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Generalized Salagean-type harmonic univalent
functions

Elif Yaşar and Sibel Yalçın

Abstract. The main purpose of this paper is to introduce a generalization of
modified Salagean operator for harmonic univalent functions. We define a new
subclass of complex-valued harmonic univalent functions by using this opera-
tor ,and we investigate necessary and sufficient coefficient conditions, distortion
bounds, extreme points and convex combination for the above class of harmonic
univalent functions.
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1. Introduction

Let H denote the family of continuous complex valued harmonic functions which
are harmonic in the open unit disk U = {z : |z| < 1} and let A be the subclass of
H consisting of functions which are analytic in U. A function harmonic in U may
be written as f = h + g, where h and g are members of A. In this case, f is sense-
preserving if |h′(z)| > |g′(z)| in U. See Clunie and Sheil-Small [2]. To this end, without
loss of generality, we may write

h(z) = z +
∞∑

k=2

akzk, g(z) =
∞∑

k=1

bkzk. (1.1)

One shows easily that the sense-preserving property implies that |b1| < 1.
Let SH denote the family of functions f = h+ g which are harmonic, univalent,

and sense-preserving in U for which f(0) = fz(0)− 1 = 0.
For the harmonic function f = h + g, we call h the analytic part and g the

co-analytic part of f. Note that SH reduces to the class S of normalized analytic
univalent functions in U if the co-analytic part of f is identically zero.

In 1984 Clunie and Sheil-Small [2] investigated the class SH as well as its geo-
metric subclasses and obtained some coefficient bounds. Since then, there has been
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several related papers on SH and its subclasses such as Avcı and Zlotkiewicz [1],
Silverman [7], Silverman and Silvia [8], Jahangiri [3] studied the harmonic univalent
functions.

The differential operator Dn (n ∈ N0) was introduced by Salagean [6]. For
f = h + g given by (1.1), Jahangiri et al. [4] defined the modified Salagean operator
of f as

Dnf(z) = Dnh(z) + (−1)nDng(z),
where

Dnh(z) = z +
∞∑

k=2

knakzk and Dng(z) =
∞∑

k=1

knbkzk.

For f = h + g given by (1.1), we define generalization of the modified Salagean
operator of f :

D0
λf(z) = D0f(z) = h(z) + g(z),

D1
λf(z) = (1− λ)D0f(z) + λD1f(z), λ ≥ 0, (1.2)

Dn
λf(z) = D1

λ

(
Dn−1

λ f(z)
)
. (1.3)

If f is given by (1.1) , then from (1.2) and (1.3) we see that

Dn
λf(z) = z +

∞∑
k=2

[λ(k − 1) + 1]n akzk + (−1)n
∞∑

k=1

[λ(k + 1)− 1]n bkzk. (1.4)

When λ = 1, we get modified Salagean differential operator [4]. If we take the
co-analytic part of f = h + g of the form (1.1) is identically zero, Dn

λf reduces to the
Al-Oboudi operator [5].

Denote by SH(λ, n, α) the subclass of SH consisting of functions f of the form
(1.1) that satisfy the condition

Re
(

Dn+1
λ f(z)
Dn

λf(z)

)
≥ α, 0 ≤ α < 1 (1.5)

where Dn
λf(z) is defined by (1.4).

We let the subclass SH(λ, n, α) consisting of harmonic functions fn = h + gn

in SH so that h and gn are of the form

h(z) = z −
∞∑

k=2

akzk, gn(z) = (−1)n
∞∑

k=1

bkzk, ak, bk ≥ 0. (1.6)

By suitably specializing the parametres, the classes SH(λ, n, α) reduces to the
various subclasses of harmonic univalent functions. Such as,

(i) SH(1, 0, 0) = SH∗(0) (Avcı [1], Silverman [7], Silverman and Silvia [8]),
(ii) SH(1, 0, α) = SH∗(α) (Jahangiri [3]),
(iii) SH(1, 1, 0) = KH(0) (Avcı [1], Silverman [7], Silverman and Silvia [8]),
(iv) SH(1, 1, α) = KH(α) (Jahangiri [3]),
(v) SH(1, n, α) = H(n, α) (Jahangiri et al. [4]).
The object of the present paper is to investigate the various properties of har-

monic univalent functions belonging to the subclass SH(λ, n, α). We extend the results
of [4], by generalizing the operator.
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2. Main results

Theorem 2.1. Let f = h + g be so that h and g are given by (1.1). Furthermore, let
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] |ak|

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] |bk| ≤ 1− α, (2.1)

where λ ≥ 1, n ∈ N0, 0 ≤ α < 1. Then f is sense-preserving, harmonic univalent in
U and f ∈ SH(λ, n, α).

