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Looking for an exact difference formula
for the Dini-Hadamard-like subdifferential

Alina-Ramona Baias and Delia-Maria Nechita

Abstract. We use in this paper a new concept of a directional subdifferential,
namely the Dini-Hadamard-like ε-subdifferential, recently introduced in [29], in
order to provide a subdifferential formula for the difference of two directionally
approximately starshaped functions (a valuable class of nonsmooth functions, see
for instance [32]), under weaker conditions than those presented in [7]. As a conse-
quence, we furnish necessary and sufficient optimality conditions for a nonsmooth
optimization problem having the difference of two functions as objective.
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1. Introduction

Since the early 1960’s there has been a good amount of interest in generalizations
of the pointwise derivative for the purposes of optimization. This has lead to many
definitions of generalized gradients, subgradients and other kind of objects under var-
ious names. And all this work in order to solve optimization problems where classical
differentiability assumptions are no longer appropriate. One of the most widely used
subdifferential (set of subgradients) is the one who first appeared for convex functions
in the context of convex analysis (see for more details [28, 38, 39] and the references
therein). It has found many significant theoretical and practical uses in optimization,
economics, mechanics and has proven to be a very interesting mathematical construct.
But the attempt to extend this success to functions which are no more convex has
proven to be more difficult. We mention here two main approaches.
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The first one uses a generalized directional derivative f∂ of f : X → R ∪ {+∞}
of some type and then defines the subdifferential via the formula

∂f(x) := {x∗ ∈ X∗ : x∗ ≤ f∂(x, ·)}, (1.1)

where X∗ is the topological dual of X. It is worth mentioning here that any subdiffer-
ential construction generated by a polarity relation like (1.1) is automatically convex
regardless of the convexity of the generating directional derivative. As an example, the
Clarke subdifferential, who in fact uses a positively homogeneous directional deriva-
tive, was the first concept of a subdifferential defined for a general nonconvex function
and has been introduced in 1973 by Clarke (see for instance [9, 10]) who performed a
real pioneering work in the field of nonsmooth analysis, spread far beyond the scope
of convexity. But unfortunately, as stated in [4], at some abnormal points of certain
even Lipschitzian nonsmooth functions, the Clarke subdifferential may include some
extraneous subgradients. And this because, in general, a convex set often provides a
subdifferential that is too large for a lot of optimization problems.

The second approach to define general subdifferentials satisfying useful calculus
rules is to take limits of some primitive subdifferential constructions which do not
possess such calculus. It is important that limiting constructions depend not only on
the choice of the primitive objects but also on the character of the limit: topological
or sequential.

The topological way allows one to develop useful subdifferentials in general in-
finite dimensional settings, but the biggest drawback is the fact that it may lead to
broad constructions and in general they have an intrinsically complicated structure,
usually following a three-step procedure. Namely, the definition of ∂f for a Lipschitz
function which requires considering restrictions to finite-dimensional (or separable)
subspaces with intersections over the collection of all such subspaces, then the defi-
nition of a normal cone of a set C at a given point x as the cone generated by the
subdifferential of the distance function to C and finally the definition of ∂f for an
arbitrary lower semicontinuous function by means of the normal cone to the epigraph
of f . In this line of development, many infinite dimensional extensions of the non-
convex constructions in [23, 24] were introduced and strongly developed by Ioffe in a
series of many publications starting from 1981 (see [17, 18, 19] for the bibliographies
and commentaries therein) on the basis of topological limits of Dini-Hadamard ε-
subdifferentials. Such constructions, called also approximate subdifferentials, are well
defined in more general spaces, but all of them (including also their nuclei) may be
broader than the Kruger-Mordukhovich extension, even for Lipshictz functions on
Banach spaces with Fréchet differentiable renorms.

The sequential way usually leads to more convenient objects, but it requires some
special geometric properties of spaces in question (see for instance [5]). Thus, because
the convexity is no longer inherent in the procedure, we are able to define smaller
subdifferentials and also to exclude some points from the set of stationary points.
The sequential nonconvex subdifferential constructions in Banach spaces were first
introduced by Kruger and Mordukhovich [20, 21] on the basis of sequential limits of
Fréchet ε-normals and subdifferentials. Such limiting normal cone and subdifferential
appeared as infinite dimensional extensions of the corresponding finite dimensional
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constructions in Mordukhovich [23, 24], motivated by applications to optimization and
control. Useful properties of those and related constructions were revealed mainly for
Banach spaces with Fréchet differentiable renorms. Let us also emphasize that while
the subdifferential theory in finite dimensions has been well developed, there still exist
many open questions in infinite dimensional spaces.

While the Fréchet epsilon-subdifferential is as a building block for the Mor-
dukhovich subdifferential in Banach spaces, the Dini-Hadamard one lies at the heart
of the so called A-subdifferential introduced by Ioffe. Generated with the help of
the lower Dini (or Dini-Hadamard) directional derivative, one of the most attrac-
tive construction appeared in the 1970’s, the Dini-Hadamard subdifferential and its
epsilon enlargement are well known in variational analysis and generalized differen-
tiation but they are not widely used due to the lack of calculus. However, as it has
been recently observed in [7], an exact difference formula holds for such subdiffer-
entials under natural assumptions (see also [35]). Moreover, necessary and sufficient
optimality conditions for cone-constrained optimization problems having a difference
of two functions as objective are established, in case the difference function is calm
and some additional conditions are fulfilled. Our main goal in this paper is to provide
the same formula as mentioned above, but without any calmness assumption. To this
end we employ the Dini-Hadamard-like ε-subdifferential [29], which is defined by the
instrumentality of a different kind of lower limit. Our analysis relies also on the notion
of spongiously pseuso-dissipativity of set-valued mappings and involves the notion of
a spongiously local blunt minimizer.

The reminder of the paper is organized as follows. After introducing in Section
2 some preliminary notions and results especially related to the Dini-Hadamard-like
subdifferential, we study in Section 3 some generalized convexity notions in order to
provide in the final part of the paper some necessary and sufficient conditions for
a point to be a spongiously local blunt minimizer. Finally, we employ the achieved
results to the formulation of optimality conditions for a nonsmooth optimization prob-
lem having the difference of two functions as objective.

2. Preliminary notions and results

Consider a Banach space X and its topological dual space X∗. We denote the
open ball with center x ∈ X and radius δ > 0 in X by B(x, δ), while BX and SX

stand for the closed unit ball and the unit sphere of X, respectively. Having a set
C ⊆ X, δC : X → R ∪ {+∞}, defined by δC(x) = 0 for x ∈ C and δC(x) = +∞,
otherwise, denotes its indicator function.

Let f : X → R ∪ {+∞} be a given function. As usual, we denote by dom f =
{x ∈ X : f(x) < +∞} the effective domain of f and by epi f = {(x, α) ∈ X × R :
f(x) ≤ α} the epigraph of f . Dealing with functions that may take infinite values, we
adopt the following natural conventions (+∞)− (+∞) = +∞ and 0(+∞) = +∞.
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For ε ≥ 0 the Fréchet ε-subdifferential (or the analytic ε-subdifferential) of f at
x ∈ dom f is defined by

∂F
ε f(x) :=

{
x∗ ∈ X∗ : lim inf

‖h‖→0

f(x + h)− f(x)− 〈x∗, h〉
‖h‖

≥ −ε

}
,

which means that one has
x∗ ∈ ∂F

ε f(x) ⇔ for all α > 0 there exists δ > 0 such that for all x ∈ B(x, δ)
f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖.

