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Approximation in statistical sense by n−multiple
sequences of fuzzy positive linear operators
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Abstract. Our primary interest in the present paper is to prove a Korovkin-
type approximation theorem for n−multiple sequences of fuzzy positive linear
operators via statistical convergence. Also, we display an example such that our
method of convergence is stronger than the usual convergence.
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1. Introduction

Anastassiou [3] first introduced the fuzzy analogue of the classical Korovkin the-
ory (see also [1], [2], [5], [12]). Recently, some statistical fuzzy approximation theorems
have been obtain by using the concept of statistical convergence (see, [6], [8]). The
main motivation of this work is the paper introduced by Duman [9]. In this paper,
we prove a Korovkin-type approximation theorem in algebraic and trigonometric case
for n−multiple sequences of fuzzy positive linear operators defined on the space of all
real valued n-variate fuzzy continuous functions on a compact subset of the real n-
dimensional space via statistical convergence. Also, we display an example such that
our method of convergence is stronger than the usual convergence.

We now recall some basic definitions and notations used in the paper.
A fuzzy number is a function µ : R → [0, 1], which is normal, convex, upper

semi-continuous and the closure of the set supp(µ) is compact, where

supp(µ) := {x ∈ R : µ(x) > 0} .

The set of all fuzzy numbers are denoted by RF . Let

[µ]0 = {x ∈ R : µ(x) > 0} and [µ]r = {x ∈ R : µ(x) ≥ r} , (0 < r ≤ 1) .

Then, it is well-known [13] that, for each r ∈ [0, 1], the set [µ]ris a closed and bounded
interval of R. For any u, v ∈ RF and λ ∈ R, it is possible to define uniquely the sum
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u⊕ v and the product λ� u as follows:

[u⊕ v]r = [u]r + [v]r and [λ� u]r = λ [u]r , (0 ≤ r ≤ 1) .

Now denote the interval [u]r by
[
u

(r)
− , u

(r)
+

]
, where u

(r)
− ≤ u

(r)
+ and u

(r)
− , u

(r)
+ ∈ R for

r ∈ [0, 1]. Then, for u, v ∈ RF , define

u � v ⇔ u
(r)
− ≤ v

(r)
− and u

(r)
+ ≤ v

(r)
+ for all 0 ≤ r ≤ 1.

Define also the following metric D : RF × RF → R+ by

D(u, v) = sup
r∈[0,1]

max
{∣∣∣u(r)

− − v
(r)
−

∣∣∣ , ∣∣∣u(r)
+ − v

(r)
+

∣∣∣}
(see, for details [3]). Hence, (RF , D) is a complete metric space [18].

The concept of statistical convergence was introduced by ([10]). A sequence
x = (xm) of real numbers is said to be statistical convergent to some finite number
L, if for every ε > 0,

lim
k→∞

1
k
|{m ≤ k : |xm − L| ≥ ε}| = 0,

where by m ≤ k we mean that m = 1, 2, ..., k; and by |B| we mean the cardinality of
the set B ⊆ N, the set of natural numbers. We recall ([16], p. 290) that “natural (or
asymptotic) density” of a set B ⊆ N is defined by

δ(B) := lim
k→∞

1
k
|{m ≤ k : m ∈ B}| ,

provided that the limit on the right-hand side exists. It is clear that a set B ⊆ N
has natural density 0 if and only if complement Bc := N \ B has natural density 1.
Some basic properties of statistical convergence may be found in ([7], [11], [17]). These
basic properties of statistical convergence were extended to n−multiple sequences by
([14], [15]). Let Nn be the set of n−tuples m := (m1,m2, ...,mn) with non-negative
integers for coordinates mj , where n is a fixed positive integer. Two tuples m and
k := (k1, k2, ..., kn) are distinct if and only if mj 6= kj for at least one j. Nn is partially
ordered by agreeing that m ≤ k if and only if mj ≤ kj for each j.

We say that a n−multiple sequence (xm) = (xm1,m2,...,mn
) of real numbers is

statistically convergent to some number L if for every ε > 0,

lim
min kj→∞

1
|k|

|{m ≤ k : |xm − L| ≥ ε}| = 0,

where |k| :=
n∏

j=1

(kj). In this case, we write st− lim xm = L. The “natural (or asymp-

totic) density” of a set B ⊆ Nn can be defined as follows:

δ(B) := lim
min kj→∞

1
|k|

|{m ≤ k : m ∈B} | ,

provided that this limit exists ([14]).
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2. Statistical fuzzy Korovkin theory

Let the real numbers ai; bi so that ai < bi, for each i = 1, n and

U := [a1; b1]× [a2; b2]× ...× [an; bn] .

Let C (U) denote the space of all real valued continuous functions on U endowed with
the supremum norm

‖f‖ = sup
x∈U

|f (x)| , (f ∈ C(U)) .

