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Families of positive operators with reverse order
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Abstract. The objective of this paper is to present several invariant subspace
results for collections of positive operators on Banach lattices.For any family C
of positive operators in L(E) ,I will reverse order.
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1. Introduction

The objective of this paper is to present several invariant subspace results for
collections of positive operators on Banach lattices. For any vector in a Banach lattice
define x+ = x ∨ 0, x− = (−x) ∨ 0, |x| = x ∨ (−x). Throughout this paper X will
denote a real or a complex Banach space and E will denote a real Banach lattice.

A collection S of bounded operators on a Banach space is said to be a multi-
plicative (additive) semigroup if for each pair S, T ∈ S the operator ST (resp. S +T )
also belongs to S.

We assume that all collections or families of operators under consideration in
this section are non-empty. C denotes a non-empty collection of positive operators
on a Banach lattice E. For all x ∈ X, we let Cx = {Cx : C ∈ C}, and therefore
‖Cx‖ = sup {‖Cx‖ : C ∈ C}.

For a subset D of a Banach space, we let

||D|| = sup
x∈D

||x|| .

Accordingly for a set C ⊂ L(E),

||C|| = sup
C∈C

||C|| .

For any A ∈ L(X) we define

AC = {AC : C ∈ C}
and

CA = {CA : C ∈ C} .
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For each n ∈ N , we shall also use the notation

Cn = {C1C2...Cn : C1, ..., Cn ∈ C}
and hope that whenever this notation is used it will no cause any confusion with the
standard Cartesian product notation. The commutant of C is the unital algebra of
operators defined by

C
′
= {A ∈ L(X) : AC = CA for all C ∈ C} .

Definition 1.1. A subspace V ⊂ X is said to be C − invariant if V is C-invariant for
each C ∈ C.

A collection C of operators is said to be non − transitive if there exists a non-
trivial closed C-invariant subspace. Otherwise, the family C is called transitive.

Definition 1.2. A family C of operators in L(X) is said to be:
(1) (locally) quasinilpotent at a point x ∈ X if lim

n→∞
n
√
‖Cnx‖ = 0 and

(2) finitely quasinilpotent at a point x ∈ X if every finite subcollection of C is (locally)
quasinilpotent at x. Finitely quasinilpotent algebras of operators were considered by
V.S. Shulman.

If T : X → X is a bounded operator on a Banach space, then QT denotes the
subset of X consisting of all vectors at which T is locally quasinilpotent,

QT =
{

x ∈ X : lim
n→∞

‖Tnx‖
1
n = 0

}
.

Definition 1.3. Let T : X → X is a bounded operator on a Banach space and V
is a subspace of X. Then V is non-trivial if V 6= {0} V 6= X. We say that V is
invariant under T if T (V ) ⊆ V . Also, V is said to be hyperinvariant for T or
T −hyperinvariant whenever V is invariant under every bounded operator on X that
commutes with T , i.e., if S ∈ L(X) and ST = TS imply that S (V ) ⊆ V .

Definition 1.4. Let T : X → X be a bounded operator on a Banach space and denoted
by QT , the set of all points where T is locally qusinilpotent, i.e.

QT =
{

x ∈ X : lim
n→∞

‖Tnx‖
1
n = 0

}
.

QT is a T -hyperinvariant vector subspace.

Let x, y ∈ QT and fix ε > 0. Pick some n0 such that ‖Tnx‖ < εn and ‖Tny‖ < εn

hold for all n ≥ n0. It follows that ‖Tn(x + y)‖
1
n ≤ (‖Tnx‖+‖Tny‖) 1

n < (2εn)
1
n < 2ε

for all n ≥ n0.
Therefore, lim

n→∞
‖Tn(x + y)‖

1
n = 0, and so x + y ∈ QT . Also note that if λ is

scalar, then

lim
n→∞

‖Tn(λx)‖
1
n = lim

n→∞
‖λTn (x)‖

1
n = lim

n→∞
|λ|

1
n lim

n→∞
‖Tnx‖

1
n = 0

and so λx ∈ QT . Consequently QT is a vector subspace of X.
Finally, let us show that QT is a T -hyperinvariant subspace. To see this assume

that an operator S ∈ L(X) satisfies TS = ST and let x0 ∈ QT . Then we have,

‖Tn(Sx0)‖
1
n = ‖S(Tnx0)‖

1
n ≤ ‖S‖

1
n ‖Tnx0‖

1
n → 0.
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This implies Sx0 ∈ QT , and so QT is a T -hyperinvariant subspace.
To generalize this to a collection of operators C, we let

Qf
C = {x ∈ X : C is finitely quasinilpotent at x} .

C denotes a non empty collection of positive operators on a Banach lattice E.
The presence of the order structure on E leads naturally to a modification of

the set Qf
c .

Qf
C =

{
x ∈ E : |x| ∈ Qf

c

}
.