(2.1)
The following constructions

d−f(x;h) := lim inf
u→h
t↓0

f(x + tu)− f(x)
t

= sup
δ>0

inf
u∈B(h,δ)
t∈(0,δ)

f(x + tu)− f(x)
t

and (see [17, 18])

∂−ε f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ d−f(x;h) + ε‖h‖ for all h ∈ X}, where ε ≥ 0,

are called the Dini-Hadamard directional derivative of f at x in the direction h ∈ X
and the Dini-Hadamard ε-subdifferential of f at x, respectively.

Similarly, following the two steps procedure of constructing the Dini-Hadamard
ε-subdifferential we can define (see [29])

DS
d f(x;h) := sup

δ>0
inf

u∈B(h,δ)∩(h+[0,δ]·B(d,δ))
t∈(0,δ)

f(x + tu)− f(x)
t

,

the Dini-Hadamard-like directional derivative of f at x in the direction h ∈ X through
d ∈ X \ {0} and also, for a given ε ≥ 0, the Dini-Hadamard-like ε-subdifferential of f
at x

∂S
ε f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ DS

d f(x;h) + ε‖h‖ for all h ∈ X and all d ∈ X \ {0}}.

In case ε = 0, ∂−f(x) := ∂−0 f(x) is nothing else than the Dini-Hadamard subd-
ifferential of f at x, while ∂Sf(x) := ∂S

0 f(x) simply denotes the Dini-Hadamard-like
subdifferential of f at x. When x 6∈ dom f we set ∂F

ε f(x) = ∂−ε f(x) = ∂S
ε f(x) := ∅

for all ε ≥ 0. It is worth emphasizing here that for x ∈ dom f the following func-
tions d−f(x; ·) and DS

d f(x; ·) are in general not convex, while ∂−ε f(x) and ∂S
ε f(x) are

always convex sets. Moreover, we notice that d−f(x; 0) is either 0 or −∞ (see [16]).
The function f : X → R ∪ {+∞} is said to be calm at x ∈ dom f if there

exists c ≥ 0 and δ > 0 such that f(x) − f(x) ≥ −c‖x − x‖ for all x ∈ B(x, δ). As a
characterization, for x ∈ dom f one has (see, for instance, [14]) that f is calm at x if
and only if d−f(x; 0) = 0.

Further, for any ε ≥ 0

∂F
ε f(x) ⊆ ∂−ε f(x) ⊆ ∂S

ε f(x).

It is interesting to observe that both inclusions can be even strict (see Exam-
ple 2.9 belllow and [7] for further remarks and links between the Dini-Hadamard
subdifferential and the Fréchet one).
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The essential idea behind defining the Dini-Hadamard-like constructions is to
employ a directional convergence in place of a usual one. To this aim we say that
a sequence (xn) of X converges to x in the direction d ∈ X \ {0} (and we write
(xn)−→

d
x) if there exist sequences (tn) → 0, tn ≥ 0 and (dn) → d such that xn =

x+tndn for each n ∈ N. Further, a sequence (xn) is said to converge directionally to x
if there exists d ∈ X \ {0} such that (xn)−→

d
x. Our definition, slightly different from

the one proposed by Penot in [33], allows us to consider also the constants sequences
among the ones which are directionally convergent. Motivated by this observation, we
call the directional lower limit of f at x in the direction d ∈ X \ {0} the following
limit

lim inf
x−→

d
x

f(x) := sup
δ>0

inf
x∈B(x,δ)∩(x+[0,δ]·B(d,δ))

f(x).

Consequently, since

lim inf
u−→

d
h

t−→
1

0

f(x + tu)− f(x)
t

:= sup
δ>0

δ
′
>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ
′
)∩[0,δ

′
]·(1−δ

′
,1+δ

′
)

f(x + tu)− f(x)
t

= sup
δ>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

,

we may (formally) write

DS
d f(x;h) = lim inf

u−→
d

h

t−→
1

0

f(x + tu)− f(x)
t

= lim inf
u−→

d
h

t↓0

f(x + tu)− f(x)
t

.

Similarly one can define the directional upper limit of f at x in the direction
d ∈ X \{0}, since the lower properties symmetrically induce the corresponding upper
ones

lim sup
x−→

d
x

f(x) := − lim inf
x−→

d
x
(−f)(x) = inf

δ>0
sup

x∈B(x,δ)∩(x+[0,δ]·B(d,δ))

f(x).

Moreover, one can easily observe that

lim inf
x→x

f(x) ≤ lim inf
x−→

d
x

f(x) ≤ lim sup
x−→

d
x

f(x) ≤ lim sup
x→x

f(x) for all d ∈ X \ {0}. (2.2)

The next subdifferential notion we need to recall is the one of G-subdifferential
and we describe in the following the procedure of constructing it (see [19]). To this
aim we consider first the A-subdifferential of f at x ∈ dom f , which is defined via
topological limits as follows

∂Af(x) :=
⋂

L∈F(X)

Limsup
x

f−→ x
ε>0

∂−ε (f + δx+L)(x),

where F(X) denotes the collection of all finite dimensional subspaces of X and
Limsup stands for the topological counterpart of the sequential Painlevé-Kuratowski
upper/outer limit of a set-valued mapping with sequences replaced by nets and where
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x
f−→x means x−→x and f(x)−→ f(x). More precisely, for a set-valued mapping

F : X ⇒ X∗, we say that x∗ ∈ Limsupx→x F (x) if for each weak∗-neighborhood
U of the origin of X∗ and for each δ > 0 there exists x ∈ B(x, δ) such that
(x∗ + U) ∩ F (x) 6= ∅.

The G-normal cone to a set C ⊆ X at x ∈ C is defined as

NG(C, x) := cl∗
(⋃

λ>0

λ∂Ad(x,C)

)
,

where d(x,C) := inf
c∈C

‖x− c‖ denotes the distance from x to C and cl∗ stands for the

weak∗-closure of a set in X∗, while the G-subdifferential of f at x ∈ dom f can be
defined now as follows

∂Gf(x) :=
{
x∗ ∈ X∗ : (x∗,−1) ∈ NG(epi f, (x, f(x)))

}
.

When x 6∈ dom f we set ∂Af(x) = ∂Gf(x) := ∅. Thus, by taking into account [19,
Proposition 4.2] one has the inclusion

∂F f(x) ⊆ ∂−f(x) ⊆ ∂Gf(x) for all x ∈ X. (2.3)

One can notice that when f is a convex function it holds ∂F f(x) = ∂−f(x) =
∂Gf(x) = ∂f(x) for all x ∈ X, where ∂f(x) := {x∗ ∈ X∗ : f(x) − f(x) ≥ 〈x∗, x −
x〉 ∀x ∈ X}, for x ∈ dom f , and ∂f(x) := ∅, otherwise, denotes the subdifferential of
f at x in the sense of convex analysis.

