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Some extensions on Fan Ky’s inequality

Gao Mingzhe and Mihaly Bencze

Abstract. In this paper we study the inequalities of the determinants of the posi-
tive definite matrices and the invertible matrices by applying the integral method
and matrix theory such that extensions of Fan Ky’s inequality are established.
And then an improvement of Fan Ky’s inequality is given by using the positive
definiteness of Gram matrix.
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1. Introduction

In view of the importance of the inequality in theory and applications (see [1],
[2]), it has been absorbing much interest of mathematicians. The various ways of
proving inequalities appear in a great deal of papers. In particular, Kuang enumerated
more than 50 methods in the paper [3]. It is obvious that these methods have the
characteristic of themselves, technique, theory and applications. The purpose of the
present paper is to study the discrete inequalities by applying a thought way on the
proof of the inequality of the continuous function, and to try for a new path and to play
to throw out a minnow to catch whale role in research and development. Explicitly,
the extensions and improvement on the famous Fan Ky inequality are established by
applying this method.

For convenience, we introduce some notations and functions.
The determinant of matrix X of order n is denoted by |X| and a unit-matrix of

order n is denoted by I. Let x = (x1, x1, · · · , xn ) be an n-dimension vector, f(x)
and g(x) be functions with n variables. Let E be an inner product space, f and g be
elements of E. Then the inner product of f and g is defined by the following n-ple
integral:

(f, g) =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx,

where dx = dx1dx2 · · ·dxn. And the norm of f is given by ‖f‖ =
√

(f, f).
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Let f(x), g(x) > 0 and r, s > 0. We stipulate that

(fr, gs) =

+∞∫
−∞

· · ·
+∞∫
−∞

fr(x)gs(x)dx, ‖f‖r =

 +∞∫
−∞

· · ·
+∞∫
−∞

fr(x)dx


1
r

, ‖f‖2 = ‖f‖,

Sr(f, h) =
(
f

r
2 , h
)
‖f‖−

1
r

r .

where h is a variable unit-vector with n variables, i.e. ‖h‖ = 1, and it can be chosen
in accordance with our requirements. In particular, Sr(f, h) = 0 if h is orthogonal to
f

r
2 .

Throughout this paper, we shall frequently use these notations.

2. Statement of main results

Let A,B be two positive definite matrices of order n, 0 ≤ λ ≤ 1. Then

|A|λ|B|1−λ ≤ |λA + (1− λ)B|. (2.1)

This is the famous Fan Fy’s inequality (see [3]). Recently, this inequality has been
studied in some papers (such as [4, 5] etc.) Below we will build some extensions and
a refinement of (2.1) by using the integral method and matrix theory.

First, we establish some extensions of (2.1).

Theorem 2.1. Let m be a positive integer greater than 1, Ai(i = 1, 2, · · · ,m) be positive

definite matrix of order n,
m∑

i=1

1
p

i
= 1 and p

i
> 1. Then

m

Π
i=1

|Ai|
1

p
i ≤

∣∣∣∣∣
m∑

i=1

1
pi

Ai

∣∣∣∣∣ . (2.2)

In particular, for case m = 2, we have

|A|
1
p |B|

1
q ≤

∣∣∣∣1pA +
1
q
B

∣∣∣∣ ,
where 1

p + 1
q = 1 and p > 1. Clearly, it is the inequality (2.1). It follows that the

inequality (2.2) is an extension of (2.1).

Remark 2.2. Inequality (2.1) shows that the function f : PD → (0,∞) defined by
f(A) = |A|, where PD is the set of positive defined matrices of order n is log-concave.
So, Theorem 2.1 is Jensen ’s inequality for f .

If p < 1, applying the reverse Hölder inequality, then the following reverse Fan
Ky inequality is obtained:

|A|
1
p |B|

1
q > |1

p
A +

1
q
B|.

If Ai (i = 1, 2, · · · ,m) is invertible matrix of order n and A′
i is a transform of Ai, then

AiA
′
i is a positive definite matrix of order n and |AiA

′
i| = |Ai|2. Based on Theorem

2.1, the following result is obtained.
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Corollary 2.3. If Ai(i = 1, 2, · · · ,m) is a invertible matrix of order n,then

m

Π
i=1

|A2
i |

1
p

i ≤

∣∣∣∣∣
m∑

i=1

1
pi

AiA
′
i

∣∣∣∣∣ . (2.3)

Let Ai(i = 1, 2, · · · ,m) is a symmetrical matrix of order n. Then there exists
a sufficiently big ki such that kiI + Ai is a positive definite matrix. Let k =
max{k1, k2, · · · km}. Then we have the following result.

