Families of positive operators with reverse order

Şebnem Yildiz Pestil

Abstract. The objective of this paper is to present several invariant subspace results for collections of positive operators on Banach lattices. For any family C of positive operators in L(E), I will reverse order.

Mathematics Subject Classification (2010): Banach lattices, invariant. Keywords: 47B60.

1. Introduction

The objective of this paper is to present several invariant subspace results for collections of positive operators on Banach lattices. For any vector in a Banach lattice define $x^+ = x \vee 0$, $x^- = (-x) \vee 0$, $|x| = x \vee (-x)$. Throughout this paper X will denote a real or a complex Banach space and E will denote a real Banach lattice.

A collection S of bounded operators on a Banach space is said to be a *multiplicative* (additive) semigroup if for each pair $S, T \in S$ the operator ST (resp. S + T) also belongs to S.

We assume that all collections or families of operators under consideration in this section are non-empty. C denotes a non-empty collection of positive operators on a Banach lattice E. For all $x \in X$, we let $Cx = \{Cx : C \in C\}$, and therefore $\|Cx\| = \sup \{\|Cx\| : C \in C\}$.

For a subset D of a Banach space, we let

$$||D|| = \sup_{x \in D} ||x||.$$

Accordingly for a set $\mathcal{C} \subset \mathcal{L}(E)$,

$$||\mathcal{C}|| = \sup_{C \in \mathcal{C}} ||C||.$$

For any $A \in \mathcal{L}(X)$ we define

$$A\mathcal{C} = \{AC : C \in \mathcal{C}\}$$

and

$$\mathcal{C}A = \{CA : C \in \mathcal{C}\}.$$

For each $n \in N$, we shall also use the notation

$$\mathcal{C}^{n} = \{C_{1}C_{2}...C_{n} : C_{1}, ..., C_{n} \in \mathcal{C}\}$$

and hope that whenever this notation is used it will no cause any confusion with the standard Cartesian product notation. The commutant of C is the unital algebra of operators defined by

$$\mathcal{C}' = \{ A \in \mathcal{L}(X) : AC = CA \text{ for all } C \in \mathcal{C} \}.$$

Definition 1.1. A subspace $V \subset X$ is said to be C – invariant if V is C-invariant for each $C \in C$.

A collection C of operators is said to be non – transitive if there exists a nontrivial closed C-invariant subspace. Otherwise, the family C is called transitive.

Definition 1.2. A family C of operators in $\mathcal{L}(X)$ is said to be:

(1) (locally) quasinilpotent at a point $x \in X$ if $\lim_{n \to \infty} \sqrt[n]{\|\mathcal{C}^n x\|} = 0$ and

(2) finitely quasinilpotent at a point $x \in X$ if every finite subcollection of C is (locally) quasinilpotent at x. Finitely quasinilpotent algebras of operators were considered by V.S. Shulman.

If $T: X \to X$ is a bounded operator on a Banach space, then Q_T denotes the subset of X consisting of all vectors at which T is locally quasinilpotent,

$$\mathcal{Q}_T = \left\{ x \in X : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0 \right\}.$$

Definition 1.3. Let $T : X \to X$ is a bounded operator on a Banach space and V is a subspace of X. Then V is non-trivial if $V \neq \{0\}$ $V \neq X$. We say that V is invariant under T if $T(V) \subseteq V$. Also, V is said to be hyperinvariant for T or T-hyperinvariant whenever V is invariant under every bounded operator on X that commutes with T, i.e., if $S \in \mathcal{L}(X)$ and ST = TS imply that $S(V) \subseteq V$.

Definition 1.4. Let $T: X \to X$ be a bounded operator on a Banach space and denoted by Q_T , the set of all points where T is locally quantilipotent, i.e.

$$\mathcal{Q}_T = \left\{ x \in X : \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0 \right\}.$$

 Q_T is a T-hyperinvariant vector subspace.

Let $x, y \in \mathcal{Q}_T$ and fix $\epsilon > 0$. Pick some n_0 such that $||T^n x|| < \epsilon^n$ and $||T^n y|| < \epsilon^n$ hold for all $n \ge n_0$. It follows that $||T^n(x+y)||^{\frac{1}{n}} \le (||T^n x|| + ||T^n y||)^{\frac{1}{n}} < (2\epsilon^n)^{\frac{1}{n}} < 2\epsilon$ for all $n \ge n_0$.