It is also worth mentioning that both G- and A-subdifferentials reduce to the
basic/limiting/Mordukhovich one whenever X is a finite dimensional space or X is
an Asplund weakly compactly generated (WCG) space and f is locally Lipschitz at
the point in discussion (see [27] and [25, Subsection 3.2.3]).

In what follows, in order to study the behavior of the Dini-Hadamard-like sub-
differential we especially need the following result.

Lemma 2.1. Let f : X → R ∪ {+∞} be a given function and x, h ∈ X. Then the
following statements are true:

(i) DS
d f(x;h) ≤ lim inf

n→+∞
f(x+tnun)−f(x)

tn
, whenever (un)−→

d
h and (tn ↓ 0), with

d ∈ X \ {0}.
(ii) If for some d ∈ X \ {0}, DS

d f(x;h) = l ∈ R ∪ {−∞}, then there exist
sequences (un)−→

d
h and (tn ↓ 0) such that lim

n→+∞
f(x+tnun)−f(x)

tn
= l.

Proof. To justify (i), since

lim inf
n→+∞

f(x + tnun)− f(x)
tn

:= sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

,

we only have to show that

sup
δ>0

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

≤ sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

.
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Let δ > 0 be fixed. Since (un)−→
d

h, there exist sequences (t
′

n) → 0, t
′

n ≥ 0 and

(dn) → d such that un = h + t
′

n · dn for all n ∈ N and thus there exists k0 ∈ N with
the property that for each natural number k ≥ k0, uk ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ))
and tk ∈ (0, δ). Hence

DS
d f(x;h) ≤ inf

k≥k0

f(x + tkuk)− f(x)
tk

≤ sup
n≥1

inf
k≥n

f(x + tkuk)− f(x)
tk

.

Taking now the supremum as δ > 0, we obtain the desired conclusion.
(ii) First we study the case l ∈ R. Using the definition of the directional lower

limit, it follows that for any n ∈ N∗

inf
u∈B(h,δ)∩(h+[0,δ]·B(d,δ))

t∈(0,δ)

f(x + tu)− f(x)
t

≤ l < l +
1
n

and consequently, there exists un ∈ B(h, 1
n )∩(h+[0, 1

n ] ·B(d, 1
n )) and tn ∈ (0, 1

n ) with
f(x+tnun)−f(x)

tn
< l + 1

n . Further, for each n ∈ N we find t
′

n ∈ [0, 1
n ] and dn ∈ B(d, 1

n )
(with t

′

0 := 0 and d0 := d) such that un = h + t
′

n · dn, which means nothing else that
(un)−→

d
h. Moreover, since lim

n→+∞
f(x+tnun)−f(x)

tn
≤ l and due to assertion (i) we get

l = DS
d f(x;h) ≤ lim inf

n→+∞

f(x + tnun)− f(x)
tn

≤ lim
n→+∞

f(x + tnun)− f(x)
tn

≤ l.

The special case l = −∞ yields for any n ∈ N∗, un ∈ B(h, 1
n )∩(h+[0, 1

n ]·B(d, 1
n ))

and tn ∈ (0, 1
n ) with the property that f(x+tnun)−f(x)

tn
< −n. Thus, we obtain two

sequences (un)−→
d

h and tn ↓ 0 so that lim
n→+∞

f(x+tnun)−f(x)
tn

= −∞ and finally, the

proof of the lemma is complete. �

Remark 2.2. In fact, this result is particularly helpful to conclude that the Dini-
Hadamard subdifferential coincide with the Dini-Hadamard-like one in finite dimen-
sions. Indeed, since d−f(x;h) ≤ DS

d f(x;h) for all d ∈ X \ {0} and consequently
∂−f(x) ⊆ ∂Sf(x), we only have to prove that the opposite inclusion holds too. To this
end, consider x∗ ∈ ∂Sf(x), h ∈ X and let us denote for convenience d−f(x;h) := l,
l ∈ R. Then, in view of Lemma 2.1 above, there exist sequences (un) → h and (tn) ↓ 0
such that lim

n→+∞
f(x+tnun)−f(x)

tn
= l. Now, due to the finiteness assumption made, we

can find u
′ ∈ SX and a subsequence (unk

) such that

(unk
)−→

u′
h and lim

k→+∞

f(x + tnk
· unk

)− f(x)
tnk

= l. (2.4)

To justify this claim, suppose first that (un) has an infinite number of terms not
equal to h. Then we can choose a subsequence (unk

) of (un), unk
6= h for all k ∈ N and

we may write unk
= h + ‖unk

− h‖ · dnk
with dnk

= unk
−h

‖unk
−h‖ . Further, since (dnk

) is

bounded, there exist u
′ ∈ SX and (dnkl

) so that (dnkl
) → u

′
, and hence (unkl

)−→
u′

h.

If on the contrary un has an infinite number of terms equal to h, then we choose a
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subsequence (unk
) of (un) such that unk

= h for all k ∈ N. In this particular case
(unk

)−→
u′

h for every u
′ ∈ SX .

Consequently, relation (2.4) above holds true and hence l ≥ DS
u′ f(x;h), which

in turn implies 〈x∗, h〉 ≤ d−f(x;h) and finally x∗ ∈ ∂−f(x).

As it was first observed by Penot [33], the concept of a directionally convergent
sequence is clearly related to the following notion introduced by Treiman [40].

Definition 2.3. A set S ⊆ X is said to be a sponge around x ∈ X if for all h ∈ X \{0}
there exist λ > 0 and δ > 0 such that x + [0, λ] ·B(h, δ) ⊆ S.

Furthermore, the sponges enjoy a nice relationship with the so-called cone-porous
sets (see [13, 41] for definition and further remarks). Indeed, accordingly to [11], if S
is a sponge around x then the complementary set (X \S)∪{x} is cone porous in any
direction v ∈ SX . Let us recall also that every neighborhood of a point x ∈ X is also a
sponge around x and that the converse is not true (see for instance [7, Example 2.2]).
However, in case S is a convex set or X is a finite dimensional space (here one can
make use of the fact that the unit sphere is compact), then S is also a neighborhood
of x.

Remark 2.4. Trying to answer the question how further can we go with the replace-
ment of a neighborhood by a sponge, it is worth emphasizing that every sponge S
around a point x ∈ X has the property (A) and moreover it verifies also (B).

(A) : for all h ∈ X \ {0} there exist λ > 0 and a sponge S
′
around h such that

for all u ∈ S
′
, x + [0, λ] · u ⊆ S.

(B) : for all h ∈ X \ {0} and all d ∈ X \ {0} there exists δ > 0 such that
for all u ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ)), x + [0, δ] · u ⊆ S.

Finally, every set S which satisfies property (B) is a sponge around x.
Indeed, suppose that S verifies the above property and take an arbitrary h ∈

X \{0}. Then there exists δ > 0 such that for all u ∈ B(h, δ)∩(h+[0, δ] ·B(h, δ)), x+
[0, δ] ·u ⊆ S. On the other hand, there exists α > 0 (α < δ) so that h+[0, α] ·B(h, δ) ⊆
B(h, δ)∩(h+[0, δ]·B(h, δ)) and therefore x+[0, δ]·B((α+1)h, αδ) ⊆ S. Consequently,
there exist α′ := δ(α + 1) > 0 and δ′ := α

α+1 · δ > 0 such that x + [0, α′] ·B(h, δ′) ⊆ S
and the conclusion follows easily.