Proof. If z1 6= z2,

∣∣∣∣f(z1)− f(z2)
h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)
h(z1)− h(z2)

∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣∣∣

∞∑
k=1

bk

(
zk
1 − zk

2

)
(z1 − z2) +

∞∑
k=2

ak

(
zk
1 − zk

2

)
∣∣∣∣∣∣∣∣∣∣

> 1−

∞∑
k=1

k |bk|

1−
∞∑

k=2

k |ak|
≥ 1−

∞∑
k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk|

1−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|
≥ 0,

which proves univalence. Note that f is sense preserving in U. This is because

|h′(z)| ≥ 1−
∞∑

k=2

k |ak| |z|k−1
> 1−

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|

≥
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk| >
∞∑

k=1

k |bk| |z|k−1 ≥ |g′(z)| .

Using the fact that Rew ≥ α if and only if |1− α + w| ≥ |1 + α− w|, it suffices to
show that∣∣(1− α)Dn

λf(z) + Dn+1
λ f(z)

∣∣− ∣∣(1 + α)Dn
λf(z)−Dn+1

λ f(z)
∣∣ ≥ 0. (2.2)

Substituting for Dn+1
λ f(z) and Dn

λf(z) in (2.2), we obtain∣∣(1− α)Dn
λf(z) + Dn+1

λ f(z)
∣∣− ∣∣(1 + α)Dn

λf(z)−Dn+1
λ f(z)

∣∣
≥ 2(1− α) |z| −

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 2− α] |ak| |z|k

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 2 + α] |bk| |z|k

−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1)− α] |ak| |z|k
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−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1) + α] |bk| |z|k

≥ 2(1− α) |z|

(
1−

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

|ak|

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

|bk|

)
.

This last expression is non-negative by (2.1), and so the proof is complete. �

Theorem 2.2. Let fn = h + gn be given by (1.6). Then fn ∈ SH(λ, n, α) if and only
if

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] ak

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bk ≤ 1− α, (2.3)

where λ ≥ 1, n ∈ N0, 0 ≤ α < 1.

Proof. The ”if” part follows from Theorem 2.1 upon noting that SH(λ, n, α) ⊂
SH(λ, n, α). For the ”only if” part, we show that f /∈ SH(λ, n, α) if the condition
(2.3) does not hold. Note that a necessary and sufficient condition for fn = h + gn

given by (1.6), to be in SH(λ, n, α) is that the condition (1.5) to be satisfied. This is
equivalent to

Re


(1− α)z −

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] akzk

z −
∞∑

k=2

[λ(k − 1) + 1]n akzk +
∞∑

k=1

[λ(k + 1)− 1]n bkzk

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bkzk

z −
∞∑

k=2

[λ(k − 1) + 1]n akzk +
∞∑

k=1

[λ(k + 1)− 1]n bkzk

 ≥ 0. (2.4)
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The above condition must hold for all values of z, |z| = r < 1. Upon choosing the
values of z on the positive real axis where 0 ≤ z = r < 1 we must have

(1− α)−
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α] akrk−1

1−
∞∑

k=2

[λ(k − 1) + 1]n akrk−1 +
∞∑

k=1

[λ(k + 1)− 1]n bkrk−1

−
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α] bkrk−1

1−
∞∑

k=2

[λ(k − 1) + 1]n akrk−1 +
∞∑

k=1

[λ(k + 1)− 1]n bkrk−1

≥ 0. (2.5)

If the condition (2.3) does not hold, then the numerator in (2.5) is negative for r
sufficiently close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in
(2.5) is negative. This contradicts the required condition for fn ∈ SH(λ, n, α) and so
the proof is complete. �

Theorem 2.3. Let fn be given by (1.6). Then fn ∈ SH(λ, n, α) if and only if

fn(z) =
∞∑

k=1

(Xkhk(z) + Ykgnk
(z)) ,

where h1(z) = z,

hk(z) = z − 1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
zk (k = 2, 3, ...),

gnk
(z) = z + (−1)n 1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
zk (k = 1, 2, 3, ...),

∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0.

In particular, the extreme points of SH(λ, n, α) are {hk} and {gnk
}.

