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Fractional approximation by Cardaliaguet-
Euvrard and Squashing neural network operators

George A. Anastassiou

Abstract. This article deals with the determination of the fractional rate of con-
vergence to the unit of some neural network operators, namely, the Cardaliaguet-
Fuvrard and ”squashing” operators. This is given through the moduli of continu-
ity of the involved right and left Caputo fractional derivatives of the approximated
function and they appear in the right-hand side of the associated Jackson type
inequalities.
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1. Introduction

The Cardaliaguet-Euvrard (3.1) operators were first introduced and studied ex-
tensively in [7], where the authors among many other things proved that these op-
erators converge uniformly on compacta, to the unit over continuous and bounded
functions. Our ”squashing operator” (see [1]) (3.53) was motivated and inspired by
the ”squashing functions” and related Theorem 6 of [7]. The work in [7] is qualitative
where the used bell-shaped function is general. However, our work, though greatly
motivated by [7], is quantitative and the used bell-shaped and ”squashing” functions
are of compact support. We produce a series of Jackson type inequalities giving close
upper bounds to the errors in approximating the unit operator by the above neural
network induced operators. All involved constants there are well determined. These
are pointwise, uniform and L, p > 1, estimates involving the first moduli of continu-
ity of the engaged right and left Caputo fractional derivatives of the function under
approximation. We give all necessary background of fractional calculus.

Initial work of the subject was done in [1], where we involved only ordinary
derivatives. Article [1] motivated the current work.
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2. Background
We need

Definition 2.1. Let f € C (R) which is bounded or uniformly continuous, h > 0.
We define the first modulus of continuity of f at h as follows
wi (f,h) =sup{|f () — f (W);z,y €R, |&—y[ < h} (2.1)
Notice that wy (f, h) is finite for any h > 0, and
]lli%wl (f7 h) =0.

We also need

Definition 2.2. Let f : R — R, v > 0, n = [v] (['] is the ceiling of the number),
f € AC™ ([a,b]) (space of functions f with f"~Y € AC ([a,b]), absolutely continuous
functions), V [a,b] C R. We call left Caputo fractional derivative (see [8], pp. 49-52)
the function

DLt @) = s [ =" (2:2)

@ r'(n-v)J, ’

V & > a, where T is the gamma function T (v) = [~ e "~ dt, v > 0. Notice
DY, f € Ly (la,b]) and D%, f exists a.e.on [a,b], ¥V b > a. We set DY, f(z) = f(z), V
x € [a,00).
Lemma 2.3. ([5]) Letv >0, v ¢ N, n=[v], f € C" " (R) and f € Ly, (R). Then
DY f(a)=0,YacR.
Definition 2.4. (see also [2], [9], [10]). Let f : R — R, such that f € AC™ ([a,b]), ¥V
[a,b] C R, m = [a], @ > 0. The right Caputo fractional derivative of order a > 0 is
given by
Dy = Uyt o () a 2.3
P @) = ey [ =T () (23

Vo <b Weset D) f(z)=f(z),V x e (—o0,b]. Notice that DY f € Ly ([a,b]) and
Dy f exists a.e.on [a,b], V a <b.
Lemma 2.5. ([5]) Let f € C™ ' (R), f(™ € Lo (R), m = [a], @« > 0. Then
D¢ f(b)=0,VbeR.
Convention 2.6. We assume that

D, f(x) =0, forx <, (2.4)

and
Dy f(x) =0, for x > xo, (2.5)
for all x,xg € R.

‘We mention

Proposition 2.7. (by [3]) Let f € C™ (R), where n = [v], v > 0. Then D%, f (z) is
continuous in x € [a, 00).

Also we have
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Proposition 2.8. (by [3]) Let f € C™ (R), m = [a], a > 0. Then Dy f (x) is contin-
uous in x € (—oo, bl.

We further mention

Proposition 2.9. (by [3]) Let f € C™ ' (R), f'™ € L, (R), m = [a], @ > 0 and

D% 0) = s | @ — e g (1) a, (2.6)

forall x,zog € R: 2 > xp.
Then D, f () is continuous in .

Proposition 2.10. (by [3]) Let f € C™ ' (R), f™ € Lo (R), m = [a], a > 0 and

(="

D?O_f (z) = F(T—a)

[ @y gy (2.7)
forallx,xg € R :xg > .

Then Dy, _ f () is continuous in .

Proposition 2.11. ([5]) Let g € Cy, (R) (continuous and bounded), 0 < ¢ < 1, z,zy € R.
Define

L(z,20) = /w (z—t) g (t)dt, for x> xo, (2.8)

0
and L (z,x0) =0, for x < xg.
Then L is jointly continuous in (z,x¢) € R

We mention

Proposition 2.12. ([5]) Let g € Cp (R), 0 < ¢ < 1, =,z € R. Define
To
K (z,20) = / (J—2)" g(J)dJ, forax <, (2.9)

and K (x,29) = 0, for x > xo.
Then K (z,z0) is jointly continuous in (x,xq) € R2.