Now we are ready to illustrate the aforementioned relationship between sponges
and directionally convergent sequences.

Lemma 2.5. ([40, Lemma 2.1]) A subset S of X is a sponge around x if and only if
for any sequence (xn) which converges directionally to x there exists n0 ∈ N such that
for all n ∈ N, n ≥ n0, xn ∈ S.

In what follows we mainly focus on the properties of the Dini-Hadamard-like
ε-subdifferential. But first, following the lines of the proof of [7, Lemma 2.1] and tak-
ing into account relation (2.2), let us remark that Lemma 2.6 bellow holds true not
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only for the Dini-Hadamard-like subdifferential but also for the Fréchet subdifferen-
tial (which is a building block for the basic/limiting/Mordukhovich subdifferential in
Banach spaces. We refer the reader to the books [25, 26] for a systematic study) and
for the Dini-Hadamard one, as well.

Lemma 2.6. ([29, Lemma 2.3]) Let f : X → R ∪ {+∞} be a given function and
x ∈ dom f . Then for all ε ≥ 0 it holds

∂S
ε f(x) = ∂S(f + ε‖ · −x‖)(x). (2.5)

Thus, using a classical subdifferential formula provided by the convex analysis,
one can easily see that, in case f is convex, ∂S

ε f(x) = ∂f(x) + εBX∗ for all ε ≥ 0.

The following notion, introduced by Treiman [40], it turns out to be essential
also when characterizing the Dini-Hadamard-like subdifferential.

Definition 2.7. Let f : X → R∪{+∞} be a given function, x ∈ dom f and ε ≥ 0. We
say that x∗ ∈ X∗ is an Hε-subgradient of f at x if there exists a sponge S around x
such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖.

Unlike the one obtained in the case of the Dini-Hadamard subdifferential (we
refer to [7, Lemma 2.2] for more details and a similar proof), the following lemma
does not require any calmness condition (take into account also here the Remark 2.4
above). As a direct consequence, we mention that for any γ ≥ ε ≥ 0 and x ∈ X

∂S
ε f(x) ⊆ ∂S

γ f(x). (2.6)

Lemma 2.8. Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0. The
following statements are true:

(i) If x∗ ∈ ∂S
ε f(x), then x∗ is an Hγ-subgradient of f at x for all γ > ε.

(ii) If x∗ is an Hε-subgradient of f at x, then x∗ ∈ ∂S
ε f(x).

Moreover, one can even conclude that whenever x ∈ dom f , ε ≥ 0 and γ > ε the
following set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − γ‖x− x‖} (2.7)

is a sponge around x not only for those elements x∗ ∈ ∂−ε f(x) (like in [7, Remark
2.3]) but also for x∗ ∈ ∂S

ε f(x).

Example 2.9. Although in finite dimensions the Dini-Hadamard ε-subdifferential coin-
cide with the corresponding Dini-Hadamard-like one (see for this Remark 2.2, Lemma
2.6 and [7, Lemma 2.1]) this is in general not the case. Indeed, let us consider the
function f : X → R as being

f(x) =
{

0, if x ∈ S,
a, otherwise,

where a < 0 and S is a sponge around x ∈ X which is not a neighborhood of x (for
such an example we refer to [7, Example 2.2]). Then taking into account the second
assertion of Lemma 2.8, one can easily conclude that for all ε ≥ 0, 0 ∈ ∂S

ε f(x)\∂−ε f(x),
since 0 is an Hε-subgradient of f at x, but f is not calm at x.
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To justify this last assertion, we suppose on the contrary that f is calm at x.
Further, using the aforementioned property of the set S, one can even conclude that
for all n ∈ N there exists an element yn ∈ B(x, 1

n )\S such that ‖yn−x‖ ≤ 1
n . But since

we may write yn = x+t
′

n ·u
′

n with t
′

n :=
√
‖yn − x‖ and u

′

n := yn−x
‖yn−x‖ ·

√
‖yn − x‖ and

moreover lim
n→+∞

f(yn)−f(x)

t′n
= −∞, we get the following relation lim inf

u→0
t↓0

f(x+tu)−f(x)
t =

−∞, and consequently d−f(x, 0) = −∞, a contradiction which completes the proof.

The following result provides a variational description for the Dini-Hadamard-
like ε-subdifferential, with no additional calmness assumptions. For the reader conve-
nient we list bellow also the proof.

Theorem 2.10. ([29, Theorem 3.1]) Let f : X → R ∪ {+∞} be an arbitrary function
and x ∈ dom f . Then for all ε ≥ 0 one has

x∗ ∈ ∂S
ε f(x) ⇔ ∀α > 0 there exists S a sponge around x such that

∀x ∈ S f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖. (2.8)

Proof. Consider an ε ≥ 0 fixed.
In order to justify the inclusion “⊆”, let x∗ ∈ ∂S

ε f(x) and α > 0. Now just
observe that using Lemma 2.8 above we can easily obtain the existence of a sponge
S around x such that for all x ∈ S

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖.

For the second inclusion “⊇”, let us consider an arbitrary element x∗ fulfilling
the property in the right-hand side of (2.8). Our goal is to show that

DS
d f(x;h) ≥ 〈x∗, h〉 − ε‖h‖ ∀h ∈ X,∀d ∈ X \ {0}. (2.9)

Let first h ∈ X \ {0} and d ∈ X \ {0} be fixed. Then for all k ∈ N, by taking
αk := 1

k , there exists Sk a sponge around x such that for all x ∈ Sk

f(x)− f(x) ≥ 〈x∗, x− x〉 −
(

1
k

+ ε

)
‖x− x‖.

Thus, for all k ∈ N there exists δk > 0 such that for all t ∈ (0, δk) and all
u ∈ B(h, δk) ∩ (h + [0, δk] ·B(d, δk)) one has x + tu ∈ Sk and

f(x + tu)− f(x) ≥ 〈x∗, tu〉 −
(

1
k

+ ε

)
‖tu‖,

which implies in turn that for all 0 < δ
′

k ≤ δk, all t ∈ (0, δ
′

k) and all u ∈ B(h, δ
′

k) ∩
(h + [0, δ

′

k] ·B(d, δ
′

k))

f(x + tu)− f(x)
t

≥ 〈x∗, u〉 −
(

1
k

+ ε

)
‖u‖
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and consequently, for all k ∈ N there exists δk > 0 such that for all 0 < δ
′

k ≤ δk

DS
d f(x;h) ≥ inf

u∈B(h,δ
′
k)∩(h+[0,δ

′
k]·B(d,δ

′
k))

t∈(0,δ
′
k)

f(x + tu)− f(x)
t

≥ inf
u∈B(h,δ

′
k)∩(h+[0,δ

′
k]·B(d,δ

′
k))

t∈(0,δ
′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

≥ inf
u∈B(h,δ

′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]
.

