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Abstract. The domain of the Riemann Zeta function and that of its derivative
appear as branched covering Riemann surfaces (C, f). The fundamental domains,
which are the leafs of those surfaces are revealed. For this purpose, pre-images
of the real axis by the two functions are taken and a thorough study of their
geometry is performed. The study of intertwined curves generated in this way,
allowed us to prove that the Riemann Zeta function hasonly simple zeros and
finally that the Riemann Hypothesis is true. A version of this paper containing
color visualization of the conformal mappings of the fundamental domains can
be found in [10].
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1. Introduction

The Riemann Zeta function is one of the most studied transcendental functions in
view of its many applications in number theory, algebra, complex analysis, statistics,
as well as in physics. Another reason why this function has drawn so much attention
is the celebrated Riemann Hypothesis (RH) regarding its non trivial zeros, which has
resisted proof or disproof until now.

Hopefully, starting from now, people can write RP instead of RH, meaning the
Riemann Property (of non trivial zeros).

The RP proof will be derived from the global mapping properties of Zeta func-
tion. The Riemann conjecture prompted the study of at lest local mapping properties
in the neighborhood of non trivial zeros. There are known color visualizations of the
module, the real part and the imaginary part of Zeta function at some of those points
(see Wolfram MathWorld), however they do not offer an easy way to visualize the
global behavior of this function. We perfected an idea found in [8], page 213.
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The Riemann Zeta function has been obtained by analytic continuation [1], page
178 of the series

s)zz:rfs7 s=o+it (1:1)

which converges uniformly on the half plane ¢ > o0g, where oy > 1 is arbitrarily
chosen. It is known [1], page 215, that Riemann function {(s) is a meromorphic
function in the complex plane having a single simple pole at s = 1 with the residue
1. The representation formula

(o) =-1=9) /C (=) /(e — 1)dz (1.2)
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where I' is the Euler function and C' is an infinite curve turning around the origin,
which does not enclose any multiple of 2, allows one to see that ((—2m) = 0 for
every positive integer m and that there are no other zeros of ¢ on the real axis.
However, the function ¢ has infinitely many other zeros (so called, non trivial ones),
which are all situated in the (critical) strip {s = 0 +it : 0 < .o < 1} The famous RH
says that these zeros are actually on the (critical) line o = 1/2.

We will make reference to the Laurent expansion of ((s) for [s — 1| > 0:

((s) =1)"/nllyn(s —1)", (1.3)
where -, are the Stieltjes constants:
— 1 n ) n+1
=l [3 flog )" ¥ log m)"*/(m+ 1] (1.4

as well as to the functional equation [1], page 216:
C(s) = 2°7° 'sin —r(1 —8)¢(1 — ). (1.5)

As predicted, the proof of RH will have a lot of consequences in number theory,
although RP is a property of conformal mappings. It is probably safe to say that
the conformal mappings made their royal entrance into the realm of number theory
through the RP. By the global mapping properties of the Riemann Zeta function we
understand the conformal mapping properties of its fundamental domains.

The concept of a fundamental domain, as it appears here, has been formulated
by Ahlfors, who also emphasized its importance as a tool in the study of analytic func-
tions. He said: Whatever the advantage of such a representation may be, the clearest
picture of the Riemann surface is obtained by direct consideration of the fundamental
regions in the z-plane ([1], page 99).

Starting with the study of Blaschke products ([4], [5], [7]), we followed a true
program of revealing fundamental domains for different classes of analytic functions
(2], 3], [6]), drawing in the end the conclusion that this can be done for any function
f which is locally conformal throughout the Riemann sphere, except for an at most
countable set of points in which f’(z) = 0, or which are multiple poles of f, or which
are isolated essential singularities.
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In the case of functions having essential singularities, the Big Picard Theorem has
been instrumental in finding fundamental domains [2]. Once this achieved, by using
the technique of simultaneous continuations [7], we obtained an essentially enriched
type of Picard Theorem, saying that every neighborhood V of an essential singularity
of an analytic function f contains infinitely many fundamental domains, i.e., after
Ahlfors definition, domains which are conformally mapped by f onto the whole complex
plane with a slit.

Obviously, f takes in V every value, except possibly those at the'ends of the slit
(lacunary values) infinitely many times. Moreover, we have infinitely many disjoint
domains in V' which are mapped conformally by f onto a neighborhood of every such
value.