Based on Propositions 2.11, 2.12 we derive

Corollary 2.13. ([5]) Let f € C™(R), f™ € Lo (R), m = [a], a > 0, a ¢ N,
z,z0 € R. Then DS, f(x), Dg,_f(x) are jointly continuous functions in (x,xq)
from R? into R.

We need
Proposition 2.14. ([5]) Let f : R? — R be jointly continuous. Consider
G(z)=wi(f(,2),0)4 100y 0> 0,2 ER. (2.10)

(Here wy is defined over [z, +00) instead of R.)
Then G is continuous on R.
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Proposition 2.15. ([5]) Let f : R? — R be jointly continuous. Consider
H(z)=wi (f(2),0) sy, 6 >0,z €R (2.11)
(Here wy is defined over (—oo, x| instead of R.)
Then H is continuous on R.
By Propositions 2.14, 2.15 and Corollary 2.13 we derive
Proposition 2.16. (5]) Let f € C™ (R), Hf(m)Hoo <oco,m=|a],a¢N a>0,z¢
R. Then wy (D2, f, h)[x,-l-oo)? w1 (Dg‘_f, h)(_(>o 2 @re continuous functions of r € R,
h > 0 fized.
We make
Remark 2.17. Let g be continuous and bounded from R to R. Then
w1 (9,t) < 2l < o0. (2.12)

Assuming that (D$,f) (t), (DS_f) (t), are both continuous and bounded in (z,1)
eR? ie.
ID% flloo < Ki, V2 € R; (2.13)
|Dy_f||, < K2, VxR, (2.14)
where K1, Ko > 0, we get

w1 (D2, £.) oy < 2K0:
w1 (Dg—fa E)(—OO,J,] S 2K23 v g Z Oa (215)

for each x € R.
Therefore, for any £ > 0,

D2 f, ,wy (DE_f, <2 K1, K») < 0o, (2.16
neh [max(wl( o fr Ol ooy w1 ( fg)(—oo,m])} max (K, Kz) < oo (2.16)

So in our setting for f € C™ (R), Hf(m)Hoo <oo,m = [a],a ¢ N, a> 0, by Corollary
2.13 both (D%, f) (t), (D¥_f)(t) are jointly continuous in (¢,z) on R?. Assuming
further that they are both bounded on R? we get (2.16) valid. In particular, each of
w1 (D&, f, f)[I,JrOO), w1 (Dg:ﬁ f)(_%x] is finite for any & > 0.
Clearly here we have that supw; (D2, f,¢) — 0, as £ — 0+, and
rzeR

supwr (Dg_f,€)
z€R

[z,400)
—0,as & —0+.

(—I)O,Qf]

Let us now assume only that f € C™ 1 (R), f™ € L (R), m = [a], a > 0,
a ¢ N, z € R. Then, by Proposition 15.114, p. 388 of [4], we find that D%, f €
C ([z,+00)), and by [6] we obtain that DY _f € C ((—o0,2]).

‘We make

Remark 2.18. Again let f € C™ (R), m = [a], a ¢ N, a > 0; f") (z) =1,V z € R;
zo € R. Notice 0 <m — a < 1. Then

@=20) " s (2.17)

D f(x):F(m—a—Fl) -

*TQ
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Let us consider z,y > xq, then

1
| D, f (2) = D& f (y)| = Tm—atl)

|x _ y‘m—a
“T'(m—a+1)
So it is not strange to assume that
D2, f (1) = D&, f (22)] < K |21 — aa)”, (2.19)

K>00<p8<1,Vx,22 € R, 1,02 > g € R, where more generally it is
Hf(m) Hoo < 00. Thus, one may assume

w1 (Dg,,ﬁ 5)(_00736]

wi (D f, f)[x,Jroo) < Mye™,
where 0 < 1,0 <1,V & >0, My, My > 0; any = € R.
Setting 8 = min (51, f2) and M = max (M7, Ms), in that case we obtain
sup {max (wl (Dg‘_f, f)(ioo 2] W1 (DL f, §)[z,+oo)>} <MEP —0,as & —0+.
z€R ’
(2.21)

(2.18)

< M7, and (2.20)

3. Results

3.1. Fractional convergence with rates of the Cardaliaguet-Euvrard neural network
operators

We need the following (see [7]).

Definition 3.1. A function b : R — R is said to be bell-shaped if b belongs to L'
and its integral is nonzero, if it is nondecreasing on (—oo,a) and nonincreasing on
[a, +00), where a belongs to R. In particular b(x) is a nonnegative number and at a
b takes a global mazximum; it is the center of the bell-shaped function. A bell-shaped
function is said to be centered if its center is zero. The function b(x) may have jump
discontinuities. In this work we consider only centered bell-shaped functions of compact
support [T, T], T > 0. Call I := fTTb(t) dt. Note that I > 0.

We follow [1], [7].

