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Abstract. In this paper, we establish several weighted inequalities for some dif-
ferantiable mappings that are connected with the celebrated Hermite-Hadamard
Fejér type integral inequality. The results presented here would provide extensions
of those given in earlier works.
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1. Introduction

The following inequality is well known in the literature as the Hermite-Hadamard
integral inequality (see, [12]):

where f : I C R — R is a convex function on the interval I of real numbers and
a,b € I with a < b.

The most well-known inequalities related to the integral mean of a convex func-
tion f are the Hermite Hadamard inequalities or its weighted versions, the so-called
Hermite Hadamard Fejér inequalities. In [4], Fejer gave a weighted generalizatinon of
the inequalities (1.1) as the following:

Theorem 1.1. [ : [a,b] — R, be a convex function, then the inequality

f(a‘z”’) / " wa)de < = ' faula)de < LOHIO) / Cw@dr (12)

holds, where w : [a,b] — R is nonnegative, integrable, and symmetric about x = ‘LTH’.
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For some results which generalize, improve, and extend the inequalities (1.1) and
(1.2), (see [1]-[3], [5)-[11], [13], [15] and [16]).

In [2] in order to prove some inequalities related to Hadamard’s inequality
Dragomir and Agarwal used the following lemma.

Lemma 1.2. Let f : I C R — R, be a differentiable mapping on I°, a,b € I (I° is the
interior of I) with a <b. If f' € L([a,b]), then we have

b —q !
f(a)-;f(b) _ bia/a Fa)de =2 5 /0 (1—2t) f'(ta+ (1 —t)b)dt.  (1.3)

Theorem 1.3. ([2]) Let f : I° C R — R be a differentiable mapping on I°, a,b € I°
with a < b, f' € L(a,b) and p > 1. If the mapping |f’|p/(p71) is convex on [a,b], then
the following inequality holds:

fla)+f) 1 f°
‘ - bfa/a f(z)dx

b—a <f’(a)|p/(”_1) n |f/(b)|p/(p_1)> (p—1)/p
2 .

<
=2(p+1)i/r 2

(1.4)

In [9] some inequalities of Hermite-Hadamard type for differentiable convex map-
pings were proved using the following lemma.

Lemma 1.4. Let f : I° C R — R, be a differentiable mapping on I°, a,b € I° (I° is
the interior of I) with a <b. If f' € L([a,b]), then we have

o [ (450

=(b—a) Vétf’(m+(1—t)b)dzwr/1

0 3

(t—1) f'(ta+ (1 - t)b)dt] . (1.5)

One more general result related to (1.5) was established in [10]. The main result
in [9] is as follows:

Theorem 1.5. Let f : I C R — R, be a differentiable mapping on I°, a,b € 1 with
a < b. If the mapping |f’| is convex on [a,b], then

bla/abf(x)dm_f(a;b) cb-a (If’(a)|+f’(b)>_ (1.6)

- 4 2
In this article, using functions whose derivatives absolute values are convex, we
obtained new inequalities of weighted Hermite-Hadamard type. The results presented
here would provide extensions of those given in earlier works.

2. Main results

We will establish some new results connected with the left-hand side of (1.2)
used the following Lemma. Now, we give the following new Lemma for our results:
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Lemma 2.1. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a < b, and w : [a,b] — [0,00) be a differentiable mapping. If f' € L[a,b], then the
following equality holds:

b_a/f dx—f<a+b)/ w(z)dr = ( —a/k: '(ta+(1—t)b)dt

for each t € [0, 1], where

{ fo (as+ (1 —s)b)ds, t€]0,3)
k(t) =

ft w(as+ (1 —s)b)ds, te|
Proof. Tt suffices to note that

I= /01 k(t)f' (ta+ (1 —t)b)dt
_ /0é (/Otw(as+ (1 —s)b)ds) Flta+ (1 - t)b)dt
+[ (_ /tlw(as+(1—s)b)ds> Flta+ (1 —t)b)dt

2

=1 + I,.
By integration by parts, we get

= tw as -5 s —f(ta +(1-t)b) :
11(/0 (as+ (1 )b)d) — O
- /§ w(ta + (1 — t)b)wdt
0 a-—
= (/2 w(as + (1 — s)b)ds> f(a;rz)
0 a—
_ /§ wlta+ (1 — t)b)f(mz(_ll: D0 gt

and similarly

I, = </11 w(as + (1 — s)b)ds) 155 - /1 w(ta+ (1 — t)b)wdt.