The Riemann Zeta function has a unique essential singularity at the point oo
of the Riemann sphere. Thus, its fundamental domains should accumulate to infinity
and only there, in the sense that every compact set from the complex plane intersects
only a finite number of fundamental domains of this function, while in the exterior of
a compact set there are infinitely many such domains.

2. The pre-image by ( of the real axis

In order to make the paper self contained, let us repeat some of the results
obtained in [3]. The pre-image by ¢ of the real axis can be viewed as simultaneous
continuation over the real axis from a real value starting from all the points in which
that value is assumed.

By the Big Picard Theorem, every value zp from the z-plane (z = ((s)), if
it is not a lacunary value, is taken by the function ¢ in infinitely many points s,
accumulating to co‘and only there. This is true, in particular, for zy = 0. By [9], the
Zeta function has only simple zeros, hence a small interval I of the real axis containing
0 will have as pre-image by ¢ the union of infinitely many Jordan arcs -, passing each
one through a zero s, of (, and vice-versa, every zero s, belongs to some arcs 7,.
Since ((0) € R, for ¢ € R, and by the formula (1.5), the trivial zeros of ¢ are simple
zeros‘and the arcs -, corresponding to these zeros are intervals of the real axis, if T
is small enough.

Due to the fact that ¢ is analytic (except at s = 1), between two consecutive
trivial zeros of ¢ there is at least one zero of the derivative ¢/, i.e. at least one branch
point of ¢. Since we have also ('(c) € R for ¢ € R, if we perform simultaneous
continuations over the real axis of the components included in R of the pre-image by
¢ of I, we will encounter at some moments those branch points and the continuations
follow on unbounded curves crossing the real axis at the respective points. As shown
in [3], the respective curves are unbounded and they do not intersect each other.

Only the continuation of the interval containing the zero s = —2 stops at the
unique pole s = 1, since ;1/ml ¢(0) = oco. Similarly, if instead of zp = 0 we take another

real zy greater than 1 and perform the same operations, since li\m1 ¢(o) = oo, the
g

continuation over the interval (1,00) stops again at s = 1. In particular, the pre-
image by ( of this interval can contain no zero of (.
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Thus, if we color for example red, the pre-image by ( of the negative real half
axis and let black the pre-image of the positive real half axis, then all the components
of the pre-image of the interval (1,+00) will be black, while those of the interval
(=00, 1) will have a part red and another part black, the junction of the two colors
corresponding to a zero of ¢ (trivial or not).
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FIGURE 1

Fig. 1 represents the pre-images by ¢ (Fig. 1la) and by ¢’ (Fig. 1b) of the real
axis in boxes of [-30,30]x[-30,30].

We notice the existence of branch points on the real axis and their color alter-
nation, as well as the trivial zeros between them. If we superpose the two pictures,
the branch points‘of the first, will coincide with the zeros of the second.

The components passing through non trivial zeros of the pre-image of the real
axis form a more complex configuration, which has a lot to do with the special status
of the value z = 1: on one hand this value is taken in infinitely many points of the
argument plane, and on the other hand it behaves like a lacunary value, since it is
obtained as a limit as s‘tends to infinity on some unbounded curves. We called it
quast lacunary value.

For the function ¢’ the value z = 0 is quasi lacunary.

Due to the symmetry with respect to the real axis (¢(3) = ((s)), it is sufficient
to deal only with the upper half plane. Let 2o € (1,+00) and let s € (" *({zo})\ R.
Continuation over (1,4o00) from s is either an unbounded curve I'} such that

lim ¢{(o + it) = 1, by (1.1), and UEmOOC(o* +it) = 400, where s = o + it €

o—+0o0
I}, or there are points u such that ((u) = 1, thus the continuation can take place

over the whole real axis.

Theorem 2.1. Consecutive curves I'y, and T}, form strips Sy which are infinite in
both directions. The function ¢ maps these strips (not necessarily bijectively) onto the
complez plane with a slit alongside the interval [1,400) of the real axis.