Example 3.2. (1) b (z) can be the characteristic function over [—1,1].
(2) b(x) can be the hat function over [—1,1], i.e.,

l4+2, —1<2<0,
bz)=¢ 11—z, 0<z<1
0, elsewhere.

These are centered bell-shaped functions of compact support.
Here we consider functions f : R — R that are continuous.
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In this article we study the fractional convergence with rates over the real line,
to the unit operator, of the Cardaliaguet-Euvrard neural network operators (see [7]),

mw= 3w B)) e

where 0 < @ < 1 and = € R, n € N. The terms in the sum (3.1) can be nonzero iff

nl_a(m—k)‘gT, ie. a:—ﬁ_ 11:
n n nt—«
iff
nr —Tn® <k <nx+Tn". (3.2)
In order to have the desired order of numbers
—n? < nz—Tn® < nz +Tn® < n?, (3.3)

it is sufficient enough to assume that
n>T+ |z|. (3.4)
When z € [-T,T] it is enough to assume n > 2T which implies (3.3).

Proposition 3.3. Let a < b, a,b € R. Let card (k) (> 0) be the mazimum number of
integers contained in [a,b]. Then

max (0, (b—a) — 1) <card(k) < (b—a)+ 1. (3.5)
Remark 3.4. We would like to establish a lower bound on card (k) over the interval
[ne — Tn® nx + Tn®). From Proposition 3.3 we get that
card (k) > max (2T'n® — 1,0).
We obtain card (k) > 1, if
2Tn® —1>1 iffn > T 7.

So to have the desired order (3.3) and card (k) > 1 over [nz — Tn®, nx + Tn®], we
need to consider
n > max (T+ \x|,T_%> . (3.6)
Also notice that card (k) — 400, as n — +o0o. We call b* := b(0) the maximum of
b(x).
Denote by [-] the integral part of a number.
Following [1] we have

[niina] 1 , - k
. n . R
I-no T

k=[nz—Tn>]

b* [ne+Tn]
< 1
—I-no Z
k=[nz—Tn]

b* b* 1
< 2T +1)=—- 2T+ — ). .
—I-n> (2Tn® +1) I ( +n0‘> (3.7)
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We will use

Lemma 3.5. It holds that
[nz+Tn]

Su(@) = Y 7 .1na b (nl—“ (x - i)) — 1, (3.8)

k=[nz—Tn>]

pointwise, as n — +00, where r € R.

Remark 3.6. Clearly we have that
ne —Tn® < nx <nx+Tn". (3.9)
We prove in general that
nx —Tn® < [nz] < nz < [nx] < nx+ Th. (3.10)

Indeed we have that, if [nx] < nz—Tn%, then [nz]+Tn* < nz, and [nz]+[Tn*] < [nz],
resulting into [Tn®] = 0, which for large enough n is not true. Therefore nz — T'n® <
[nz]. Similarly, if [nz] > nax+Tn®, then ne+Tn® > nx+ [T'n®], and [nz]| — [Tn®] >
nx, thus [nz] — [Tn®] > [nx], resulting into [Tn®] = 0, which again for large enough
n is not true.

Therefore without loss of generality we may assume that

nx —Tn® < [nz] < nz < [nx] < nz 4+ Th. (3.11)
Hence [nx — Tn®] < [nz] and [nz] < [nz + Tn®]. Also if [nz] # [nx], then [nz] =
[nz] + 1. If [nz] = [nz], then na € Z; and by assuming n > T~ =, we get Tn® > 1
and nx + Tn® > nx + 1, so that [nz + Tn®] > nz + 1 = [nz] + 1.

We present our first main result

Theorem 3.7. We consider f : R — R. Let 3> 0, N =[3], 3¢ N, f € ACN ([a,b]),
Y [a,b] € R, with fN) € Lo (R). Let also x € R, T > 0, n € N : n >
max (T+ || ,T*5>. We further assume that ngC , Df_f are uniformly continu-

ous functions or continuous and bounded on [x,+00), (—o0, x|, respectively.
Then
1)
|y (f) () = f (@) < |f ()] (3.12)

[nz+Tn]
1 k
Z b(nl_a (m—))—l +
In® n
k=[nz—Tn]
b* < 1 ) N-1 ’f(]) (J})‘Tj
1

2T+ ne jln(-a)i

b* 1 T8
—(oT 4+ — .
7 ( i no‘) T (5 +1)ni-a5

T T
{wl (wafa M) +wi (D:f—fa M) }7
n [2,+00) n (—o00,a]
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above Z?=1 - =0,
2
N1 oy .
Fatn@ - 3 L2 (£ (o)) )] <
j=0
* 3
o ) s
w1 T wi (D2_§, T =\, (),
{ <Dfmf7 nl-@)[x7+oo) + <D:E—f nl_()t)(—oc,;c]} A ( )

3) assume further that fU) (z) =0, for j =0,1,...,N — 1, we get
[Fn (f) (2)] < An (),

4) in case of N =1, we obtain

[Fn (f) (2) = f (@) < |f ()]