On the other hand, for all k ∈ N, all 0 < δ
′

k ≤ δk and all δ
′ ≥ δ

′

k

inf
u∈B(h,δ

′
k)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]
≥ inf

u∈B(h,δ
′
)

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

and hence, for all k ∈ N

DS
d f(x;h) ≥ lim inf

u→h

[
〈x∗, u〉 −

(
1
k

+ ε

)
‖u‖
]

= 〈x∗, h〉 −
(

1
k

+ ε

)
‖h‖.

Finally, passing to the limit as k → +∞, we obtain

DS
d f(x;h) ≥ 〈x∗, h〉 − ε‖h‖

and thus, the relation (2.9) holds true for all h ∈ X \ {0} and all d ∈ X \ {0}.
For the particular case h = 0, let d ∈ X\{0} be an arbitrary element. To complete

the proof of the theorem we only have to show that DS
d f(x; 0) ≥ 0. Assuming the

contrary, accordingly to Lemma 2.1, one gets two sequences (un)−→
d

0 and (tn) ↓ 0

such that

lim
n→+∞

f(x + tnun)− f(x)
tn

< 0, (2.10)

where (un)−→
d

0 means that there exist sequences (t
′

n) → 0 (t
′

n ≥ 0 ∀n ∈ N) and

(dn) → d such that un = t
′

n · dn for all n ∈ N .
On the other hand, there exists a sponge S around x such that

f(x)− f(x) ≥ 〈x∗, x− x〉 − ε‖x− x‖

for all x ∈ S and consequently, we can find a natural number n0 such that for all
n ∈ N, n ≥ n0, x + tn · un ∈ S and hence

f(x + tn · un)− f(x) ≥ 〈x∗, tn · un〉 − ε‖tn · un‖.

Therefore, passing to the limit as k → +∞, we observe that

lim
n→+∞

f(x + tnun)− f(x)
tn

≥ 0,

which in fact contradicts the relation (2.10). �
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A similar result to Theorem 2.10, by means of the Dini-Hadamard ε-
subdifferential, was given in [7], but in a more restrictive framework.

To a more careful look we can see that also in the case of the Dini-Hadamard-
like subdifferential it is a sort of calmness condition that is hiding behind. So, we say
that a function f : X → R ∪ {+∞} is weakly calm at x ∈ dom f if DS

d f(x; 0) ≥ 0
for all d ∈ X \ {0}. Actually, unlike the case of the Dini-Hadmamard subdifferential,
this last assumption is automatically fulfilled. It is worth mentioning also here that
although the weakly calmness assumption is a more general one, it does coincide with
the classical calmness condition in finite dimensions.

Proposition 2.11. Let f : X → R∪ {+∞} be a given function and x ∈ dom f . If X is
finite dimensional then f is calm at x if and only if f is weakly calm at x.

Proof. Since one can easily check the ”if” part of the proposition, it remains us to
show just the ”only” if one. Suppose on the contrary that f is not calm at x. Then
d−f(x; 0) = −∞ and hence there exist sequences (un) → 0 and (tn) ↓ 0 such that
lim

n→+∞
f(x+tnun)−f(x)

tn
= −∞. Using now the finiteness property of X, the latter clearly

yields an element s ∈ SX and a subsequence (unk
)−→

s
0 with the property that

lim
k→+∞

f(x+tnk
·unk

)−f(x)

tnk
= −∞. Consequently −∞ ≥ DS

s f(x; 0), which is a contradic-

tion. �

Finally, to conclude this section, let us present a direct consequence of Theorem
2.10 and [7, Theorem 2.3], interesting in itself.

Corollary 2.12. Let f : X → R ∪ {+∞} be a given function, x ∈ dom f and ε ≥ 0.
If ∂S

ε f(x) 6= ∅ then f is calm at x if and only if ∂−ε f(x) = ∂S
ε f(x).

3. Some generalized convexity notions

Let us mention in the beginning of this section that the Dini-Hadamard-like
subdifferential coincides with the Dini-Hadamard one not only in finite dimensional
spaces but also in arbitrarily Banach spaces on some particular classes of functions.
Furthermore, these classes of functions, which are in fact larger than the one of convex
functions, will reveal themselves to be useful in the sequel. We introduce them now.

Definition 3.1. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . The
function f is said to be

(i) approximately convex at x, if for any ε > 0 there exists δ > 0 such that for
every x, y ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)y + tx) ≤ (1− t)f(y) + tf(x) + εt(1− t)‖x− y‖. (3.1)

(ii) approximately starshaped at x, if for any ε > 0 there exists δ > 0 such that
for every x ∈ B(x, δ) and every t ∈ [0, 1] one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.2)
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(iii) directionally approximately starshaped at x, if for any ε > 0 and any
u ∈ SX there exists δ > 0 such that for every s ∈ (0, δ), every v ∈ B(u, δ) and every
t ∈ [0, 1], when x := x + sv, one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.3)

While the class of approximately convex functions was initiated and strongly
developed by H.V. Ngai, D.T. Luc and M. Théra in [30] (see also [3, 31]), the ones of
approximately starshaped and directionally approximately stashaped were introduced
and studied in [32]. Actually, they enjoy nice properties and, for instance, the approx-
imate convex functions are stable under finite sums and finite suprema, and moreover
the most of the well-known subdifferentials coincide and share several properties of
the convex subdifferential (see [30]) on this particular class of functions. Observe also
that the class of approximately convex functions is strictly included into the class of
approximately starshaped functions, which in turn is contained into the one of direc-
tionally approximately starshaped functions (for some examples we refer to [7]). In
fact, the last two classes of functions coincide on finite dimensional spaces, as one can
easily deduce from the following result.

Proposition 3.2. ([7, Proposition 3.1]) Let f : X → R ∪ {+∞} be a given function
and x ∈ dom f . Then f is directionally approximately starshaped at x if and only if
for any ε > 0 there exists a sponge S around x such that for every x ∈ S and t ∈ [0, 1]
one has

f((1− t)x + tx) ≤ (1− t)f(x) + tf(x) + εt(1− t)‖x− x‖. (3.4)

It is worth emphasizing here that in view of Remark 2.4, the above characteri-
zation via sponges it is also equivalent with the following one.

Proposition 3.3. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then
f is directionally approximately starshaped at x if and only if for any ε > 0, h ∈
X \ {0} and any d ∈ X \ {0} there exists δ > 0 such that for every s ∈ (0, δ),
v ∈ B(h, δ) ∩ (h + [0, δ] · B(d, δ)) and every t ∈ [0, 1], with x := x + sv, the relation
(3.4) above holds true.

In fact the class of directionally approximately starshaped functions enjoys also
the following property, which is more general then the one obtained in [7, Lemma
3.2], or in [1, Lemma 1].

Lemma 3.4. Let the function f : X → R ∪ {+∞} be directionally approximately
starshaped at x ∈ dom f . Then for every α > 0 and every ε ≥ 0 there exists a sponge
S around x such that for every x ∈ S one has

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x), (3.5)

f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x). (3.6)

Proof. Fix α > 0, ε ≥ 0 and consider the set

S := {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S
ε f(x)}.