Proof. Here k € N is chosen in such a way that if it, € I}, then the sequence (t) is
increasing. If two consecutive curves I', and I, | met at a point s, one of the domains
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bounded by them would be mapped by ( onto the complex plane with a slit alongside
the real axis from 1 to {(s). Such a domain must contain a pole of ¢, but this cannot
happen, since the only pole of ¢ is s = 1. When a point s travels on I'}, and then on
I, leaving the strip at left, {(s) moves on the real axis from 1 to oo and back.” [

When the continuation can take place over the whole real axis, we obtain un-
bounded curves each containing a non trivial zero of ¢ and a point u with ¢(u) = 1.
Such a point u is necessarily interior to a strip Sy since the border of every Sy, which
is included in ¢71((1,+00)), and the set (~1({1}) are disjoint.

Let us denote by uy ; the points of Sy, for which ((ug, ;) =1, by 'y ;, j # 0 the
components of (!(R) containing uy ; and by s ; the non trivial zero of ¢ situated on
I'k,j. As shown in [3] Theorem 7, every Sy, contains a unique component I'y, o with-the
property that Uji>nioo C(o+it) =1 and in>nloo ((o +it)= —oo0. where o+ it € I'y

(i.e. which is projected bijectively by ¢ onto the interval (—oo, 1)) and a finite number
jx — 1 of components such that each one is projected bijectively by ¢ onto the whole
real axis. Therefore Sj, contains jj curves I'y ;, jr non trivial zeros and ji — 1 points
ug,; with ¢(uk,;) = 1. We call Sy a ji-strip. Here j € Z is chosen in such a way that
I'y; and 'y j41 are consecutive in the same sense as I'}..

Theorem 2.2. When the continuation. takes place over the whole real axis, the com-
ponents I'y ; are such that the branches corresponding to both the positive and the
negative real half axis contain only points o + it with o < 0 for |o| big enough.

Proof. A point traveling in the same direction on a circle v centered at the origin of
the z-plane meets consecutively the positive and the negative real half axis. Thus the
pre-image of v should meet consecutively the branches corresponding to the pre-image
of the positive and the negative real half axis, which is possible only if the condition
of the theorem is fulfilled. O

In what follows, this color alternation condition will appear repeatedly. One of
its immediate applications is that the real zeros of (' are simple and they alternate
with the trivial zeros of (. Indeed, since the color change can happen only at a zero
of ¢ and at's = 1 and by the formula (1.5) the trivial zeros of ¢ are simple, between
two of them there must be one and only one zero of ¢/, otherwise the color alternation
condition would be violated.

Another application is that those components of pre-images of circles centered
at the origin of radius p > 1 which cross a I'j, will continue to cross alternatively
red and black components of the pre-image of the real axis indefinitely, i.e. they are
unbounded components.

Theorem 2.3. Every strip Sy contains a unique unbounded component of the pre-image
of the unit disc.

Proof. To see this, it is enough to take the pre-image of a ray making an angle o with
the real half axis and let & — 0. A point s € (~1({z}) with |2| = 1, arg z = «, tends to
oo as a — 0 if and only if the corresponding component of the pre-image of that ray
tends to I'y 0 as @ — 0, which happens if and only if the component of the pre-image
of the closed unit disc containing the point s is unbounded. The uniqueness of I'y o
implies the uniqueness of such a component. U
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An even better way to visualize the geometry of conformal mappings realized
by ( is to take the pre-image of an orthogonal net formed with rays passing through
the origin and circles centered at the origin. The annuli so formed are colored as in
Fig. 2, where the points in the annuli and their pre-images by ¢ have the same color,
saturation and brightness. The color saturation in the annuli is decreasing clockwise.
We show in the Fig. 2 (a,b,c) annuli of radii up to 10*, although we investigated strips
around the critical line with values of ¢ up to 109 (see pictures at the end in'[10]). We
notice that to the quadrilaterals of the net from the z-plane correspond quadrilaterals
in the argument plane of ¢ which not only have the same colors but also the same
conformal module. By using a convenient scale on the rays, we can arrange that all
these quadrilaterals have the same module. The components of the pre-images of the
four quadrilaterals having a vertex in z = 1 are unbounded if they don’t have an wy, ;
as a vertex. It makes sense to say that the module of such an unbounded quadrilateral
is that of its (bounded) image by (.

The theorems above guarantee that the landscape shown in Fig. 2(d,e,f) repeats
itself indefinitely with variations regarding only the numbers of zeros in a strip Sj.

On the other hand, this landscape gives one an idea how difficult can it be to
tackle the Riemann Hypothesis by number theoretical methods and suggests to rather
use conformal mappings tools.