[ne+Tn]

1 k
Z b(nlo‘ (:v—))—l +
In> n
k=[nz—Tn>]
b* 1 A

(o7 + — .
I( +n“)l"(ﬁ+1)n(1—a)ﬁ

T T
w1 Dfm.ﬂT +wr Dg—faT .
) T (ool

(3.13)

(3.14)

(3.15)

Here we get fractionally with rates the pointwise convergence of (Fy, (f)) () — f (x),

asn — oo, ¢ € R.
Proof. Let x € R. We have that
D f(x) = D, f (x) = 0.
From [8], p. 54, we get by the left Caputo fractional Taylor formula that
N=1 ,; j
k f9 () (& J
(5= 50 ()

ﬁ / (fj - J> T 0n ) - Dh @) ar

forall z < % <z +Tn L iff [nz] <k < [nz + Tn®], where k € Z.
Also from [2], using the right Caputo fractional Taylor formula we get

@)-E5e -

i=0

w5 (- ﬁ)ﬁ (P () - Di_f (@) ds,

(3.16)

(3.17)

(3.18)
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for all z — Tno~! <
Notice that [n
Hence we have

k l—a (. _ k N-1 ¢(j) J l—a(,. __k
HOM ) R0 (YT )

iff [n:chn 1 <k < [nz], where k € Z.

E <y,
2] < [na] +

b(n' = (x—2) [ (k NN s Y
In°T () /m(n J) (Do f (J) = DL, f (x)) dJ,

TG o)) S0 (kA )

b e B) 7 s ;
In°T (B) / (‘]‘n> (Dasz(J)—DI,f(x)) dJ.
Therefore we obtain

S F ()b (nt e (v — £))
In>

Y ( et (= )b (o - :z))) N
Jj=

= (3.21)

k
n

s ]bw (- 5)
2 IneT (B) /gc

B—1
(’“ - J) (DS, f (J) — D2, f (x)) ],

k=[nz]+1 n
and -
Zk/r:fnx—Tnu] f (%) b (nlia (ZL' — %)) B
In~ - (3.22)
$° 196 Telarren (=) 007 o= )
+
j=0 In~
i b(nl-a E=5) R ,
In°T (B) / (J— n) (Dw_f(J) —Dw_f(a:)) daJ.
We notice here that
n? k
nio- £ () om
k=—n2

[ne+Tn] f (ﬁ)

k=[nz—Tn>]
Adding the two equalities (3.21) and (3.22) we obtain

(Fn () (z) =
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Z f(J) (Z%ﬂﬁﬁin?na] o L G Z))) +0n (),

In>
Where
9 L chn:r]]'nszn"“\ b (nlia (iE - %))
"= T () |
z k ps—-1
[ (-5) (prw-pis@)ar
P o 8)) (kN e
3 e [ (E-a) war - par @)
e ST e b (o~ )
O1n (QL‘) = IneT (ﬁ) ’
‘ N7 s s
/. (J - n) (D27 (1)~ DL f (@) d
nd
a [nz+Tn®] b (nl,a ((E _ E))
02, = noz.
2 (33) k_%+1 Inel (ﬁ)
Yk A=t
[ (E-9) @ar-phr@)a
Le.

O () = 01y, () + b2y, () .
We further have

naz+Tn . b nl_a .1‘—E

In~

szl £ (2) (z&;”ﬁ;i"?m (k—a)"b(n' = (x - :))) +0n (2),

= j! In>
and
[nx+Tn] 1 i
(D@ -1@I@) 3 b (v (+-£)) -1

In~
Jj=1

[nz+Tn®]

L (e 5))

k=[nz—Tn>]

|/ ()] +

N—1 (J [m:+Tn . _Ejb nl=a (p _ k

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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j y nx+Tn® . Tllia l’fk
Z \f( ' |_T A<Zk ot D7 ")))+an(x>|=:<*)-

Ino

But we have

[ne+Tn]
1 k b* 1
=z < — )
> Inab< (m n)) < (2T+na), (3.31)
k=[nz—Tn>]
by (3.7).
Therefore we obtain
[nz+Tn] 1 - i
(Fo () (@) = F@I < If @] D T r——)) =1+
k=[nz—Tn]
N-1 ; ;
b* 1 | fD (2)] T
7 (2T+ na) (2 W + |07L (33)| . (332)
]:
Next we see that
T B— 1
Yin = ! J— (J)—DP f(a:)) dJ| < (3.33)
" F( n = -
T —1
! / ( ) ’Dﬂ Df,f(x)dj‘ <
L) Je
! /z PA (D 1,17 - 1) dJ <
LB Je n e ) o
— DP - — - = dJ <
F(ﬁ)wl( :c_f"x n >(—oo,z]/1i <J ”) =
B
1 ( ,3 _f, ) (xig) <
L ( ) n'=® (—00,1] 5 N
1 T T8
_ Lt o (Dp? .
CES ( ek n1a><m,m] nli=e)s
That is 5
T T
n < DY f,—— . 34
T = F(ﬁ+1)n<1—aw“’1< =i n1a>(om] (3.34)
Furthermore
[na] l—a k
b(n r— =
@iy M) (3.35)