In order to complete the proof of the first inequality, our strategy is to show that S
is a sponge around x.
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Indeed, let h ∈ X \ {0} and d ∈ X \ {0} be arbitrary elements and take δ > 0
so that the relation (3.4) above holds true with x := x + sv, for any s ∈ (0, δ),
v ∈ B(h, δ) ∩ (h + [0, δ] ·B(d, δ)) and any t ∈ (0, 1]. Then,

f(x + tsv)− f(x) ≤ t[f(x + sv)− f(x)] + αt(1− t)‖sv‖

and hence, after dividing by t, we take the limit inferior as t ↓ 0 and we obtain

lim inf
t↓0

f(x + tsv)− f(x)
t

≤ f(x + sv)− f(x) + α‖sv‖.

But

DS
d f(x; sv) ≤ sup

δ>0
inf

u∈{sv}
t∈(0,δ)

f(x + tu)− f(x)
t

= lim inf
t↓0

f(x + tsv)− f(x)
t

and consequently,

DS
d f(x; sv) ≤ f(x + sv)− f(x) + α‖sv‖.

In other words, for any h ∈ X \ {0} and d ∈ X \ {0} there exists δ > 0 such that for
every s ∈ (0, δ) and v ∈ B(h, δ) ∩ (h + [0, δ] · B(d, δ)), x + sv ∈ S, i.e. S is a sponge
around x, by virtue of Remark 2.4.

Similarly, with x := x + sv and t′ := 1− t one has

f(x− t′sv)− f(x) ≤ t′[f(x− sv)− f(x)] + αt′(1− t′)‖sv‖

which implies in turn (following the steps bellow)

DS
d f(x;−sv) ≤ f(x− sv)− f(x) + α‖sv‖

and finally one obtains that

S
′
:= {x ∈ X : f(x)− f(x) ≥ 〈x∗, x− x〉 − (α + ε)‖x− x‖ ∀x∗ ∈ ∂S

ε f(x)}

is a sponge around x, which completes the proof of the second inequality. �

Now we state our main result of this section, thanks to which, the Dini-
Hadamard-like subdifferential as well as the Dini-Hadamard one agrees with a great
number of well-known subdifferentials such as the Clarke-Rockafellar, the Mor-
dukhovich, the Fréchet and the Ioffe approximate subdifferential on lower semicon-
tinuous and approximately convex functions at a given point of the domain (see for
more details [30, Theorem 3.6]).

Proposition 3.5. Let the function f : X → R ∪ {+∞} be approximately starshaped at
x ∈ dom f . Then for all ε ≥ 0 it holds

∂F
ε f(x) = ∂−ε f(x) = ∂S

ε f(x).

Proof. In view of [32, Lemma 2.6] and [7, Lemma 2.1] the first equality is clearly
verified. For the second one, accordingly to Lemma 2.6 above and [7, Lemma 2.1] it
is enough to show that it holds true only for ε = 0. To this end we argue why for any
ε > 0 there exists δ > 0 such that for any x ∈ B(x, δ) and any d ∈ X \ {0}

DS
d f(x;x− x) ≤ f(x)− f(x) + ε‖x− x‖.
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This will complete the proof, since given an arbitrary x∗ ∈ ∂Sf(x), the above inequal-
ity would provide us the following estimate

〈x∗, x− x〉 ≤ f(x)− f(x) + ε‖x− x‖,

i.e. the inclusion ∂Sf(x) ⊆ ∂F f(x) (due to relation (2.1)) and hence the equality.
So, fix an arbitrary ε > 0. Then, since f is approximately starshaped at x, we

choose δ > 0 so that for any x ∈ B(x, δ) and any t ∈ (0, 1]

f(x + t(x− x))− f(x) ≤ t[f(x)− f(x)] + εt(1− t)‖x− x‖.

Then, dividing by t and taking limit inferior as t ↓ 0, one obtains

lim inf
t↓0

f(x + t(x− x))− f(x)
t

≤ f(x)− f(x) + ε‖x− x‖

and finally, the desired inequality. �

On the other hand, while [7, Example 3.1] ensures us that the equality ∂F f(x) =
∂−f(x) does not hold in case f is only directionally approximately starshaped at x ∈
dom f , Example 2.9 above guarantees the same with the equality ∂−f(x) = ∂Sf(x),
since f is directionally approximately starshaped at x, but 0 ∈ ∂Sf(x) \ ∂−f(x).
Moreover, the function in Example 2.9 shows that in general the class of approximately
starshaped functions does not coincide with the one of directionally approximately
starshaped functions.

4. Optimality conditions

In what follows we mostly confine ourselves to the study of a subdifferential
formula for the difference of two functions. To this end, let us recall first that for two
subsets A,B ⊆ X the star-difference between them is defined as

A
∗
B := {x ∈ X : x + B ⊆ A} =

⋂
b∈B

{A− b}.

We adopt here the convention A∗B := ∅ in case A = ∅, B 6= ∅ and A∗B := X if
B = ∅. One obviously have A∗B +B ⊆ A and A∗B ⊆ A−B if B 6= ∅. Introduced by
Pontrjagin [36] in the context of linear differential games, this notion has been widely
used in the field of nonsmooth analysis (see, for instance, [1, 2, 8, 12, 15, 22, 27, 37]).

When dealing with the difference of two functions g, h : X → R ∪ {+∞} we
assume throughout the paper that dom g ⊆ dom h. This guarantees that the function
f = g − h : X → R ∪ {+∞} is well-defined. Moreover, one can easily observe that
g = f + h and dom f = dom g.

The following simple result yields easily from Theorem 2.10 and due to the fact
that the intersection of two sponges around a point is a sponge around that point.

Proposition 4.1. Let g, h : X → R ∪ {+∞} be given functions and f := g − h. Then
for all ε, η ≥ 0 and all x ∈ X one has

∂S
ε f(x) ⊆ ∂S

ε+ηg(x)
∗
∂S

η h(x). (4.1)
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In particular, if x ∈ dom f is a local minimizer of the function f := g − h, then

0 ∈ ∂Sg(x)
∗
∂Sh(x)

or, equivalently,
∂Sh(x) ⊆ ∂Sg(x).

For similar characterizations to the difference of two functions via the Fréchet
subdifferential, by means of the Mordukhovich (basic/limiting) subdifferential and in
terms of the Dini-Hadamard one we refer to [27], [25, 26] and [7], respectively.

Although the inclusion (4.1) holds true without no supplementary assumptions
on the functions involved, in order to guarantee the reverse one we need to introduce
also the following notion.

Definition 4.2. A set-valued mapping F : X ⇒ X∗ is said to be spongiously pseudo-
dissipative at x ∈ X if for any ε > 0 there exists S a sponge around x such that for
any x ∈ S there exist x∗ ∈ F (x) and x∗ ∈ F (x) so that

〈x∗ − x∗, x− x〉 ≤ ε‖x− x‖

or, equivalently, if for any ε > 0 and any u ∈ SX there exists δ > 0 such that for any
t ∈ (0, δ) and v ∈ B(u, δ) there exist x∗ ∈ F (x) and x∗ ∈ F (x) so that

〈x∗ − x∗, v〉 ≤ ε‖v‖.