FIGURE 2
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3. Fundamental domains of the Riemann Zeta function

If Sj is a jg-strip, then the pre-image of a small circle v of radius p centered at
the origin will have j;, components situated in Sy which are closed Jordan curves each
containing a unique zero of . If p is small enough, then these curves are disjoint. As
p increases, the curves expand. When two of them touch each other at a points vy ;,
they fuse into a unique closed curve containing the two respective zeros. Continuing
to increase p, some other points vy ; are reached. These are branch points of ¢. It has
been shown in [3] and [9] that there are exactly ji — 1 points vy ; in every jg-strip.
The intersection of Sy with the pre-image of the segment between 1 and ((vg,;) is a
set of unbounded curves starting at uj ; or arcs connecting two such points. These
curves and arcs together with the pre-image of the interval [1,+00) of the real axis
bound sub-strips included in S which are fundamental domains € ; of (. Every
fundamental domain €2 ; contains a unique simple zero sy ; of C.

The simplicity of the zeros of ¢ has been proved in [9] by using the so-called
intertwined curves. Namely, it has been shown that the components T/ of the pre-
image by ¢’ of the interval (—o0, 0) of the real axis such that \ li>rnOo ¢'(o+it) = —o0

and h>ni ('(o0+1it) =0, o +it € T, form infinite strips ¥, containing j; — 1 simple
g— o0

zeros of (' These zeros belong to the components Yy ;, j # 0 of the pre-image by
¢’ of the real axis. There is also in ¥ a unique component Y o of the pre-image of
the interval (0, 4+00). These components follow also the color alternation rule. It has
been proved in [9] that there is a one to one correspondence between those I'), and
T, respectively I'y ; and Yy ; which intersect each other (intertwined curves). Also,
by using different colors for the components-of the pre-image by ¢ and by (' of the
positive and negative real half axes, a color matching rule has been proved in [9]. The
simplicity of the zeros of Zeta function, as well as of those of any derivative of ( is
a consequence of the two rules: the color alternation rule for ¢ and ¢’ and the color
matching rule:

Fig. 3 illustrates the concept of intertwined curves, parts of which are shown in
a box [=10,10] x [30, 90].

The color matching rule means that blue matches red and yellow matches black
forall the components except for I'; o and Ty, o.

For the seek of space economy, the height of the box has been divided in three.

An inspection of the curves I'y ; from the Fig. 3 shows that they have all the
turning point (the point in which the tangent to I'y ; is vertical) on the blue part, i.e.
on the part corresponding to the positive real half axis. We will prove next that this
happens for any curve I';, ;.
Theorem 3.1. Let x— > si (x) = oy (x) + ity ;(x) be the parametric equation of
Ty, j such that

((sk,j(z)) =2, ¢ €R, s ; = ok ; + it ; = sx,;(0),

If oy, j(x0) =0, then x> 0.
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Proof. In terms of the zeros sy ;, the Hadamard Product Formula (see Wikipedia/
Riemann Zeta Function) can be written as:

(oo}
C(s) = [1/2(s = )T (1+5/2)]e™ [ [ [T (1573050 (1= s/s8.5) exp{s(1/5x,;+1/58,5)},
k=1j€Jy
where A = 0.549269234...
Let
Pn,j(@) =1 — si,j(@)/5k,5][1 — sk,j() /58]
Since all the zeros of ( are simple, in the neighborhood of sj_ ;, the dominating
factor of ((sky(x)) is ¢k ;(x). We have

o) = 1= 28 5 (x)ok ;/|sk 517 + 5% (@) /| sk5]?

= [/ Iskg | on g (x) = ong)? + 5 5 — th 5 (@) + 2t 3 (2) (00,5 () — o15)d].
Thus, if ¢y ;(2) <tk ;, then Re gy j(x) > 0 and for |oy ;(x) — o, ;| small enough,
if ty j (@) >t ; then Re ¢y j(x) < 0. Also Im ¢y, () > 0 if and only if o j(z) > o ;.
Suppose that for x < zp < 0, we have oy j(x) > ok, tr,(x) < tg;, i.e. the
curve I'y, ; turns back at s(x¢), where z¢ < 0, i.e. on the branch corresponding to the
negative half axis, which is situated below the other branch. Then

m/2 < args), ;(0) <7, 0 <arggy ;(z) < m/2 (3.1)

Since
2
o (@) = W[Sk,j (x) — ok 4]k ;(x) and sp ;(0) = 51 5,
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we have
2 20ty
/ _ / _ 5] /
©l.;(0) = W[Sk,j — 0,55, ;(0) = 5042 81,5 (0),
hence / - /
arg ¢}, ;(0) = 5 + arg s, ;(0) (3.2)

Since ¢f;(0) = 1m [p;(0) — @i (2))/r = Tim [~pp;(2)]/o and < 0, e
have that

0 < argyj ;(0) < 7/2
which does not agree with (3.1) and (3.2).