2 a—1b % a—>b

Thus, we can write

I'=nh+I = </1 w(as + (1 — s)b)ds) f(“;lbj) —/1 w(ta—i—(l—t)b)wdt,
0 a— 0 a—

Using the change of the variable = ta + (1 — t)b for ¢ € [0, 1], and multiplying the
both sides by (b — a), we obtain (2.1) which completes the proof. O

Remark 2.2. If we take w(z) =1 in Lemma 2.1, then (2.1) reduces to (1.5).
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Now, by using the above lemma, we prove our main theorems:

Theorem 2.3. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with
a<b, and w : [a b] — [0,00) be a differentiable mapping and symmetric to “£°. If
|f'| is convex on [a,b], then the following inequality holds:

b—a/f d$f<a;rb>/Gw(x)dx
(2.2)
: ((b—la)2 /b+ w(@) |(@—a)* = (b —2)’] dg:) (W)

2

Proof. From Lemma 2.1 and the convexity of |f'|, it follows that

e = o (S5 1 wtoda

(b—a) {fif (Jy wlas + (1 = $)b)ds) [t1f'(a)| + (1 = 1) | (5) )

(2.3)
0L (8 wles + (= 9)ds) 1 @) + (10— 1) @)l e
= Q1+ Q2.

By change of the order of integration, we have

= [}y wlas + (1= 9)b) (£1(@)] + (1 = )| (5)]) dsdt
= [ [Zwlas + (1= $)b) (t1f(@)] + (1= 1) |f'(0)]) deds
= Jy wlas+ (=) [(2 = F) 7@l + (552 = 1) 7o) s

and using the change of the variable x = as + (1 — s)b for s € [0, 1],

1

Q1 = g Je 0@ [(6 -0 =40 - 27) 17/ (@)

+ (4= - 0 — ) £ O)l] do

Similarly, by change of order of the integration, we obtain

2

Q2= [} wias + (1= o)) [(5 = 1) If' (@) + (3 = L5217 ()]] ds

]_ a+b

e A (40 =22 = 0= a?) I7'(@)

+ (b= a) — 46w —a)?) | £/ 1)) da.
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Since w(z) is symmetric to x = £, for w(z) = w(a + b — z), we write

Q2 =G (2.5)
A combination of (2.3), (2.4) and (2.5), we get (2.2). This completes the proof. [

Remark 2.4. If we take w(x) =1 in Theorem 2.3, then (2.2) reduces to (1.6).

Theorem 2.5. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with

a < b, and w : [a,b] — [0,00) be a differentiable mapping and symmetric to “TH’. If

|f/|* is convex on [a, b, g > 1, then the following inequality holds:

P~ f (a;b> S w(a)da
< (b—a) ((bl) [ (x - ;b) wp(x)dw)’l’ (2.6)

x [(|f/(a)q—12-42|f/(b)|q>‘11 . (2|f’(a)|q21 fl(b)q)ﬂ |

1,1 _
where;—i—a—l.

Proof. From Lemma 2.1 and using change of the order of integration, we get

x)dx — bi f (a—;—b) f;w(x)dx

a

(b—a) {[fo (fo (as + ( 1—s)b)ds) |f’(ta+(1—t)b)|dt}
+ [fl (S wlas + (1= s)b)ds ) |1 (ta+ (1 — 1)) di] }
(b—a) {[fo [2w a8+(1—s)b)|f’(ta+(1—t)b)|dtds}

[f i wlas + 1—S)b)|f’(ta+(1—t)b)|dtds”.

By Hoélder’s inequality, it follows that

2)d — —f (“+b> [P w(z)dz

S(b—a){(foéjpr(as—&—(l—s dtds)%(fo f2|f (ta+ (1 —t)b )|thds)%

b

Q=

+ (f%lfgwp(as—&-(l—s)b dtds)%(f JE1f (ta+ (1= 1) )|thds)
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Since |f’|? is convex on [a, b] , we know that for ¢ € [0, 1]

[f(ta+ 1 =D) <t|f'@]"+ 1 -0)[f O,

hence

)dz — —f <“+b> JPw(z)da

<(b—a) {(fo 2 w(as+(1-s) dtds)%(fo J2 (1 @)+ (1—t)|f’(b)|q)dtds>%

+<f%1f§wp(as+(lfs dtds)%(f S (t1f'(a (1t)|f’(b)|q)dtds);}

= R; + Rs.
(2.7)
where % + é = 1. Now, solving the above integrals with the elementary integrals,
respectively, we obtain

b % /a q / qaN\ q
R=<2<bi)/ (%_G_b)w,,(x)dx) (If( ) ;42|f <b>|> (2.8)

Q=

and
L P2l oy
Ry = (M/a (a+b—2x) wp(;v)dw> ( 51 ) . (29
Since w(z) is symmetric to z = “E2 we write
1 o »
Ry = (M/a (a+b—2x) wp(a—l—b—x)dx> =R, (2.10)

Using (2.8), (2.9) and (2.10), we get (2.6). Hence, the inequality (2.6) is proved. [

Now, we will give some new results connected with the right-hand side of (1.2)
used the following Lemma:

Lemma 2.6. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a < b, and w : [a,b] — [0,00) be a differentiable mapping. If f' € L[a,b], then the
following equality holds:

blaf(a);rf(b)/a 7/ i “’;“)/0 p(6)f (tat-(1—t)b)dt
(2.11)

for each t € [0, 1], where

p(t) = /75 w(as + (1 — s)b)ds — /0 w(as + (1 — s)b)ds.
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Proof. Tt suffices to note that
J = [y p(6)f (ta+ (1 — t)b)dt

= Jy (Ji! wlas + (1 = s)p)ds) f'(ta+ (1 = D))t
+ fol (_ fotw(as +(1- s)b)ds) f'(ta+ (1 —t)b)dt

=J+ Jo.
By integration by parts, we get

Jy = (/tl w(as + (1 — s)b)ds) flta+ (1 - 1)b)

1

a—2>b

0

+ /1 w(ta + (1 — t)b)wmt

+/01w(ta+ (1 —t)b)Wdt,

and similarly

= - 1was —s)b)ds & 1w a — M
Jo = (/O (as + (1 )b)d>a_b+/0 (ta + (1 —t)b) — .