In~
k=[nz—Tn>]

[nx] b (nlfa (:Z: _ E)) T8 T
( Z In® F(ﬂ+1)n(1—a)ﬁ (Dﬁ foiz >( 00,2] <

k=[nz—Tn>]
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[nz4+Tn"] b (nlfa (x . E)) 6

Z « = 1—a)s
k=[nz—Tn>] In r (ﬁ + 1) TL( :

w1 (D

T

B
sz7nli,a

) (—o0,z]

b* 1 T8 T
2o+ — w (DPf, .
I ne nl-o (—o01]

I'(B+1)nt-a)b
So that

b* 1 5
o @l < 7 (274 ) a (D2

I'(B+1)nt-a)p

Similarly we derive

)
nl—a (—oo0,a]

L e N 5
= s / <n _ J) (DB, £ (J) = D2, f () dJ
1/5 (k J>ﬁ1 |D2,f(J) =D f (2)|dJ <
ry /), \n " - -
B
w1 (D*wf» nl%)[m,+oo) k B8 <
T(6+1) (n - x) =
9% (lea:fa nli—u) (,400) Tﬁ
r(6+1) n{=e)s”
That is 5
T T
Yon < F(ﬂ‘i‘ 1) n(l—a)ﬁwl (Dfa ) 1—a>

Consequently we find

[nx+Tn] 1—a _
10 ()] < ( Z b(n (x

k=[nz]+1

T8 T
o (02 L

T(B+1)nt-p

b* 1 5

So we have proved that

— 27+ — DP f ——
T (2 ) e (P20

b* 1 T8
0, < —\2T"+ — .

T
{Wl (Dfmf7 M) +w1 (fo,
n [,4+00) n

Combining (3.32) and (3.40) we have (3.12).

As an application of Theorem 3.7 we give

T

l—a

.

<

IN

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Theorem 3.8. Let 3> 0, N = [3], B¢ N, f € CN (R), with f) € L, (R). Let also
T>0,n€eN:n>max (QT, T‘i) . We further assume that D2, f (t), D?_f(t) are

both bounded in (z,t) € R2. Then

1)
1 () = Flloo—rmy < W llsej—zmy - (3.41)
[ne+Tn]
1 k
k=[nz—Tn] 00, [=T\T)
N-1 || £()
b* 1 1 f H 1 L b* T°
T <2T+ n“) Z !n(1 a)J T <2T+ ) T(8+1)n1-8"

j=1

T T
sup  wi (wafﬁla> + sup w (Df'f’la) ’
IE[—T,T] n [CE,JrOO) :EG[—T,T] n (700&7]

2) in case of N = 1, we obtain

1En () = flloo, =1y < 1o i=mmy - (3.42)
[ne+Tn]
1 —a k
k=[nz—Tn>] 00,[=T,T]

b 1 T8
Z (o1 4+ — .
i ( + na> T3+ 1) n0-a8

T T
sup  wi (szf, 1_0,> + sup w (Dg—f’l—o() :
2€[~T,T] n [ac,-i—oo) z€[-T,T] n (—00,3]

An interesting case is when 3 =
+T _
Assuming further that sznmmwn :,lnﬂ hllab (n1 @ x -2 H TT]

as n — oo, we get fractionally with rates the uniform convergence of F, (f) — f, as
n — oo.

Proof. From (3.12), (3.15) of Theorem 3.7, and by Remark 2.17.

Also by
[nz+Tn®]
1 - k b
L « o < = .
3 Jnab(” (m n)) 7 (2T +1), (3.43)
k=[nz—Tn>]
we get that
[nz+Tn®]
1 - k b
1 afl. RV _ < (= . :
Z Inab<n ({E n)) 1 < (I (2T+1)+1> (3 44)
k=[nz—Tn>] 00,[=T,T]

O



344 George A. Anastassiou

One can also apply Remark 2.18 to the last Theorem 3.8, to get interesting and
simplified results.
We make

Remark 3.9. Let b(x) be a centered bell-shaped continuous function on R of com-
pact support [-T,T), T > 0. Let z € [-T*,T*], T* > 0, and n € N : n >
max (T + T*,T’i) , 0 <a< 1. Consider p > 1.