If the curve turns back on the part corresponding to the positive half axis; and
the relative position of the two branches is the same, then for z > 0 small enough, we
have o(z) > ok 5, t(x) > tx; , hence 7/2 < arg ¢y, ;(z) < m and 0 < arg s'(0) < 7/2.

Then 7/2 < arg py ;(0) < 7, which agrees with the formula (3.2). Similar argu-
ments are valid when the relative position of two branches is reversed. The conclusion
is that all the curves I'y ; turn back at points corresponding to x > 0, as it appears
in the pictures illustrating the theorems of this article. This result is used in the next
section.

4. Proof of the Riemann Hypothesis

From the relation (1.5) and the fact that {(3) = ((s), it can be easily inferred
that the non trivial zeros of ¢ appear in quadruplets: s,5,1 —s and 1 —3. Proving the
RH is equivalent to showing that ¢ cannot have two zeros of the form s; = oy + it,
S$9 = 09 + it in the critical strip. In particular, if we suppose that s; = o + it and
s9=1-3; =1—0+it, 0 < 0 < 1/2 are zeros of (, then $1 = s9, i.e. 0 = 1 —0, hence
o = 1/2. In other words, all the non trivial zeros of ¢ are of the form s = 1/2 + it.

There are two situations to be examined, namely a), when s; and s, are consec-
utive zeros.in the same strip S; and b), when s; is the last zero of S, and sy is the
first zero of Sjyyi.

Once assured that & = 1/2 in the two cases, a simple induction argument guar-
antees that this happens for all non trivial zeros in the upper half plane, and then,
due to the symmetry ((3) = ((s), the truth of the Riemann Hypothesis follows.

For the seek of completeness, let us present that induction argument.

Since S; contains only one zero si g, the case a) is void for it.

Then, applying the case b) to S7 and Sy one concludes that s1,0 = 1/2 + ity g,
for some positive number % g.

Suppose that for an arbitrary k all the zeros in Sy, are of the form sy, ; = 1/2+ity, ;
and apply the case b) to the last zero sy ;7 from Sy and the first zero sgyq j» from
Sk—',—l-

The conclusion is that sy j# = 1/2+ ity j» for some positive number tj41 ;0.

Then, applying the case a) to every couple of consecutive zeros from Sj41 one
can draw the conclusion that all the zeros in Sy are of the form 1/2 + itjq ; for
some positive numbers ?;41 ;, which completes the induction.
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Case a). Suppose that the respective zeros are Skj—1 = Ok j—1 + it and s3; =
ok, +it. Let I'y ; and Ty ;, respectively I'y j—1 and Yj ;j_1 be the corresponding
intertwined curves with s ; € I'y ; and vy ; € Ty 4, respectively s j_1 € I'y j—1 and
Vij—1 € Thj1.

Fig. 4 represents such a hypothetical situation.

§(Twy) 1 [3CW)

Thy

—~
7 o) [ c’{mU ERTY)
3

b ¢

FIGURE 4

If A= > (1= N)sgj—1 + Ask;, 0 < A < 1 is the parametric equation of the
segment I between sy ; and sj j_1, then

2(A) = C((1 = A)sk,j + Asgj-1), 0 <A< (4.1)

is a parametric equation of a closed curve 7y ; passing through the origin. The curve
is obviously smooth except possibly at the origin and at vy j, if vg ; € I. Since vy ;
is a simple zero of (' we have in vy ; a star configuration, (as in [1], page 133) of
two orthogonal curves, the image by ( of one of which passes through the origin. The
tangent to this curve ny ; at vy ; still exists. In any case we can differentiate in (4.1)
with respect to A\, 0 < A < 1 and we get:

Z'(A) = (1 = N)skj—1 + Asp, ) (Sk,j—1 = 8k.j)- (4.2)