Actually, there are two ways of extending the approximately pseudo-dissipativity
introduced by Penot [35]. While the first one was described above by replacing a
neighborhood with a sponge, the second one will be presented bellow.

Definition 4.3. A set-valued mapping F : X ⇒ X∗ is said to be directionally approx-
imately pseudo-dissipative at x ∈ X if for any ε > 0 and u ∈ SX one can find some
δ > 0 such that for any v ∈ B(u, δ) and any t ∈ (0, δ) there exist x∗ ∈ F (x + tv) and
x∗ ∈ F (x) so that

〈x∗ − x∗, x− x〉 ≤ ε.

In fact this later conditions are not very restrictive ones, since the follow-
ing coarse continuity (which has been introduced in [1]) ensures the approximately
pseudo-dissipativity and the spongiously gap-continuity studied in [7], as well. Let us
formulate now this concept.

Definition 4.4. A set-valued mapping F : X ⇒ Y between a topological space X and
a metric space Y is said to be gap-continuous at x ∈ X if for any ε > 0 one can find
some δ > 0 such that for every x ∈ B(x, δ)

gap(F (x), F (x)) < ε,

where for two subsets A and B of Y

gap(A,B) := inf{d(a, b) : a ∈ A, b ∈ B},

with the convention that if one of the sets is empty, then gap(A,B) := +∞.
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When defining a spongiously gap-continuous mapping one only has to replace
in the above definition the neighborhood B(x, δ) of x with a sponge S around x.
Therefore, every gap-continuous mapping at a point is spongiously gap-continuous
and moreover it is also spongiously pseudo-dissipative and directionally approximately
pseudo-dissipative at that point, too. Furthermore, every set-valued mapping which is
either Hausdorff upper semicontinuous or lower semicontinuous at a given point is gap-
continuous at that point (see [34]). Thus, the gap-continuity is a sort of semicontinuity
notion which is satisfied in many situations when no other semicontinuity notion
holds. Moreover, in case the mapping is single-valued, it coincides with the classical
continuity. Clearly, when X is a finite dimensional space then the gap-continuity
coincides with the spongiously gap-continuity as well as the approximately pseudo-
dissipativity property agrees with the spongiously pseudo-dissipativity and with the
directionally approximately pseudo-dissipativity one. It is worth emphasizing also here
that the notion of spongiously gap-continuity [7] is equivalent to that of directionally-
gap continuity introduced later by Penot [35] (we refer the reader to the papers of
Penot [35, 34] for more discussions and some criteria ensuring the gap-continuity
and also the directionally approximately pseudo-dissipativity). Finally, the following
property holds.

Proposition 4.5. Let F,G : X ⇒ Y be two set-valued mappings. If F is spongiously
pseudo-dissipative at x ∈ X and there exists a sponge S around x such that F (x) ⊆
G(x) for all x ∈ S, then G is spongiously pseudo-dissipative at x, too.

Accordingly to relation (2.6) and the above property, we conclude that for f :
X → R∪{+∞} a given function and x ∈ dom f , ∂S

η f is spongiously pseudo-dissipative
at x for all η > 0, whenever ∂Sf is spongiously pseudo-dissipative at x. Hence,
following the lines of the proof of [7, Theorem 3.4, Theorem 3.5] we can furnish
a formula for the difference of two functions in terms of the Dini-Hadamard-like
subdifferential.

Theorem 4.6. Let g, h : X → R∪{+∞} be two directionally approximately starshaped
functions at x ∈ dom g and f := g− h. If for some η ≥ 0 the set-valued mapping ∂S

η h
is spongiously pseudo-dissipative at x, then for all ε ≥ 0 it holds

∂S
ε f(x) = ∂S

ε+ηg(x)
∗
∂S

η h(x). (4.2)

In case the function f is calm at x one obtains the result in [7, Theorem 3.5],
where the subdifferential in question is the Dini-Hadamard one. For a similar state-
ment in the particular setting ε = η = 0, we refer to [35, Theorem 28]. There the
function h is assumed to be directionally approximately starshaped, directionally con-
tinuous, directionally stable and tangentially convex at x, a point from core(dom h).
Similar results expressed by means of the Fréchet subdifferential can be found in
[1, Theorem 3] and [35, Theorem 26], where the functions are supposed to be ap-
proximately starshaped and a very mild assumption on ∂F h is required. But taking
into account the fact that f may not be calm at x, or the functions g and h may
not be approximately starshaped, or even core(dom h) could be empty (for instance,
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core(`p
+) = ∅ for any p ∈ [1,+∞), see [6]), motivates us to formulate results like

Theorem 4.6.
Let us mention now some corollaries whose proofs follows the ideas from [7,

Corollary 3.7, Corollary 3.8]. Take also into account Proposition 3.5 above.

Corollary 4.7. Let g, h : X → R∪{+∞} be two directionally approximately starshaped
functions at x ∈ dom g such that ∂Sh is spongiously pseudo-dissipative at x and
f := g − h. Then the following statements are equivalent:

(i) there exists η ≥ 0 such that ∂S
η h(x) ⊆ ∂S

η g(x);
(ii) 0 ∈ ∂Sf(x);
(iii) for all η ≥ 0 ∂S

η h(x) ⊆ ∂S
η g(x).

Corollary 4.8. Let g, h : X → R ∪ {+∞} be two given functions, x ∈ dom g and
f := g − h. Then the following assertions are true:

(i) If g and h are convex at x and ∂h is spongiously pseudo-dissipative at x, then
it holds

∂Sf(x) = ∂g(x)
∗
∂h(x).

(ii) If g is convex, h is directionally approximately starshaped at x and ∂Sh is
spongiously pseudo-dissipative at x, then for all ε ≥ 0 it holds

∂S
ε f(x) = (∂g(x) + εBX∗)

∗
∂Sh(x).

(iii) If g is lower semicontinuous, approximately convex at x, h is directionally
approximately starshaped at x and ∂Sh is spongiously pseudo-dissipative at x, then
for all ε ≥ 0 it holds

∂S
ε f(x) = (∂Sg(x) + εBX∗)

∗
∂Sh(x).

The following result, which significantly improves the statement in [7, Corollary
3.6], due to Theorem 4.6 and [35, Theorem 26] (see also Proposition 3.5), is meant to
reveal that the Dini-Hadamard-like subdifferential coincides with the Dini-Hadamard
subdifferential and with the Fréchet one not only on approximately starshaped func-
tions but also on some particular differences of approximately starshaped functions.

Corollary 4.9. Let g, h : X → R ∪ {+∞} be two approximately starshaped functions
at x ∈ dom g with the property that there exists η ≥ 0 such that ∂S

η h is approximately
pseudo-dissipative at x and f := g−h. Then for all ε ≥ 0 ∂F

ε f(x) = ∂−ε f(x) = ∂S
ε f(x).

Moreover, in case x ∈ core(dom h) and ∂−h is only directionally approximately
pseudo-dissipative at x, then one can guarantee that for any ε ≥ 0, ∂−ε f(x) = ∂S

ε f(x)
(see for this [35, Lemma 22, Lemma 24, Lemma 27] and Lemma 4.1).

