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Distortion theorems for certain subclasses
of typically real functions

Pawet Zaprawa

Abstract. In this paper we discuss the class ’T(%) of typically real functions in
the unit disk A = {z € C: |z| < 1} which are given by the formula
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z
= —d
1 V1 =22t + 22 a

Three other classes: Kr, Si(3) and Kr(i), consisting of convex functions, starlike
functions of order 1/2 and convex in the direction of the imaginary axis, all with
real coefficients, are contained in 7(3). The main idea of the paper is to obtain
some distorsion results concerning 7(3) and apply them in solving analogous
problems in Kr, Sk(3), Kr(i).

f(2) (t)-
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1. Preliminaries

Let 7T () denote a subclass of typically real functions 7 consisting of functions
given by the formula

f(z2) = / REu) ze A (1.1)

where A ={z € C: |z| < 1},
z

V1I—2z2t+ 22

u is a probability measure on [—1,1] and the square root is chosen that v/1 = 1. This
class was introduced and discussed by Szynal in [6], [3].
Observe that the kernel functions f; € 7 (%) and analogous functions

]ﬂt (Z)

fi(2) = (1.2)

B z
1 — 2zt + 22



302 Pawel Zaprawa

in the class 7 are connected by a simple relation

(fe(2))? = 2k (2) . (1.3)

All functions of the class 7 (3) have real coefficients given by

= / Po 1 (Ddp(t) | (1.4)

-1
where P, is the n-th Legendre polynomial. From the properties of the Legendre poly-
nomials we know that |P,| < 1 for every n € N. Hence all coefficients of every function
f €T (%) are bounded by 1.

Similar property holds also for the following subclasses of univalent functions:
K - convex functions, 8*(3) - starlike functions of order 1/2, K(i) - functions that
are convex in the direction of the imaginary axis and Kr, Sj(3), Kg(i) consisting of
functions with real coefficients.

For the classes with real coefficients the integral formulae are known. They are
a consequence of known relations between Kg, Kg(i), 8}3(%) and 7, Pr, where Pgr
is the class of functions having real coefficients and a positive real part.

Namely, for functions normalized by the equalities f(0) = f/(0) —1 = 0 and
z € A we have

fekp iff 14258 epp, (1.5)
feKrG) iff z2f'(2)eT, 1.6)
feSp(3) if ReLE 1. (1.7)

The relation (1.7) can be written as follows
fesp3) iff 2208 —1epp. (1.8)
From (1.5), (1.6), (1.8) we obtain

f€Kg, iff f'(z)=exp (— /7T In(1 — 2z cos ¢ + 2%) du(ap)),
0

feKnli) it f(z) = / " ho(2)dule) |

T . for ¢ =0,
where hy(2) = 5 s}nw Loz¢ = for @€ (0,m),

iz for p=m.

g 1

FeSid) it f(z)=zexp

In
0 1—2zcosp+ 22
where p € P[O,w]-
Investigating classes Kr, Kr(i), Si(3) with the use of their integral formulae

is rather difficult. It is easier, in some cases, to obtain results in T(%) and than to
transfer them onto the classes mentioned above.

Remark 1.1. It is easy to check that
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ft(z) = W (%) for all t € [—1 1]
f1(z) = 1= and f,l(z)
9a(2) = as® + (1 —a)7F

91/2(2) = =52 € Sk

1 belong to Kk,
— € Kg(i) for all o € [0,1],

z

In [4] it was proved that
KrcCSip(3)CT(3) (1.9)
and
Kr CKr(i) CT(3) . (1.10)

) C
Moreover, there exist functions in T(%) that are not univalent. For example, for
every fixed t € (0,1) the function

i) =5 o —
2 | V1I=2tz+22 V1+2tz+22

is locally univalent in the disk A,,, where r; € (0,1), and is not univalent in any disk
A, with r > r;. Discussing these functions, one can prove that the radius of univalence
for T( ) is not greater then /7 7/3 = 0.881.... From this reason, we conclude that
Kr, Kr(i) and Sj,(3) are proper subclasses of T( ).