Thus, we can write
J = J]_ + J2
1 1
t 1—1%)b b
= 2/ w(ta+ (1 - t)b)wdf - (/ w(as + (1 — s)b)ds) M,
0 a—b 0 a—b
Using the change of the variable = ta + (1 — t)b for ¢ € [0, 1], and multiplying the

both sides by 5% we obtain (2.11), which completes the proof. O

Remark 2.7. If we take w(z) = 1 in Lemma 2.6, then (2.11) reduces to (1.3).

Theorem 2.8. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with

a < b, and w : [a,b] — [0,00) be a differentiable mapping and symmetric to “TH’. If

|f'| is convex on [a,b], then the following inequality holds:

b b
5 i - f(a) ;— 1) /a w(z)dr — 2 i - /a f(@)w(x)dx

< % [/01 (g(x))pdt]; (f/(a)lq '; |f/(b)q); (2.12)

b—(b—a)t
/ w(z)dx

+(b—a)t

where g(z) = fort € [0,1].
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Proof. From Lemma 2.6, we get

b b
5 i - f(a) ;— 1) /a w(z)dx — 7 i - /a f(@)w(z)dx

b—a) [ (] [* t /
=2 Uo /t w(“”(l’s)b)dS*/O w(as + (1 s)b)ds |f(ta+(1t)b)|dt}
b—(b—a) b
S% l/ol /a tw(x)dx—/b 0" a)tw(x)dx If (ta+ (1 —t)b)|dt] . (2.13)
Since w(z) is symmetric to z = “£2, we write

b—(b—a)t b b—(b—a)t
/ w(z)dr — / w(z)dr = / w(zx)dz, (2.14)
a b—(b—a)t a+(b—a)t

for ¢ € [0, 3] and

b—(b—a)t b at(b—a)t
/ w(z)dx —/ w(z)dr = —/ w(z)dz, (2.15)
a b—(b—a)t b—(b—a)t

for t € [1,1]. If we write (2.14) and (2.15) in (2.13), we have

biaf( )+f()/a dm*b—a/ @

< 3 { / (@) | (a1 t)b)|dt} .

f; +((£ 5)) (x)dm‘ . By Hélder’s inequality, it follows that

biaf(a);—f(b)/ dm_i/ f@

<1 [/ <g<x)>”dt]p [/ Fitat (1 —t>b>th]§.

Since |f’|? is convex on [a, b], we know that for ¢ € [0, 1]

[f'(ta+ (1= )" <t|f' (@) + (1) [f (),

where g(z) =

hence

‘b i , f(a) ;' f(b) f:w(x)dw _ %a f: f(z)w(z)dx

Q=

% [fo } (f (' @I+ @ =) f'®)) dt)

_ % [fol (g())” dt}% (If’(a)lq -2F If’(b)|q>q
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which completes the proof. O

Remark 2.9. If we take w(x) =1 in Theorem 2.8, since

1 b—(b—a)t p 1 b—a)?
/ / dx dt:(b—a)p/ 1oy ar= L=
0 a+(b—a)t 0 p+

(2.12) reduces to (1.4).

3. An application

Let d be a division a = 2 < 21 < ... < Zp_1 < T, = b of the interval [a,b] and
&= (&, ...,&€n—1) a sequence of intermediate points, & € [x;, 2;41], ¢ = 0,n — 1. Then
the following result holds:

Theorem 3.1. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with
a<b, f' € Lla,b] and w : [a,b] — [0,00) be a differentiable mapping. If |f'| is convex
on [a,b] then we have

b
/ fww(u)du = A(f,w,d,€) + R(f.w, d, €)

where
“— 1 Tt i, [ [T
A §) = 32 (o S ( / w(u)du) |
The remainder R(f,w,d,§) satisfies the estimation:
\R(f, f',d,€)]
n-l 1 Tit1 (2, (24
< Sl e, w0 [ = s (Ll

(3.1)
for any choice & of the intermediate points.

Proof. Apply Theorem 2.3 on the interval [z;,z;+1], ¢ =0,n— 1 to get

s g ([

i

< l( ! /zi+1 w(u) [(u —2:)" — (i1 — u)ﬂ du] <f/(xi)| + f/<xi+1)> .

Tip1 — ;) Jritei 2
O

Summing the above inequalities over ¢ from 0 to n — 1 and using the generalized
triangle inequality, we get the desired estimation (3.1).
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