Assume that f : U → RF be a fuzzy number valued function. Then f is said to
be fuzzy continuous at x0 := (x0

1
, x0

2
, x0

3
, ..., x0

n
) ∈ U whenever limm xm = x0, then

limm D(f(xm), f(x0)) = 0. If it is fuzzy continuous at every point x ∈ U , we say that
f is fuzzy continuous on U . The set of all fuzzy continuous functions on U is denoted
by CF (U). Now let L : CF (U) → CF (U) be an operator. Then L is said to be fuzzy
linear if, for every λ1, λ2 ∈ R having the same sing and for every f1, f2 ∈ CF (U), and
x ∈ U,

L(λ1 � f1 ⊕ λ2 � f2;x) = λ1 � L(f1;x)⊕ λ2 � L(f2;x)

holds. Also L is called fuzzy positive linear operator if it is fuzzy linear and, the
condition L(f ;x) � L(g;x) is satisfied for any f, g ∈ CF (U) and all x ∈ U with
f(x) � g(x). Also, if f, g : U → RF are fuzzy number valued functions, then the
distance between f and g is given by

D∗(f, g) = sup
x∈U

sup
r∈[0,1]

max
{∣∣∣f (r)

− − g
(r)
−

∣∣∣ , ∣∣∣f (r)
+ − g

(r)
+

∣∣∣}
(see for details, [1], [2], [3], [5], [9], [12]). Throughout the paper we use the test
functions given by

f0(x) = 1, fi(x) = xi, fn+i(x) = x2
i , i = 1, n.

Theorem 2.1. Let {Lm}m∈Nn be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈Nn

of

positive linear operators from C (U) into itself with the property

{Lm (f ;x)}(r)± =
∼
Lm

(
f

(r)
± ;x

)
(2.1)

for all x ∈ U , r ∈ [0, 1], m ∈ Nn and f ∈ CF (U). Assume further that

st− lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 2n. (2.2)

Then, for all f ∈ CF (U), we have

st− lim
m

D∗ (Lm (f) , f) = 0.
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Proof. Let f ∈ CF (U), x =(x1, ..., xn) ∈ U and r ∈ [0, 1]. By the hypothesis, since
f

(r)
± ∈ C (U), we can write, for every ε > 0, that there exists a number δ > 0 such

that
∣∣∣f (r)
± (u)− f

(r)
± (x)

∣∣∣ < ε holds for every u = (u1..., un) ∈ U satisfying

|u− x| :=

√√√√ n∑
i=1

(ui − xi)
2

< δ.

Then we immediately get for all u ∈ U, that∣∣∣f (r)
± (u)− f

(r)
± (x)

∣∣∣ ≤ ε +
2M

(r)
±

δ2

n∑
i=1

(ui − xi)
2
,

where M
(r)
± :=

∥∥∥f (r)
±

∥∥∥ . Now, using the linearity and the positivity of the operators
∼
Lm, we have, for each m ∈ Nn, that∣∣∣∣∼Lm

(
f

(r)
± ;x

)
− f

(r)
± (x)

∣∣∣∣
≤ ε +

(
ε + M

(r)
± +

2M
(r)
±

δ2

n∑
i=1

x2
i

)∣∣∣∣∼Lm (f0;x)− f0 (x)
∣∣∣∣

+
2M

(r)
±

δ2

n∑
i=1

{∣∣∣∣∼Lm

(
u2

i ;x
)
− x2

i

∣∣∣∣+ 2c

∣∣∣∣∼Lm (ui;x)− xi

∣∣∣∣}
where c := max

1≤i≤n
{|ai| , |bi|}. The last inequality gives that

∣∣∣∣∼Lm

(
f

(r)
± ;x

)
− f

(r)
± (x)

∣∣∣∣ ≤ ε + K
(r)
± (ε)

2n∑
i=0

∣∣∣∣∼Lm (fi;x)− fi(x)
∣∣∣∣

where K
(r)
± (ε) := max

{
ε + M

(r)
± +

2M
(r)
±

δ2 A,
4M

(r)
±

δ2 c,
2M

(r)
±

δ2

}
and A :=

n∑
i=1

x2
i for xi ∈

[ai, bi], (i = 1, 2, ...n). Also taking supremum over x =(x1..., xn) ∈ U , the above
inequality implies that∥∥∥∥∼Lm

(
f

(r)
±

)
− f

(r)
±

∥∥∥∥ ≤ ε + K
(r)
± (ε)

2n∑
i=0

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ (2.3)

Now, it follows from (2.1) that

D∗ (Lm (f) , f)

= sup
x∈U

sup
r∈[0,1]

max
{∣∣∣∣∼Lm

(
f

(r)
− ;x

)
− f

(r)
− (x)

∣∣∣∣ , ∣∣∣∣∼Lm

(
f

(r)
+ ;x

)
− f

(r)
+ (x)

∣∣∣∣}
= sup

r∈[0,1]

max
{∥∥∥∥∼Lm

(
f

(r)
−

)
− f

(r)
−

∥∥∥∥ ,

∥∥∥∥∼Lm

(
f

(r)
+

)
− f

(r)
+

∥∥∥∥} .
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Combining the above equality with (2.3), we have

D∗ (Lm (f) , f) ≤ ε + K (ε)
2n∑
i=0

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ (2.4)

where K (ε) := sup
r∈[0,1]

max
{

K
(r)
− (ε) ,K

(r)
+ (ε)

}
.