Clearly we get here that

[nz+Tn]

> In%b <n1a (x—z)>—1p< (b;(2T+1)+1>p, (3.45)

k=[nz—Tn>]

1

for all € [-T*,T*], for any n > max <T+T*7T_E> .
By Lemma 3.5, we obtain that

[nz+Tn]

. 1 _ k
nlin;o Z mb (nl @ (:L‘ - n)) -1} =0, (3.46)

k=[nz—Tn>]

all x € [-T%,T%].
Now it is clear, by the bounded convergence theorem, that

[nz+Tn] 1 k
. e’ —
nh—{go E In—ab (n (w — n)) -1 =0. (3.47)
k=[nz—Tn>] p,[=T*,T*]

Let 8 >0, N =[8],8¢N, feCVNR), fV) € Ly (R). Here both D%, f (t),
D¢_f (t) are bounded in (z,t) € R2.
By Theorem 3.7 we have

[Fn (f) () = (@) < M llo e 2oy (3.48)
[nz+Tn]

> #b (nl—a (x—i)) — 1|+

k=[nz—Tn>]

b* 1
o+ —
I < + ne >

b* 1 T8
+7 (QT +—

T (3 + 1)nd-a5

T T
sup  wp (Dfmf’ 1a> +  sup  wi (fo’ M) .
z€[—T*,T*] n [z,+00) z€[=T*,T*] n (—o0,z]

Applying to the last inequality (3.48) the monotonicity and subadditive property of
we derive the following L, p > 1, interesting result.

R
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Theorem 3.10. Let b(x) be a centered bell-shaped continuous function on R of com-
pact support [-T,T], T > 0. Let x € [-T*,T*], T* > 0, and n € N : n >

maX(T+T*,T") O<a<lp>1.LetB>0 N=[8,3¢N, feCN(R),
with fN) € Ly (R). Here both D2, f (t), DP_f (t) are bounded in (z,t) € R2. Then
1)

IEnf = fllp =z 7o) < N loo (o o - (3.49)
[nz+Tn)
1 k

> e (ln)))
B o In® n
k=[nz—Tn>] P [—T*,T%]

(o 1) (51 pr

I ne ‘ jln(i-a)j

Jj=1
QPT*Pb*

( ) ﬂ+1T)ﬁ =g
)

T
o a(met) )
[z,+00) 16[ T*,T*] n (—00,7]

sup (D*m f7
xE[—T*,T*]

2) When N =1, we derive

| T (3.50)
[nz+Tn®]
Z Lb (nla <xk)> -1 +
In> n
k=[nz—Tn] P [=T*,T*]

25 T*5 b* 1 T8
27 7 oy — .
I ( * na) T(3+1)n(-5

T T
{ sup w1 (szfa 1_a> +  sup wp <Df—f, 1_a> } .
w€[—T*,T*] n [z,400) @€[=T*T*] n (—00,2]

By (3.49), (3.50) we derive the fractional Ly, p > 1, convergence with rates of F), f to
f.

3.2. The ”Squashing operators” and their fractional convergence to the unit with
rates

We need (see also [1], [7]).

Definition 3.11. Let the nonnegative function S : R — R, S has compact support
[-T,T], T > 0, and is nondecreasing there and it can be continuous only on either
(=00, T] or [-T,T). S can have jump discontinuities. We call S the "squashing func-
tion”.
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Let f: R — R be continuous. Assume that

T
I :/ S (t)dt > 0. (3.51)
-T
Obviously
wer[n_aT}fT]S (x)=5(T). (3.52)

For x € R we define the "squashing operator” ([1])

Gl = 3 ms(n(x_’f)) (3.53)

n

0<a<landn € N:n>max <T+|:U|,T_§). It is clear that

[ne+Tn] f (k)

G @)= > 20 <n1—a : (m - S)) . (3.54)

k=[nz—Tn>]

Here we study the fractional convergence with rates of (G, f) (x) — f (z),asn — +o0,
z €R.
Notice that

[nz+Tn]
> 1< (2T +1). (3.55)
k=[nz—Tn]
From [1] we need
Lemma 3.12. [t holds that
[nz+Tn) 1 k
— l1-—a
D, (z) := . ZT T -8 (n : (x— n)) -1, (3.56)

pointwise, as n — +oo, where x € R.

We present our second main result
Theorem 3.13. We consider f : R —R. Let 3 >0, N =[], 3¢ N, f € ACN ([a,b]),
V [a,0] € R, with fN) € Lo (R). Let also v € R,T > 0,n € N : n >
max <T+ || ,T*é). We further assume that D?, , Df_f are uniformly continu-

ous functions or continuous and bounded on [x,+00), (—o0,x], respectively.
Then
1)
Gn (f) (2) = f (@) < |f ()] (3.57)

[nz+Tn®]
)) -1+

Z #S (nla (m -
S (o, 1) (I
n()ﬂ

k=[nz—Tn]
* 1
I — 7! n(1

3|

<.
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S (T) 1 T8
I (2T * na) T(8+1)n(-a5

T T
w1 wafaT + w1 D:fffaT )
W feoo) )

S(T 1 5
* <2T + na) T(8+1)n0-o8"

T T
w1 Dfxf’T +uw (D] f, - =: A, (2),
7 o 4o0) ) (ooal

3) assume further that fU) (z) =0, for j =0,1,...., N — 1, we get
1Gn (f) (@) < A7, ()

4) in case of N =1, we obtain

G (f) () = f ()| < [f ()]

[nx+Tn]