Therefore, $\lim_{n \to \infty} ||T^n(x+y)||^{\frac{1}{n}} = 0$, and so $x + y \in \mathcal{Q}_T$. Also note that if λ is scalar, then

$$\lim_{n \to \infty} \|T^n(\lambda x)\|^{\frac{1}{n}} = \lim_{n \to \infty} \|\lambda T^n(x)\|^{\frac{1}{n}} = \lim_{n \to \infty} |\lambda|^{\frac{1}{n}} \lim_{n \to \infty} \|T^n x\|^{\frac{1}{n}} = 0$$

and so $\lambda x \in \mathcal{Q}_T$. Consequently \mathcal{Q}_T is a vector subspace of X.

Finally, let us show that Q_T is a *T*-hyperinvariant subspace. To see this assume that an operator $S \in \mathcal{L}(X)$ satisfies TS = ST and let $x_0 \in Q_T$. Then we have,

$$||T^{n}(Sx_{0})||^{\frac{1}{n}} = ||S(T^{n}x_{0})||^{\frac{1}{n}} \le ||S||^{\frac{1}{n}} ||T^{n}x_{0}||^{\frac{1}{n}} \to 0.$$

296

This implies $Sx_0 \in Q_T$, and so Q_T is a *T*-hyperinvariant subspace. To generalize this to a collection of operators C, we let

 $\mathcal{Q}_{\mathcal{C}}^f = \{ x \in X : \mathcal{C} \text{ is finitely quasinilpotent at } x \}.$

 \mathcal{C} denotes a non empty collection of positive operators on a Banach lattice E.

The presence of the order structure on E leads naturally to a modification of the set \mathcal{Q}_c^f .

$$\mathcal{Q}_{\mathcal{C}}^f = \left\{ x \in E : |x| \in \mathcal{Q}_c^f \right\}.$$

For a positive operator $C: E \to E$ on a Banach lattice, we denote by $[C\rangle$ the collection of all positive operators $A: E \to E$ such that $[A, C] \ge 0$

$$[C\rangle = \{A \in \mathcal{L}(E)_+ : AC - CA \ge 0\}.$$

In accordance with this notation we also let

$$[\mathcal{C}\rangle = \{A \in \mathcal{L}(E)_+ : C \in \mathcal{C}, AC - CA \ge 0\}.$$

Similarly,

$$\langle \mathcal{C}] = \{ A \in \mathcal{L}(E)_+ : C \in \mathcal{C}, AC - CA \le 0 \}$$

We need to introduce two additional collections associated with an arbitrary collection C of positive operators on E.

The first of these collections is multiplicative semigroup generated by C in $\mathcal{L}(E)$. It is the smallest semigroup of operators that contains C and it will be denoted by $S_{\mathcal{C}}$. $S_{\mathcal{C}}$ consists of all finite products of operators in C.

$$S_{\mathcal{C}} = \bigcup_{n=1}^{\infty} \mathcal{C}^n.$$

The second collection denoted by $\mathcal{D}_{\mathcal{C}}$, is also a large collection of positive operators that is defined,

$$\mathcal{D}_{\mathcal{C}} = \left\{ D \in \mathcal{L}(E)_{+} : \exists \{T_1, ..., T_k\} \subseteq \langle \mathcal{C} \} \text{ and } \{S_1, ..., S_k\} \subseteq S_{\mathcal{C}} \text{ such that } D \leq \sum_{i=1}^k S_i T_i \right\}.$$

Proposition 1.5. For any family C of positive operators in L(E) the set < C] is a norm closed additive and multiplicative semigroup in L(E) and contains the zero and the identity operators.

Proof. C is norm closed and the operators 0 and I belong to $\langle C \rangle$. Now take two arbitrary operators S, T in $\langle C \rangle$. Then for each operator $C \in C$ we have $SC \leq CS$ and $TC \leq CT$. Adding up the two inequalities, we get $(S+T)C \leq C(S+T)$ then $S+T \in \langle C \rangle$. Consequently,

$$STC = S(TC) \le SCT = (SC)T \le CST.$$

Therefore, $ST \in \mathcal{C}$].

Proposition 1.6. If C is a family of positive operators, then the collection \mathcal{D}_{C} is an additive and multiplicative semigroup in $\mathcal{L}(E)$.