Proof. For functions fn of the form (1.6) we have

fn(z) =
∞∑

k=1

(Xkhk(z) + Ykgnk
(z))

=
∞∑

k=1

(Xk + Yk) z −
∞∑

k=2

1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
Xkzk

+(−1)n
∞∑

k=1

1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
Ykzk.
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Then
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

(
1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
Xk

)

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

(
1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
Yk

)

=
∞∑

k=2

Xk +
∞∑

k=1

Yk = 1−X1 ≤ 1, and so fn ∈ SH(λ, n, α).

Conversely, if fn ∈ SH(λ, n, α), then

ak ≤
1− α

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

and

bk ≤
1− α

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
.

Set

Xk =
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak, (k = 2, 3, ...)

Yk =
[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]

1− α
bk, (k = 1, 2, 3, ...)

and

X1 = 1−

( ∞∑
k=2

Xk +
∞∑

k=1

Yk

)
where X1 ≥ 0. Then, as required, we obtain

fn(z) = X1z +
∞∑

k=2

Xkhk(z) +
∞∑

k=1

Ykgnk
(z).

�

Theorem 2.4. Let fn ∈ SH(λ, n, α). Then for |z| = r < 1 and λ ≥ 1 we have

|fn(z)| ≤ (1 + b1) r

+
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2,

and

|fn(z)| ≥ (1− b1) r

−
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2.
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Proof. We only prove the right hand inequality. The proof for the left hand inequality
is similar and will be omitted. Let fn ∈ SH(λ, n, α) and λ ≥ 1. Taking the absolute
value of fn we have

|fn(z)| ≤ (1 + b1) r +
∞∑

k=2

(ak + bk) rk

≤ (1 + b1) r +
∞∑

k=2

(ak + bk) r2

= (1 + b1) r +
(1− α) r2

(λ + 1)n (λ + 1− α)

∞∑
k=2

(λ + 1)n (λ + 1− α)
(1− α)

[ak + bk]

≤ (1 + b1) r +
(1− α) r2

(λ + 1)n (λ + 1− α)

×
∞∑

k=2

(
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak

+
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
bk

)
≤ (1 + b1) r +

(1− α) r2

(λ + 1)n (λ + 1− α)

×
∞∑

k=2

(
[λ(k − 1) + 1]n [λ(k − 1) + 1− α]

1− α
ak

+
[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]

1− α
bk

)
≤ (1 + b1) r +

(1− α)
(λ + 1)n (λ + 1− α)

(
1− (2λ− 1)n (2λ− 1 + α)

1− α
b1

)
r2

≤ (1 + b1) r +
(

(1− α)
(λ + 1)n (λ + 1− α)

− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

)
r2.

The following covering result follows from the left hand inequality in Theorem 2.4. �

Corollary 2.5. Let fn of the form (1.6) be so that fn ∈ SH(λ, n, α). Then{
w : |w| < (λ + 1)n (λ + 1− α)− 1 + α

(λ + 1)n (λ + 1− α)

− (λ + 1)n (λ + 1− α)− (2λ− 1)n (2λ− 1 + α)
(λ + 1)n (λ + 1− α)

b1

}
⊂ fn(U).

Theorem 2.6. The class SH(λ, n, α) is closed under convex combinations.

Proof. Let fni
∈ SH(λ, n, α) for i = 1, 2, ..., where fni

is given by
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fni(z) = z −
∞∑

k=2

akiz
k + (−1)n

∞∑
k=1

bkiz
k. Then by (2.3),

∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

aki+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

bki ≤1.

(2.6)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fni
may be written as

∞∑
i=1

tifni
(z) = z −

∞∑
k=2

( ∞∑
i=1

tiaki

)
zk + (−1)n

∞∑
k=1

( ∞∑
i=1

tibki

)
zk.

Then by (2.6),
∞∑

k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

( ∞∑
i=1

tiaki

)

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

( ∞∑
i=1

tibki

)

=
∞∑

i=1

ti

( ∞∑
k=2

[λ(k − 1) + 1]n [λ(k − 1) + 1− α]
1− α

aki

+
∞∑

k=1

[λ(k + 1)− 1]n [λ(k + 1)− 1 + α]
1− α

bki

)
≤

∞∑
i=1

ti = 1.

This is the condition required by (2.3) and so
∞∑

i=1

tifni(z) ∈ SH(λ, n, α). �
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