemma 2.1,

WW(G) > WW (Hg.5) + 16 x 8 — 36 — Tde(2) > 39 + 92 — 7 x 4 = 103 > 99.
The result follows. 0
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Lemma 3.4. Let G € U(10,5). Then WW(G) > 181 with equality if and only if
G = U1075.

Proof. 1f G € Uy(5), then by Lemma 3.1, WW (G) > 3(25 x 5% — 61 x 5 + 42) = 181.
Suppose that G € Uy (5). Let (x,y, z) be a vertex triple of G. Then G—z—y € U(8,4),
and by Lemmas 2.1 and 3.3,

WW(G) > WW(G -z —y)+16 x 10 — 36 — Tdg(z) > 99+ 124 — 7 x 6 = 181

with equalities if and only if G —x —y = Us 4 or Hg 5, dg(z) = 6 and ecc(z) =2, i.e.,
G = U1075. O

Proposition 3.5. Let G € U(2m,m), where m > 2.
(2) If m = 3, then WW(G) > 39 with equality if and only if G = Hg 5;
(#4) If m # 3, then

1
WW(G) > 5(25m2 — 61m + 42)

with equality if and only if G = Uy, Cy for m =2, G = U4, Hg5 for m =4, and
G = Uspm,m for m > 5.

Proof. The case m = 2 is obvious since U(4,2) = {Usz2,C4} and WW (U 2) =
WW(C4) = 10. The cases m = 3 and m = 4 follow from Lemmas 3.2 and 3.3,
respectively.

Suppose that m > 5. Let g(m) = $(25m? — 61m + 42). We prove the result
by induction on m. If m = 5, then the result follows from Lemma 3.4. Suppose that
m > 6 and the result holds for graphs in U(2m — 2,m — 1). Let G € U(2m,m). If
G € Uy(m), then by Lemma 3.1, WW(G) > g(m). If G € Uy(m), then for a vertex
triple (z,y,2) of G, G —x —y € U(2m — 2,m — 1), and thus by Lemma 2.1 and the

induction hypothesis,
WW(Q) WW(G —x —y) + 32m — 36 — Tdg ()

gm—1)4+32m —-36—7(m+1)

(AVARYS

1
5(25m2 — 61m + 42) = g(m)

with equality if and only if G — 2 — y = Uam—2.m—1, dg(z) = m + 1 and ecc(z) = 2,
i.e., G = Umem. O

Let Hr 5 be the graph obtained by attaching two pendent vertices to a vertex of
Cs.
Theorem 3.6. Let G € U(n,m), where 2 <m < |5 ].
(2) If (n,m) = (6, 3), then WW(G) > 39 with equality if and only if G = Hg 5;
(id) If (n,m) # (6,3), then

1
WW(G) > 5(3712 +m? + 6nm — 19n — 23m + 42)

with equality if and only if G = Uso, Cy for (n,m) = (4,2), G = Usa, C5 for
(n,m) = (5,2), G =Urgs, Hr 5 for (n,m) = (7,3), G =Us4, Hs 5 for (n,m) = (8,4)
and G = Uy, ,, otherwise.
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Proof. The case (n,m) = (6, 3) follows from Lemma 3.2. Suppose that (n,m) # (6, 3).
Let g(n,m) = £(3n? + m? + 6nm — 19n — 23m + 42).

If G = C,, with n > 7, then by Lemma 2.2, WW(G) > g(n,m).

If G # C,, with n > 2m, then there exist a pendent vertex z and a maximum
matching M such that  is not M-saturated in G [16], and thus G —z € U(n — 1, m).
Let y be the unique neighbor of z. Since M contains one edge incident with y, and
there are n — m edges of G outside M, we have dg(y) <n —m+ 1.

Case 1. m = 2. The result for n = 4 follows from Proposition 3.5. If n = 5, then
by Lemma 2.3, the minimum hyper-Wiener index is achieved only by S5 3, S5.4, or
(5, and thus the result follows by noting that WW (S5 3) = WW(C5) = 20 < 23 =
WW(S54) and S5 3 = Uso. If n > 6, then by Lemma 2.3, the minimum hyper-
Wiener index is achieved only by Sn 3 or Sy, 4, and thus the result follows by noting
that WW (S,,3) = 2(3n? — Tn) < (3n2 —n—24) =WW(S,.4) and Sy, 3 = Uy 2.
Case 2. m = 3. Suppose first that n = 7. Then G —x € U(6, 3). If G —x = Hg 5, then
da(y) < 4, and by Lemma 2.1,

WW(G) > WW(G —2)+6 x7—8 —3dg(y) > 39+ 34— 12 = 61

with equalities if and only if dg(y) = 4 and ecc(y) = 2, i.e., G = Hy 5, while if
G — z # Hg 5, then by Lemmas 2.1 and 3.2,

WW(G) > WW(G —2)+6x7—8—3da(y) > 42+ 34— 15 = 61

with equalities if and only if G —a = Us 3, He,3, He,a or Cs, dg(y) = 5 and ecc(y) = 2,
ie., G = Urgs. It follows that WW(G) > 61 with equality if and only if G = Hy 5 or
Uz 3. For n > 8, we prove the result by induction on n. If n = 8, then G —x € U(7, 3),
and by Lemma 2.1,

WW(G) > WW(G —z) +6x 8 —8—3dg(y) > 61 +40 — 3 x 6 =83

with equalities if and only if G = Hr 5 or Urgs, dg(y) = 6 and ecc(y) = 2, ie.,
G = Ug,s. Suppose that n > 9 and the result holds for graphs in U(n —1,3). B
Lemma 2.1 and the induction hypothesis,

WW(G) WW(G —x) + 6n —8 — 3d¢(y)

g(n—1,3)+6n—8—3(n—2)

AV

1
5(3n2 —n—18) =g(n,3)

with equalities if and only if G — 2z = U,_1 3, da(y) = n — 2 and ecc(y) = 2, ie.,
G=U,gs.

Case 3. m = 4. The case n = 8 follows from Lemma 3.3. For n > 9, we prove the
result by induction on n. If n =9, then G — z € U(8,4), and by Lemmas 2.1 and 3.3,

WW(G) > WIW(G —x) +6 x9—8—3da(y) > 99 +46 — 3 x 6 = 127

with equalities if and only if G = Ug4 or Hggs, dg(y) = 6 and ecc(y)

= 2, ie,
G = Uy 4. Suppose that n > 10 and the result holds for graphs in U(n — 1,4).
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By Lemma 2.1 and the induction hypothesis,

WW(G) > WW(G—2z)+6n—8—3da(y)
> gn—1,4)+6n—-8—-3(n—3)

1
= 5@#+ﬁnfmy:¢m®

with equalities if and only if G — x = U,_14, da(y) = n — 3 and ecc(y) = 2, i.e.,
G=Upza.

Case 4. m > 5. We prove the result by induction on n (for fixed m). If n = 2m, then
the result follows from Proposition 3.5. Suppose that n > 2m and the result holds for
graphs in U(n—1,m). Let G € U(n,m). By Lemma 2.1 and the induction hypothesis,

WW(G) WW (G — z) + 6n — 8 — 3dg(y)
gln—1,m)+6n—-8—-3(n—m+1)

v v

1
5(3712 +m? + 6nm — 19n — 23m + 42) = g(n,m)

with equalities if and only if G — 2 = Up,—1,m, dg(y) =n—m+1 and ecc(y) = 2, i.e.,
G =Uym. O
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