Şebnem Yildiz Pestil

Proof. Pick any two operators D_1 and D_2 in $D_{\mathcal{C}}$. Hence

$$D_j \le \sum_{i=1}^{n_j} S_{j,i} T_{j,i}$$

for some $T_{j,i} \in \langle \mathcal{C}]$, where j = 1, 2. $D_1 + D_2$ belongs to $\mathcal{D}_{\mathcal{C}}$. Let us verify that $D_1 D_2 \in \mathcal{D}_{\mathcal{C}}$. Indeed,

$$D_1 D_2 \le \left[\sum_{k=1}^{n_1} S_{1,k} T_{1,k}\right] \left[\sum_{i=1}^{n_2} S_{2,i} T_{2,i}\right] = \sum_{k=1}^{n_1} \sum_{i=1}^{n_2} S_{1,k} T_{1,k} S_{2,i} T_{2,i}.$$

Since $T_{j,i} \in \langle \mathcal{C}]$, it follows that $T_{j,i} \in \langle S_{\mathcal{C}}]$ and hence $T_{1,k}S_{2,i} \leq S_{2,i}T_{1,k}$. Therefore,

$$D_1 D_2 \le \sum_{i=1}^{n_1} \sum_{k=1}^{n_2} S_{2,k} S_{2,i} T_{1,k} T_{2,i}.$$

Since $\langle \mathcal{C} \rangle$ and $S_{\mathcal{C}}$ are semigroups, we have that $T_{1,k}T_{2,i} \in \langle \mathcal{C} \rangle$, $S_{1,k}S_{2,i} \in S_{\mathcal{C}}$. \Box

Proposition 1.7. Each ideal $[D_c x]$ is both C - invariant and $\langle C]$ -invariant.

Proof. Take any $y \in [D_c x]$. Since D_c is an additive semigroup, it follows that $|y| \leq \lambda Dx$ for some scalar λ and $D \in D_c$. By the definition of D_c there exist operators $T \in \langle \mathcal{C} \rangle$ and $S_i \in S_c$ (i = 1, 2, 3, ..., n) such that $D \leq \sum_{i=1}^n S_i T_i$, and so

$$|y| \le \lambda \sum_{i=1}^n S_i T_i x.$$

Fix $C \in \mathcal{C}$ and consider the vector Cy. From $CT_i \geq T_i C$ for each *i*, we see that

$$|Cy| \le C |y| \le \lambda \sum_{i=1}^n CS_i T_i x.$$

Since $CS_i \in S_{\mathcal{C}}$ for each *i* we see that

$$K = \sum_{i=1}^{n} (CS_i) T_i \in \mathcal{D}_{\mathcal{C}}.$$

Therefore,

$$|Cy| \le \lambda \sum_{i=1}^{n} (CS_i) T_i x = \lambda K x$$

and $Cy \in [D_c x]$. $[D_c x]$ is \mathcal{C}]-invariant.

Let $T \in \langle \mathcal{C} \rangle$. Since $\langle \mathcal{C} \rangle$ is a multiplicative semigroup, $TT_i \in \langle \mathcal{C} \rangle$ for each *i*, and hence the operator $L = \sum_{i=1}^n S_i(TT_i)$ belongs to $\mathcal{D}_{\mathcal{C}}$.

$$|Ty| \le T |y| \le \lambda \sum_{i=1}^{n} S_i TT_i x = \lambda L x.$$

Consequently, $Ty \in [\mathcal{D}_{\mathcal{C}}x]$.

Proposition 1.8. The ideal \hat{Q}_c^f is $\langle C]$ -invariant.

298

Proof. Fix $x \in \hat{\mathcal{Q}}_c^f$ that is $\|\mathcal{G}^n |x|\|^{\frac{1}{n}} \to 0$ for each finite subset \mathcal{G} of \mathcal{C} . We must prove that Tx belong to $\hat{\mathcal{Q}}_c^f$ for each $C \in \mathcal{C}$ and each $T \in \langle \mathcal{C} \rangle$. Fix $C \in \mathcal{C}, T \in \langle \mathcal{C} \rangle$ and let $\mathcal{F} = \{C_1, ..., C_k\}$ be a finite subset of \mathcal{C} .

 $C_iT \ge TC_i$ for each $1 \le i \le k$. For each operator $F \in \mathcal{F}^n$ we have $FT \ge TF$, and therefore,

$$||T\mathcal{F}^{n}|x|||^{\frac{1}{n}} \le ||\mathcal{F}^{n}T|x|||^{\frac{1}{n}} \le ||T||^{\frac{1}{n}} ||\mathcal{F}^{n}|x|||^{\frac{1}{n}} \to 0$$

Consequently, $\|\mathcal{F}^n | Tx \| \|^{\frac{1}{n}} \to 0$, and so $Tx \in \hat{\mathcal{Q}}_c^f$. The ideal $\hat{\mathcal{Q}}_c^f$ is also $\langle \mathcal{C}]$ -invariant. \Box

References

- Abramovich, Y.A., Aliprantis, C.D., An invitation to operator theory, Volume 50, American Math. Society.
- [2] Abramovich, Y.A., Aliprantis, C.D., Problems in Operator Theory, Volume 51, American Math. Society.

Şebnem Yildiz Pestil Yildiz Technical University Istanbul, Turkey e-mail: spestil@yildiz.edu.tr