For a positive operator C : E → E on a Banach lattice, we denote by [C〉 the
collection of all positive operators A : E → E such that [A,C] ≥ 0

[C〉 = {A ∈ L(E)+ : AC − CA ≥ 0} .

In accordance with this notation we also let

[C〉 = {A ∈ L(E)+ : C ∈ C, AC − CA ≥ 0} .

Similarly,
〈C] = {A ∈ L(E)+ : C ∈ C, AC − CA ≤ 0} .

We need to introduce two additional collections associated with an arbitrary
collection C of positive operators on E.

The first of these collections is multiplicative semigroup generated by C in L(E).
It is the smallest semigroup of operators that contains C and it will be denoted by
SC . SC consists of all finite products of operators in C.

SC =
∞⋃

n=1

Cn.

The second collection denoted by DC , is also a large collection of positive oper-
ators that is defined,

DC=

{
D∈L(E)+ : ∃{T1, ..., Tk} ⊆ 〈C] and {S1, ..., Sk}⊆SC such that D≤

k∑
i=1

SiTi

}
.

Proposition 1.5. For any family C of positive operators in L(E) the set < C] is a norm
closed additive and multiplicative semigroup in L(E) and contains the zero and the
identity operators.

Proof. C is norm closed and the operators 0 and I belong to < C]. Now take two
arbitrary operators S, T in < C]. Then for each operator C ∈ C we have SC ≤ CS
and TC ≤ CT . Adding up the two inequalities, we get (S + T ) C ≤ C (S + T ) then
S + T ∈< C]. Consequently,

STC = S (TC) ≤ SCT = (SC) T ≤ CST.

Therefore, ST ∈< C]. �

Proposition 1.6. If C is a family of positive operators, then the collection DC is an
additive and multiplicative semigroup in L(E).
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Proof. Pick any two operators D1 and D2 in DC . Hence

Dj ≤
nj∑
i=1

Sj,iTj,i

for some Tj,i ∈ 〈C], where j = 1, 2. D1 + D2 belongs to DC . Let us verify that
D1D2 ∈ DC . Indeed,

D1D2 ≤

[
n1∑

k=1

S1,kT1,k

] [
n2∑
i=1

S2,iT2,i

]
=

n1∑
k=1

n2∑
i=1

S1,kT1,kS2,iT2,i.

Since Tj,i ∈ 〈C], it follows that Tj,i ∈ 〈SC ] and hence T1,kS2,i ≤ S2,iT1,k. Therefore,

D1D2 ≤
n1∑
i=1

n2∑
k=1

S2,kS2,iT1,kT2,i.

Since 〈C] and SC are semigroups, we have that T1,kT2,i ∈ 〈C], S1,kS2,i ∈ SC . �

Proposition 1.7. Each ideal [Dcx] is both C − invariant and 〈C]-invariant.

Proof. Take any y ∈ [Dcx]. Since Dc is an additive semigroup, it follows that |y| ≤ λDx
for some scalar λ and D ∈ Dc. By the definition of Dc there exist operators T ∈ 〈C]
and Si ∈ Sc (i = 1, 2, 3, .., n) such that D ≤

∑n
i=1 SiTi, and so

|y| ≤ λ

n∑
i=1

SiTix.

Fix C ∈ C and consider the vector Cy. From CTi ≥ TiC for each i, we see that

|Cy| ≤ C |y| ≤ λ
n∑

i=1

CSiTix.

Since CSi ∈ SC for each i we see that

K =
n∑

i=1

(CSi)Ti ∈ DC .

Therefore,

|Cy| ≤ λ
n∑

i=1

(CSi)Tix = λKx

and Cy ∈ [Dcx]. [Dcx] is C]-invariant.
Let T ∈ 〈C]. Since 〈C] is a multiplicative semigroup, TTi ∈ 〈C] for each i, and

hence the operator L =
∑n

i=1 Si(TTi) belongs to DC .

|Ty| ≤ T |y| ≤ λ
n∑

i=1

SiTTix = λLx.

Consequently, Ty ∈ [DCx]. �

Proposition 1.8. The ideal Q̂f
c is 〈C]-invariant.
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Proof. Fix x ∈ Q̂f
c that is ‖Gn |x|‖

1
n → 0 for each finite subset G of C. We must prove

that Tx belong to Q̂f
c for each C ∈ C and each T ∈ 〈C]. Fix C ∈ C, T ∈ 〈C] and let

F = {C1, ..., Ck} be a finite subset of C.
CiT ≥ TCi for each 1 ≤ i ≤ k. For each operator F ∈ Fn we have FT ≥ TF ,

and therefore,

‖TFn |x|‖
1
n ≤ ‖FnT |x|‖

1
n ≤ ‖T‖

1
n ‖Fn |x|‖

1
n → 0

Consequently, ‖Fn |Tx|‖
1
n → 0, and so Tx ∈ Q̂f

c . The ideal Q̂f
c is also 〈C]-invariant. �
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