The Riemann Hypothesis 205

Since Sk j—1 — Sk,j = Ok j—1 — Ok,; > 0, we have
arg 2’ (\) = arg ¢'((1 — N)sk; + Ak j—1) (4.3)

which shows that the tangent to 7 ; at z(\) makes an angle with the positive real
half axis which is equal to the argument of ¢'((1 — A)sk,; + Ask j—1). This last point
describes an arc 7, ; starting at ¢'(sk,;) and ending at ('(sg,j—1), when A varies from
0 to 1. Due to the color alternation rule and the color matching rule, both ends of
77;@, ; must be situated in the upper half plane. The right hand side in (4.3) exists also
at the ends of this arc, which means that the limits as A \, 0 and as A /1 of the
left hand side also exist. These limits are two vectors starting at the origin with the
first pointing to the upper half plane and the second pointing to the lower half plane.
Indeed, the oriented interval I exits from the parabola-like curve I'y ; and enters the
parabola-like curve I'y, ;1 whose interiors are conformally mapped by ¢ onto the lower
half plane. This contradicts the equality (4.3) and the fact that both ends of 77;@, ; are
situated in the upper half plane.

The conclusion is that a configuration as postulated in Fig. 4a is impossible.

FIGURE 5

Let us deal with a hypothetical situation as represented in Fig. 5a. The points
1,2,3,... are mapped in tandem by ¢ and ¢’ into the points represented by the same
numbers in Fig. 5b, respectively 5c. The number 1 is the origin in Fig. 5b and it is
('(sk,;) in Fig. 5c. Point 2 is the intersection with the positive half axis of njm, hence
arg ¢'((1 4+ A)sg,j + Asg j—1) = 0 at the point 2, thus arg z’(A\) = 0, which means that
the tangent to 7 ; at that point is horizontal and positively oriented with respect to
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the real axis. Point 3 corresponds in Fig. 5a to the intersection of I with Ty, ;11
and is situated in Fig. 5c on the negative real half axis. Then 7 ; has a horizontal
tangent at the corresponding point 3 oriented in the negative direction of the real axis.
At point 4 the interval I crosses 'y, j+1, hence 771/” will cross the curve ¢'(T'y, j+1), while
Mk,; will cross the real axis. In order for 7, ; to reach the origin, it must have another
point with horizontal tangent. This forces 772, ; to turn back to the real axis, crossing
in its way again ¢'(I'xj+1) and so on. This means that I intersects again I'y ;11
and Ty j+1, before reaching s ;11, which is absurd. Thus a configuration like that
postulated in Fig. 5a is impossible.

The final conclusion is that ¢ cannot have two zeros of the form sy ;= o+ ity ;
and Sk,j+1 = 1—0+ itk’jjq.

Case b). Suppose now that we deal with the zeros sj;» and s;41,; belonging to
the adjacent strips Sk, respectively Si1.We make similar notations as in the case a)
and we seek to find a contradiction by inspecting the images by ¢ and by ¢’ of the
interval I between the two zeros whose parametric equation is

A= > (1= N)spp1,j + Ask,jr-
Fig. 6 illustrates the new hypothetical situation.
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b c

FIGURE 6

This time (’(sy, ;) belongs to the upper half plane, while ¢’(sk1,;) belongs to
the lower half plane. We notice again that }\1{% Z'(A\) and )1\1/ml 2'(\) exist and represent

the half-tangents to 7, ; at the origin. Both of these vectors point to the lower half
plane, which contradicts the fact that {'(sy /) belongs to the upper half plane.
Thus, a configuration like that in Fig. 6a is impossible.
The argument corresponding to the configuration shown in Fig. 7 goes as follows.
The position vectors of the points on 17;7 ; point to the lower half plane after point 5.
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FIGURE 7

However, 7, ; must turn to the origin after the corresponding position 5, which
forces the tangent to it to point towards the upper half plane, contradicting the
equality (4.3).

Thus, a configuration like that shown in Fig. 7a is not possible.

Consequently, all the imaginable positions of two consecutive non trivial zeros
having the same imaginary part'bring us to contradictions.

This completes the proof of the Riemann Hypothesis. 0
Acknowledgments. The author is grateful to Cristina Ballantine and Florin Alan
Muscutar for providing computer generated graphics.
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