Corollary 2.4. With the assumptions as the above-mentioned, then

m

Π
i=1

|kI + Ai|
1

p
i ≤

∣∣∣∣∣
m∑

i=1

1
p

i

(kI + Ai)

∣∣∣∣∣ . (2.4)

Next, we shall establish a refinement of (2.1).

Theorem 2.5. Let A,B be two positive definite matrices of order n. If 1
p + 1

q = 1 and
p > 1, then

|A|
1
p |B|

1
q ≤

∣∣∣∣1pA +
1
q
B

∣∣∣∣ (1−R)
2
r , (2.5)

where

R = (4π)
n
2

( |A| 12
| A + πI|

) 1
2

−

(
|B| 12

|B + πI|

) 1
2
2

, r = max{p, q}.

Remark 2.6. In fact, Theorem 2.5 establishes a refinement of Fan Ky inequality.

If A and B are two invertible matrices of order n, A′ and B′ are respectively transforms
of A and B, then AA′ and BB′ are positive definite matrices of order n. And notice
that |AA′| = |A|2 and |BB′| = |B|2. Based on Theorem 2.5, the following result is
obtained.

Corollary 2.7. With the assumptions as the above-mentioned, then

|A|
1
p |B|

1
q ≤

∣∣∣∣1pAA′ +
1
q
BB′

∣∣∣∣ 12 (1− R̃
) 1

r

, (2.6)

where

R̃ = (4π)
n
2

((
|A |

|AA′ + πI|

) 1
2

−
(

|B |
|BB′ + πI|

) 1
2
)2

, r = max{p, q}

3. Proofs of main results

In order to apply the integral method and matrix theory to prove our assertions,
we need the following lemmas.
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Lemma 3.1. Let D be a positive definite matrix of order n. Then
+∞∫
−∞

· · ·
+∞∫
−∞

exp (−xDx′) dx =
(

πn

|D|

) 1
2

, (3.1)

where the vector x = (x1, x2, · · · , xn),x′ is transform of x and dx = dx1dx2 · · ·dxn.
This result is the well known. Its proof is omitted here.

Lemma 3.2. Let 1
p + 1

q = 1 and p > 1. If 0 < ‖f‖p < +∞ and 0 < ‖g‖q < +∞, then

(f, g) ≤ ‖f‖p‖g‖q(1−R)
1
r , (3.2)

where R = (Sp(f, h)− Sq(g, h))2, r = max{p, q}, ‖h‖ = 1 and (fp/2, h)(gq/2, h) ≥ 0.

And the equality in (3.2) holds if and only if fp/2 and gq/2 are linearly dependent;
or h is a linear combination of fp/2 and gq/2, and (f

p
2 , h)(g

q
2 , h) = 0 but h is not

simultaneously orthogonal to f
p
2 and g

q
2 .

Proof. First, we consider the case p = 2. Let f, g and h be three arbitrary functions
with n variables. If ‖h‖ = 1, then

(f, g)2 ≤ ‖f‖2‖g‖2 − (‖f‖u− ‖g‖v)2, (3.3)

where u = (g, h), v = (f, h), uv ≥ 0. And the equality in (3.3) holds if and only
if f, g and h are linearly dependent; or h is a linear combination of f and g, and
uv = 0 but h is not simultaneously orthogonal to f and g. In fact, consider the Gram
determinant constructed by the functions f, g and h:

G(f, g, h) =

∣∣∣∣∣∣
(f, f) (f, g) (f, h)
(g, f) (g, g) (g, h)
(h, f) (h, g) (h, h)

∣∣∣∣∣∣ .
According to the positive definiteness of the Gram matrix, we have G(f, g, h) ≥ 0,
and G(f, g, h) = 0 if and only if f, g and h are linearly dependent.

Expanding this determinant and using the condition ‖h‖ = 1, we obtain

G(f, g, h) = ‖f‖2‖g‖2 − (f, g)2 − {‖f‖2u2 − 2(f, g))uv + ‖g‖2v2}
≤ ‖f‖2‖g‖2 − (f, g)2 − {‖f‖2u2 − 2(f, g))|uv|+ ‖g‖2v2}
≤ ‖f‖2‖g‖2 − (f, g)2 − (‖f‖|u| − ‖g‖|v|)2

≤ ‖f‖2‖g‖2 − (f, g)2 − (‖f‖u− ‖g‖v)2

where u = (g, h), v = (f, h) and uv ≥ 0. And the equality holds if and only if f, g and
h are linearly dependent; or h is a linear combination of f and g, and uv = 0 but h
is not simultaneously orthogonal to f and g.
The inequality (3.3) can be written in the following form:

(f, g)2 ≤ ‖f‖2‖g‖2(1− r2), (3.4)

where r2 = (S2(f, h)− S2(g, h))2. Namely, when p = 2, the inequality (3.2) is valid.
It is obvious that the inequality (3.4) is a refinement of the Cauchy inequality and
that it is also extensions of the corresponding results of the papers [3, 6, 7].
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Next, consider the case p 6= 2. Not loss generality, let p > q > 1. Since 1
p + 1

q = 1,
we have p > 2. Let α = p

2 , β = p
p−2 . Then 1

α + 1
β = 1. By applying Hölder’s inequality,

we have

(f, g) =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx =

+∞∫
−∞

· · ·
+∞∫
−∞

{
f(x)(g(x))q/p

}
(g(x))1−q/pdx

≤


+∞∫
−∞

· · ·
+∞∫
−∞

(
f(x)(g(x))q/p

)α

dx


1/α

+∞∫
−∞

· · ·
+∞∫
−∞

{
(g(x))1−q/p

}β

dx


1/β

=
(
fp/2, gq/2

)2/p

‖g‖q(1−2/p)
q . (3.5)

And the equality in (3.5) holds if and only if fp/2 and gq/2 are linearly dependent.
In fact, The equality in (3.5) holds if and only if for any a positive integer k, there
exists a positive number c1, such that (fgq/p)α = c1(g1−q/p)β . After simplifications,
we obtain fp/2 = c1g

q/2.
If f and g in (3.4) are replaced by f

p
2 and g

q
2 respectively, then we have

(fp/2, gq/2)2 ≤ ‖f‖p
p‖g‖q

q(1−R), (3.6)

where R = (Sp(f, h)− Sq(g, h))2. Substituting (3.6) into(3.5), we obtain after simpli-
fications

(f, g) ≤ ‖f‖p‖g‖q(1−R)
1
p . (3.7)

It is known from (3.4) that the equality in (3.7) holds if and only if fp/2 and gq/2 are
linearly dependent; or h is a linear combination of fp/2 and gq/2, and (f

p
2 , h)(g

q
2 , h) =

0 but h is not simultaneously orthogonal to f
p
2 and g

q
2 . Notice that the symmetry of

p and q, it follows that the inequality (3.2) is valid.
It is very easy to prove Theorem 2.1, it is omitted here.
Proof of Theorem 2.5. Let f(x) = exp(− 1

p (xAx′)) and g(x) = exp(− 1
q (xBx′), where

1
p + 1

q = 1 and p > 1. Based on (3.2) and (3.1), we have

π
n
2∣∣∣ 1pA + 1
q B
∣∣∣ 12 =

+∞∫
−∞

· · ·
+∞∫
−∞

f(x)g(x)dx

≤


+∞∫
−∞

· · ·
+∞∫
−∞

fp(x)dx


1
p


+∞∫
−∞

· · ·
+∞∫
−∞

gq(x)dx


1
q

(1−R)
1
r

=
π

n
2(

|A|
1
p |B|

1
q

) 1
2
(1−R)

1
r . (3.8)

We attain from (3.8) after simplifications

|A|
1
p |B|

1
q ≤ |1

p
A +

1
q
B|(1−R)

1
r (3.9)
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where r = max{p, q}.
We only need to compute R in (3.9). It is known from (3.2) that

R = (Sp(f, h)− Sq(g, h))2 =

((
fp/2, h

)
‖f‖p/2

p

−
(
gq/2, h

)
‖g‖q/2

q

)2

,

where h = exp
(
− 1

2xCx′
)
, Let C = πI. Then |C| = πn, Based on (3.1),we have

‖h‖ =


+∞∫
−∞

· · ·
+∞∫
−∞

h2(x)dx


1/2

= 1. (3.10)

It is easy to deduce that(
f

p
2 , h

)
=

+∞∫
−∞

· · ·
+∞∫
−∞

f
p
2 (x)h (x) dx

=
π

n
2∣∣ 1

2 (A + πI)
∣∣n

2
= (2π)

n
2

(
1

|A + πI|

) 1
2

,

‖f‖
p
2
p =


+∞∫
−∞

· · ·
+∞∫
−∞

fp(x)dx


1
2

=
{

πn

|A|

} 1
4

,

Sp (f, h) =
(
f

p
2 , h

)
‖f‖−

1
p

p = (2π)
n
2

(
1

|A + πI|

) 1
2
{
|A|
πn

} 1
4

= (4π)
n
4

(
|A|

1
2

| A + πI|

) 1
2

.

Similarly, we have Sq(g, h) = (4π)
n
4

(
|B|

1
2

| B + πI|

) 1
2

.

It follows that

R = (Sp(f, h)− Sq(g, h))2

= (4π)
n
2

( |A|
1
2

| A + πI|

) 1
2

−

(
|B|

1
2

| B + πI|

) 1
2
2

.
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