Now, for a given r > 0, choose ε > 0 such that 0 < ε < r, and also define the
following sets:

G : = {m ∈ Nn : D∗ (Lm (f) , f) ≥ r} ,

Gi : =
{
m ∈ Nn :

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ ≥ r − ε

(2n + 1) K (ε)

}
, i = 0, 2n.

Hence, inequality (2.4) yields that

G ⊂
2n⋃
i=0

Gi

which gives,

lim
min kj→∞

1
|k|

|{m ≤ k : D∗ (Lm (f) , f) ≥ r}|

≤ lim
min kj→∞

1
|k|

∣∣∣∣{m ≤ k :
∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ ≥ r − ε

(2n + 1) K (ε)

}∣∣∣∣ , i = 0, 2n.

From the hypothesis (2.2), we get

lim
min kj→∞

1
|k|

|{m ≤ k : D∗ (Lm (f) , f) ≥ r}| = 0.

So, the proof is completed. �

If n = 1, then Theorem 2.1 reduces to result of [6].

Theorem 2.2. Let {Lm}m∈N be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈N

of

positive linear operators from C (U) into itself with the property (2.1). Assume further
that

st− lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2.

Then, for all f ∈ CF (U), we have

st− lim
m

D∗ (Lm (f) , f) = 0.

If n = 2, then Theorem 2.1 reduces to new result in classical case.

Theorem 2.3. Let {Lm}m∈N2 be a sequence of fuzzy positive linear operators from

CF (U) into itself. Assume that there exists a corresponding sequence
{
∼
Lm

}
m∈N2

of
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positive linear operators from C (U) into itself with the property (2.1). Assume further
that

lim
m

∥∥∥∥∼Lm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2, 3, 4.

Then, for all f ∈ CF (U), we have

lim
m

D∗ (Lm (f) , f) = 0.

We now show that Theorem 2.1 stronger than Theorem 2.3.

Example 2.4. Let n = 2, U := [0, 1] × [0, 1] and define the double sequence (um) by

um =
{ √

m1m2, if m1 and m2 are square,
0, otherwise.

We observe that, st− lim
m

um = 0 . But (um) is neither convergent nor bounded. Then
consider the Fuzzy Bernstein-type polynomials as follows:

B
(F)
m (f ;x) = (1 + um)�

m1⊕
s=0

�
m2⊕
t=0

(
m1
s

)(
m2
t

)
xs

1x
t
2 (1− x1)

m1−s (1− x2)
m2−t

�f
(

s
m1

, t
m2

)
,

(2.5)
where f ∈ CF (U), x = (x1, x2) ∈ U , m ∈ N2. In this case, we write{

B(F)
m (f ;x)

}(r)

±
=

∼
Bm

(
f

(r)
± ;x

)
= (1 + um)

m1∑
s=0

m2∑
t=0

(
m1

s

)(
m2

t

)
xs

1x
t
2 (1− x1)

m1−s (1− x2)
m2−t

f
(r)
±

(
s

m1
,

t

m2

)
,

where f
(r)
± ∈ C (U). Then, we get

∼
Bm (f0;x) = (1 + um) f0 (x) ,
∼
Bm (f1;x) = (1 + um) f1 (x) ,
∼
Bm (f2;x) = (1 + um) f2 (x) ,

∼
Bm (f3;x) = (1 + um)

(
f3 (x) +

x1 − x2
1

m1

)
∼
Bm (f4;x) = (1 + um)

(
f4 (x) +

x2 − x2
2

m2

)
.

So we conclude that

st− lim
m

∥∥∥∥∼Bm (fi)− fi

∥∥∥∥ = 0 for each i = 0, 1, 2, 3, 4.

By Theorem 2.1, we obtain for all f ∈ CF (U), that

st− lim
m

D∗
(
B(F)

m (f) , f
)

= 0.
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However, since the sequence (um) is not convergent, we conclude that Theorem 2.3 do
not work for the operators

{
B

(F)
m (f ;x)

}
in (2.5) while our Theorem 2.1 still works.

Remark 2.5. Let C2π(Rn) denote the space of all real valued continuous and 2π-
periodic functions on Rn, (n ∈ N). By CF2π (Rn) we denote the space of all fuzzy
continuous and 2π-periodic functions on Rn. (see for details [4]). If we use the following
test functions

f0(x) = 1, fi(x) = cos xi, fn+i(x) = sin xi, i = 1, n,

then the proof of Theorem 2.1 can easily be modified to trigonometric case.
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