, zZ€A

2. Main results for 7 (%)

At the beginning observe that for any function f with real coefficients, if D is
symmetric with respect to the real axis then f(D) also has the same property. It is
a reason why in problems involving sets f(D) one can discuss only a set f(D7T) and
than apply the reflection of this set with respect to the real axis. Throughout the
paper we write DT = D N{z:Imz > 0}.

Let D.(7(3)) denote the region of values f(z) for a fixed z € A while f varies
the class T(%) The important property of functions of the class 7° (%) is established
in the following lemma.

Lemma 2.1. [4] For a fized x € (—1,1) the set D,(T (3)) coincides with the segment

[TF> 55+ For a fived z € AT the set D.(T(3)) is a conver set whose boundary
consists of a curve { fi(z): t € [-1,1] (l-a)is: €
[0,1]}.
We also need the distortion theorem for 7" obtained by Goluzin.
Theorem 2.2. [1] For f € T and z € A\ {0} we have
a)
| Ret >0
2
f) <} e [RetE[ <2 2.1)

1 2
Re +ZZ < -2,
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b)
g o S f() Sag gy Jor sEAT, (2:2)
wg oy Swef () Sem gy Jor AT (23)

Basing on the above facts we obtain some distortion results for 7° (%)

Theorem 2.3. For f € T (1) and z € A\ {0} we have

E Re 122 > 9
1—=z P =
2
1422
== Re =% =<-2.
The extremal functions in this theorem are: f(z) = %2, f(2) = 7@’
2
where tg = $ Re 2= and f(z) = %

The sets which appear in Theorem 2.2 and in Theorem 2.3 are presented in Fig. 1.
Proof. Assume that f € T (3) and z € AT. The relation (1.3) leads to

max {|f(z)|*: f € T (1/2)} = max {|w|* 1w € D, (T (1/2))} =
max {|fi(2)|” : t € [-1,1]} = max {|zk(2)] : t € [-1,1]} =
|zl max {Jw| : w € D, (T)} = |z|max{|h(2)| : h€e T} . (2.5)
The inequality (2.4) is a simple consequence of (2.5) and Theorem 2.2. O

l

—

e
L@y

)

FIGURE 1. Subsets of A described in Theorems 2.2 and 2.3.
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Theorem 2.4. For f € T (%) and z € A we have

1—7—2 Re% 21
)24 25| [Rel|<1 (2.6)
2| Rei<-1.

z(1+(2a—1)z)

The extremal functions in this theorem are: f(2) = 137, f(z) = T,

where 2a —1 = —Rel, and f(z) = 12

1—z°
It can be easily observed that both sets given by the inequalities: Re% > 1 and
Re% < —1 are disks with the same radius 1 and centered in 1 and -1 respectively.
To prove Theorem 2.4 it is enough to write

min{[f(z)[ : f € T (1/2)} = min{|ga(2)] : @ € [-1,1]} =

2,2

1—22

mnﬂ§+@a_n

ra € [—1, 1]} (2.7)
and observe that for z # 0

1-1] if Re(2-1)>0

1 z
min{‘;—kp‘ pe [—1,1]} =¢|mi| if |Rel|<1
|1 4+1] if Re(:+1)<0.
From Theorem 2.3 and Theorem 2.4 we get

Corollary 2.5. For f € T (3) and |z| = r we have

= <) <

Equalities hold for f(z) = % at points z = +r and for f(z) = % at points
z = Fr.
Proof. We shall prove only the upper estimate. The proof of the lower one is similar
and will be omitted.

Assume that z = re'?, where r is a fixed number from (0,1), and ¢ varies in
[0,7]. According to Theorem 2.3 we shall estimate |f(z)| in three sets separately.