L s (e (e 5)) o

k=[nz—Tn>]

S(T) 1 75
T (2T+ na> TG+ 1) n0-8

T T
w1 (szfa 1_a> +wr (Df—f; 1_a> .
" [,+00) n (—00.a]

347

(3.58)

(3.59)

(3.60)

Here we get fractionally with rates the pointwise convergence of (Gy, (f)) (x) — f (),

asn — oo, x € R.
Proof. Let x € R. We have that
D] f(x) = D, f (x) = 0.
From [8], p. 54, we get by the left Caputo fractional Taylor formula that

©)-E52 )

gﬁ)/i@”yl

T (D2
forallmggg + Tno= L iff [na] < k < [nz + Tn®], where k € Z.

f(J) = DL f (x))dJ,

(3.61)
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Also from [2], using the right Caputo fractional Taylor formula we get

) .
< ) Z f] < >]+ (3.62)
L [T,k o D?_f(J)- D’ dJ
rg ) (7)) (s -plsw)a
for all z — Tno"1 < % < a, iff [nx — Tn®] <k < [nx], where k € Z.
Hence we have
IS ) 0 (kST
I*no N = 7! n I*n® '
S(n'=(z—%)) = (k _ )ﬁl 5 5
s | (5-7) (DLrD = DLi@)
and
kY g (pl- k N=1 .5 k jS l—a k
ISG i) e (kY SR,
=
S~ (@-%) [* A 3
mar f, (Vn) (P -plsw)a
Therefore we obtain
[erTn“] S (ni-a(p_ k
Ek} [nz]+1 (I)*na(n (EE n)) _ (365)
-1 [na+Tn®] (kg J — k
f(]) k=[nz]+1 (; - I‘) S (n ('T - n))
Z ( I*na +
7=0
[nz+Tn®] 1—a k k 6—1
S (@—2%)) [ [k 5 5
X [ (E-g) warn-pirw)as
and ]
nx k g 1—a _k
Zk}:[nw—Tn"*] f (Izzba (TL (l‘ n)) (366)
-1 k J — k
f(J) Zk [nx—Tn] ( JJ) S (Tl (Z‘ - E))
]Z I*n® *

ZECTZ,]PM—TW’—\ s (nl_a (.1? B

k

n

I*noT (B)
Adding the two equalities (3.65)

and (3.66) we obtain
(Gn () (2)

) /, <J iﬁ)“ (DL_f (=D f(@))dr
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nx+Tn® k J S 11—« _k
Z fm (Zk bt et "))) My (@), (367)
Where ]
L anj[nx—Tnﬂ] S (nl—a (Z‘ - %))
M, (z) := TnoT (3) .
/m <Jk>ﬁ1 (Dﬁ 7 (1) - D" f(z)) dJ+
[nz+Tn®] S (nl—oc (LL' _ E)) % k B-1
n A B _ DB
k{%ﬂ ) /m (n J) (D2, (J) = DS, f () dJ.  (3.68)
We call
[na] 11—« k
S (= (z = 3))
My, = n’Zz.
' (x) k:(ng—:’l"no"\ Irnel (6)
/I (J _ k>ﬁ1 (DZ_f (1) =D f (@) do, (3.69)
k n
and
e § (e (z — )
My, (x) := — oz,
’ k_%+l I*neT (B)
TN
/ (n —J) (DL f(J) = DL, f () dJ. (3.70)
Le.
M, (z) = My, () + May, (x) . (3.71)
We further have
S S (0 (o &
(Gn () (@)~ f () = £ (@) ( St SV D) )y
Z fm (z&zwﬁi"m (% [*i): S ('~ (- Z))) .
and
[nz+Tn] 1 k
@ -f@l<ir@l| X s (ae (s 5)) 2als 6
k=[nz—Tn>]
210 ( e B - el >>)+|Mn(x)|<

J
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[nz+Tn]

|f ()]

k=[nz—Tn>]

Z #S’ (nl_o‘ <x _k

gl n-ae)i I*no

=1
Therefore we obtain

[ne+Tn]

[(Gn () (2) = [ ()] < |f (2)]

k=[nz—Tn]

Nz-l 119 (@) T (z( "y S (1 (w — E

1
Z I*no S

We call -
=i | (F-8) (PLr )= Dl @) ).
As in the proof of Theoremn3.7 we have
B
e < g (P s
Furthermore
M 3 e EmD)
k=[nz—Tne]

[n] 1— k
S~ (z - 4)) s
( Z I*n ) rp+1) n(-a)5 !

k=[nz—Tn]

[7L3C+T'ILQ] S (nlfa ([L‘ _ %)) Tﬁ D
2. I*n® T (G+ 1)n0—5™!

k=[nz—Tn>]

So that

We also call

n

S(T) 1 5 P

S(T 1 T8
M < 2T + —
| 1n (.’L’)l = I ( + na) 1"(54_ 1) n(lfa)ﬁwl (

/xi (k -7 )ﬂ_l (D2,f (J) — D, f (x)) dJ|.