Finally, we characterize the Dini-Hadamard-like subdifferential by means of the
so-called spongiously local ε-blunt minimizers. Introduced in [7], they came as a gen-
eralization to local ε-blunt minimizers studied by Amahroq, Penot and Syam in [1].

Definition 4.10. Let C ⊆ X be a nonempty set, f : X → R∪{+∞} be a given function,
x ∈ dom f ∩ C and ε > 0. We say that x is a spongiously local ε-blunt minimizer of
f on the set C if there exists a sponge S around x such that for all x ∈ S ∩ C

f(x) ≥ f(x)− ε‖x− x‖.
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In case C = X, we simply call x a spongiously local ε-blunt minimizer of f .

Proposition 4.11. Let f : X → R ∪ {+∞} be a given function and x ∈ dom f . Then:

0 ∈ ∂Sf(x) ⇔ x is a spongiously local ε− blunt minimizer of f for all ε > 0.

In the situation when f is calm at x one obtains the result in [7, Proposition
3.9], as a particular case. Similarly, in view of the above discussions and results, we
can even furnish optimality conditions for the cone-constrained optimization problem
(P) studied in [7], by means of the Dini-Hadamard-like subdifferential and without
additional calmness assumptions. For the reader convenient we state this result bellow.
To this end, let us consider the following optimization problem

(P) inf
x∈A

f(x).

A = {x ∈ C : k(x) ∈ −K},
where C ⊆ X is a convex and closed set, K, a subset of a Banach space Z, is a
nonempty convex and closed cone with K∗ := {z∗ ∈ Z∗ : 〈z∗, z〉 ≥ 0 for all z ∈ K}
its dual cone, k : X → Z, a given function, is assumed to be K-convex, meaning that
for all x, y ∈ X and all t ∈ [0, 1], (1− t)k(x)+ tk(y)−k((1− t)x+ ty) ∈ K, and K-epi
closed, meaning that the K-epigraph of k, epiK k := {(x, z) ∈ X×Z : z ∈ k(x)+K}, is
a closed set and finally f := g−h, where g, h : X → R∪{+∞} are two given functions
with dom g ⊆ dom h. For z∗ ∈ K∗, by (z∗k) : X → R we denote the function defined
by (z∗k)(x) = 〈z∗, k(x)〉 and we also emphasize that in case Z = R and K = R+ the
notion of K-epi closedness coincide with the classical lower semicontinuity.

Theorem 4.12. Let be x ∈ int(dom g)∩A. Suppose that g is lower semicontinuous and
approximately convex at x and that

⋃
λ>0 λ(k(C) + K) is a closed linear subspace of

Z. Then the following assertions are true:
(a) If x is a spongiously local ε-blunt minimizer of f on A for all ε > 0, then

the following relation holds

∂Sh(x) ⊆ ∂Sg(x) +
⋃

z∗∈K∗

(z∗k)(x)=0

∂((z∗k) + δC)(x). (4.3)

(b) Conversely, if h is directionally approximately starshaped at x, ∂Sh is spon-
giously pseudo-dissipative at x and (4.3) holds, then x is a spongiously local ε-blunt
minimizer of f on A for all ε > 0.

It is worth mentioning that accordingly to [35, Lemma 22, Lemma 24 and
Lemma 27], our final result remains also true in case ∂Sh is directionally approxi-
mately pseudo-dissipative at x. Moreover, in the particular instance when K = {0},
k(x) = 0 for any x ∈ X, g is lower semicontinuous and approximately convex at
x ∈ int(dom g)∩A and h is convex on C and continuous at x, and hence directionally
approximately pseudo-dissipative at x (due to the remarkable dissipativity property
of the subdifferential in the sense of convex analysis, see [35, Theorem 6]) then x is a
spongiously local ε-blunt minimizer of f on A for all ε > 0 if and only if

∂h(x) ⊆ ∂Sg(x) + N(A, x).
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[11] Cobzaş, S., Spongy versus cone-porous, private communication, 2010.

[12] Gautier, S., Affine and eclipsing multifunctions, Numerical Functional Analysis and
Optimization, 11(1990), 679-699.

[13] Georgiev, P.G., Porosity and differentiability in smooth Banach spaces, Proceedings of
the American Mathematical Society, 133(2005), 1621-1628.

[14] Giner, E., Calmness properties and contingent subgradients of integral functionals on
Lebesgue spaces Lp, 1 < p <∞, Set-Valued and Variational Analysis, 17(2009), 223-243.

[15] Hiriart-Urruty, J.-B., Miscellanies on nonsmooth analysis and optimization, in Nondiffer-
entiable Optimization: Motivations and Applications, Workshop at Sopron, 1984, V.F.
Demyanov and D. Pallaschke (Eds.), Lecture Notes in Economics and Mathematical
Systems, Vol. 255, Springer, 8-24, 1985.

[16] Ioffe, A.D., Calculus of Dini subdifferentials of functions and contingent derivatives of
set-valued maps, Nonlinear Analysis: Theory, Methods & Applications, 8(1984), 517-539.

[17] Ioffe, A.D., Approximate subdifferentials and applications. I. The finite dimensional the-
ory, Transactions of the American Mathematical Society, 281(1984), 390-416.

[18] Ioffe, A.D., Approximate subdifferentials and applications. II. Functions on locally convex
spaces, Mathematika, 33(1986), 111-128.

[19] Ioffe, A.D., Approximate subdifferentials and applications. III. The metric theory, Math-
ematika, 36(1989), 1-38.

[20] Kruger, A., Mordukhovich, B.S., Extremal points and Euler equation in nonsmooth op-
timization, Doklady Akademii Nauk BSSR, 24(1980), 684-687.



Exact difference formula for the Dini-Hadamard-like subdifferential 375

[21] Kruger, A., Mordukhovich, B.S., Generalized normals and derivatives, and necessary
optimality conditions in nondifferentiable programming, Part I: Depon. VINITI, No.
408-80; Part II: Depon. VINITI, No. 494-80, Moscow, 1980.

[22] Mart́ınez-Legaz, J.E., Penot, J.-P., Regularization by erasement, Mathematica Scandi-
navica, 98(2006), 97-124.

[23] Mordukhovich, B.S., Maximum principle in problems of time optimal control with non-
smooth constraints, Journal of Applied Mathematics and Mechanics, 40(1976), 960-969.

[24] Mordukhovich, B.S., Metric approximations and necessary optimality conditions for gen-
eral classes of nonsmooth extremal problems, Soviet Mathematics. Doklady, 22(1980),
526-530.

[25] Mordukhovich, B.S., Variational Analysis and Generalized Differentiation, I. Basic The-
ory, Series of Comprehensive Studies in Mathematics, Vol. 330, Springer-Verlag Berlin
Heidelberg, 2006.

[26] Mordukhovich, B.S., Variational Analysis and Generalized Differentiation, II. Applica-
tions, Series of Comprehensive Studies in Mathematics, Vol. 331, Springer-Verlag Berlin
Heidelberg, 2006.

[27] Mordukhovich, B.S., Nam, N.M., Yen, N.D., Fréchet subdifferential calculus and opti-
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