L If Re% > 2 (and |z| = ) then cos¢ > 2% and

—. (2.8)

1472
‘ z r r
= S .
1-2 V1—=2rcosp+r2 ~ 1—r
IL. If | Re %| < 2 (and |z| = r) then ¢ € (o, ™ — o), where ¢ = arccos 1i:2 and

|2 B T <r\/1—|—7"2
(1—|z»)Imz| /A —=r2)sing = 1-712 ~

||
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IIL. If Re 12 < —2 (and |2| = 1) then cosp < —12 and

‘ z | 7 o
L+2[ /14 2rcosp+7r2 ~ 1—1"

Since DY~ (2.8) is com-
plete. O

Similarly as in Theorems 2.3 and 2.4 we can estimate the argument of f(z).
Taking into account Lemma 2.1, the relation (1.3) and Theorem 2.2 we obtain for
z € AT

max {arg f(z): f € T (1/2)} = max {arg fi(z) : t € [-1,1]} =

%max {arg (fe(2))? : t e [-1, l]} = %max{argzkt(z) te[-1,1} =

% (arg z + max {argk(2) : t € [-1,1]}) =

1 1

5 (argz +arghi () = S arg (f1(2))" = arg fu(2) . (2.9)
The above equalities hold if minimum is taken instead of maximum and the

functions k_; and f_; instead of k; and fi. In the same way we can estimate arg f(z)

for z € A~. This argument leads us to the following theorem.

Theorem 2.6. For f € T (%) we have

z z
< < + .
arg1+zfargf(z)7arg1_ for ze€e A (2.10)
argl <argf( )<arg1iz for zeA™ . (2.11)
The extremal functions are: f(z) = 177 and f(z) = 1%, respectively.
In the paper [4] the following theorem was proved.
Theorem 2.7. For every r € (0,1)
U F(A) = fo1(A) U fi(A,)

e (%)

In other words it means that each set f(A,) for f € 7 (3) is included in

f-1(Ar) U f1(Ay). Both sets f_1(A,), fl( )are disks, centered in —
respectively and having the same radius 1= . Therefore

2
r
1—7r2 and 1—7r2

Corollary 2.8. If f € T (3) then for |z| =1
a) [Re f(2)] <
b) [Tm f(2)] <

r
1—7"

1—7r2 "
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Remark 2.9. The result of Corollary 2.5 can be obtained considering the class R
consisting of functions satisfying in A the condition

flz) 1
T2

A function f € R can be associated with a function p € Pg as follows

Re

fe) =5 2((2) 4 1)

From estimates valid for Pr we get for |z| = r that

|f(z)|<%r(1i—:+1)=1ir. (2.12)

Analogously,
F(:) =5 (/) +p(2) )

results in

1 2r 1+7r 1
/ < — —+1) = . 2.1
Oy (Pt T 1) = (2.13)
142 1—2z

Equalities in the above estimates hold if p(2) = =% or p(z) = 3=, and consequently,
zZ

if f(z) = 1% or f(2) = 155

On the other hand, it was proved (see,[5]) that 7 (3) C R. Moreover, the ex-
tremal functions in (2.12) and (2.13) belong to 7 (1). Therefore,

Corollary 2.10. For f € T (1) and |2| = r we have

If'(2)] <

e (2.14)

3. Conclusions for other classes

Taking into account extremal functions in the results stated above we obtain the
conclusions concerning subclasses of 7° (%) mentioned in Section 1.
From Theorems 2.3 and 2.4 we get

Corollary 3.1. For f € Sj, (3) and z € A\ {0} we have

z
11—z

z 22
|f(Z)| S |Z| (17\2\|2| —7 ‘Re —1-2

) Im z|

2
Re 1= > 2

<2 (3.1)

z
142z

2
Rel%g—2.
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Corollary 3.2. For f € Kgr(i) and z € A\ {0} we have

1j—z Re% 2 1
)24 |25 [Rel| <1 (32)
‘1; Rel < -1.

From the results stated above and from Corollaries 2.8 and 2.10 we conclude

Corollary 3.3. If A is one of the following classes Kr, Kr(i), Sj(3), then for |z| =r
and f € A

r
1—r’

D) [ f(2)] < 7= .

r r
< <
o) T <G < T

1
!
< — .
D UG < =7
The estimates in ¢) and d) are well-known. They were obtained by Gronwall and

Loewner (for K) and by Robertson (for K(i), S*(1)), see for example [2]. Of course,
they are true also for functions with real coefficients.

Corollary 3.4. If A is one of the following classes Kr, Kr(i), S}‘{(%) then for f € A

for ze€ AT

a) [Re f(2)] <

1+z§argf(2)§arg1_z

z z
< <
<arg f(z) _arg1+z

arg

arg for ze AT .

—Zz
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