))) + | M, (x)] =: (x). (3.74)

()

SI(T)(2T+ )(Z lnla )+|Mn(x)|.

(3.75)

(3.76)

(3.77)

(3.78)

IN

IA

)(m’m] . (3.79)

(3.80)
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As in the proof of Theorem 3.7 we get

T8 ( T
Yon S — w1 lexf? a) . (381)
T (B4 1)nl-ws M) g oo)

Consequently we find

[nz+Tn] 1—a k
S (n x— =
|M2n (Cc)|§ Z ( I*(a n))
n
k=[nz]+1
T° T
DB f,—— < 3.82
T (3 + )-8 ( ol n1a>[z o) (382)
S(T) ( 1 ) 5 < T
— 2T+ — 3w D f,—— :
I n® ) T (B +1)n-)s ) )
So we have proved that
S(T 1 5
M, < 2T + — . 3.83
My ()] < = ( +n0‘)F(B—|—l)n(1—a)ﬂ (3.83)

T T
w1 Dfm.ﬂT +wp fof, . .
" letoo) L

Combining (3.75) and (3.83) we have (3.57). O
As an application of Theorem 3.13 we give

Theorem 3.14. Let 3 >0, N =[], 8 ¢ N, f € CV (R), with f™) € Lo (R). Let
alsoT >0,n € N:n >max <2T, Tfi) . We further assume that D2, f (t), D?_f ()
are both bounded in (z,t) € R%. Then

1)
1Gn (f) = flloomrry < W llo - (3.84)

[nz+Tn®]

Z L S(nla (m—k>)—1 +

I*n> n
k=[nz—Tn>] 00, [=T,T]

S(T) 1 i | H TT]

e <2T+ na) z; Tl +

j:

S(T) 1 5
I* (2T + na) T(B+1)n0-o8"

T T
sup - wi (szfa 1_a> Tosup Wi (fovl_a) ’
c€[~T,T] n [r,400) @E[-T,T] n (—o0,a]

2) in case of N = 1, we obtain

1Gn () = Flloo, o2y < NNl -y - (3.85)
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[nz+Tn]

1
Z —8S (nl_a (x - k)) -1 +
I*n> n
k=[nz—Tn>]

o0,[~T,T]

S(T) 1 75

2T + — :
I ( i n“) ['(B+1)ntt=)s

T T
sup  wi (szfa 1_a> Tosup W (fovl_a) :
ze[—T,T) n [#,+00) z€[-T.,T] n (—00,2]

An interesting case is when 3 = %

Assuming further that Hzgjjﬁif;]na] I*%z"‘ S (nl_a (ac — %)) — 1H - — 0,

as n — oo, we get fractionally with rates the uniform convergence of G, (f) — f, as
n — oo.

Proof. From (3.57), (3.60) of Theorem 3.13, and by Remark 2.17.

Also by
[nz+Tn]
1 1— k S(T)
o — - < 2T + 1 .
Z I*naS(n (x n)>_ I (2T + 1), (3.86)
k=[nz—Tn]
we get that
[nx+Tn]
1 1— k S(T)
o _ _ < .
> I*nus(n <:c n)) 1 _( s QT+ 1) +1
k=[nz—Tn>] 00, [~ T, T]
(3.87)
O

One can also apply Remark 2.18 to the last Theorem 3.14, to get interesting and
simplified results.

Note 3.15. The maps F,,, G, n € N, are positive linear operators.
We finish with

Remark 3.16. The condition of Theorem 3.8 that
[nz+Tn]

> <n1a (a: _ ﬁ)) _1 ~0, (3.88)

k=[nz—Tn]
as n — 00, is not uncommon.
We give an example related to that.
We take as b (x) the characteristic function over [—1, 1], that is x[—1 1) (). Here
T=land I=2,n>2 2¢€[-1,1].
We get that
[nz+n®] [nz+n<]

1 e’ k (3.2) 1
2. WX[L”(” (x‘n»: 2. @™

k=[nz—n] k=[nz—n|
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[nz+n]

([nz +n®] — [nz —n*] + 1)
— 1] = . .
|2 oo (3.89)

k=[nz—n]

But we have
[nx +n] — [nz —n*] +1 < 2n% + 1,

hence N N
([nx—i—n]—[nw—nl—i—l)gl_’_ 1 . (3.90)
2ne 2n«

Also it holds
[nx +n] = [nx —n“]4+1>2n%—2+1=2n% —1,

and
([nz +n°] = [nz —n*] +1) >1— L (3.91)

2ne 2ne’

Consequently we derive that

[nz+n®]

1 1 1—a k 1
T one < Z 2717@)([—1,1] <n <$ - n>) -1] < Ina’ (3.92)

k=[nx—n]

for any « € [—1,1] and for any n > 2.
Hence we get

[nz+n]

1
Z S XI-1.1] (nl_a (x — z>> -1 — 0, as n — oo. (3.93)

k=[nz—n]
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