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Relations between two kinds of derivatives
on analytic functions II

Grigore Ştefan Sălăgean and Teruo Yguchi

Abstract. We consider Ruscheweyh derivative Dnf(z) and Sălăgean derivative
dnf(z), for n ∈ {0, 1, 2, . . .}, on a class

T = {f : f(z) = z −
∞∑

n=2

anzn (an = 0, n = 2, 3, . . .) is analytic in |z| < 1}.

On this paper we study relations between two subclasses T R(n, m; α) and

T S(n, m; β) of T , where T R(n, m; α) =

{
f ∈ T : Re

Dn+mf(z)

Dnf(z)
> α, |z| < 1

}
and T S(n, m; β) =

{
f ∈ T : Re

dn+mf(z)

dnf(z)
> β, |z| < 1

}
for α ∈ [0, 1), β ∈ [0, 1),

n = 0, 1, 2, . . . and m = 1, 2, . . . .
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1. Introduction

We consider a class of functions f(z) defined by

f(z) = z +
∞∑

n=2

anzn (1.1)

analytic in the unit open disk |z| < 1, and we denote by A the class of such functions.
We also denote by T a subclass of the class A satisfying

f(z) = z −
∞∑

n=2

anzn (an = 0, n ∈ N2 = N − {1}), (1.2)

where N is the set of positive integers. For any β ∈ [0, 1) = {x : 0 5 x < 1} a function

f(z), which is in the class A and satisfies Re
{

zf ′(z)
f(z)

}
> β in |z| < 1, is called starlike
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of order β and we denote by S∗(β) the class of such functions. We denote by S∗ the
class S∗(0).

We also consider two kinds of derivatives, namely Ruscheweyh derivative ([1])
Dn and Sălăgean derivative ([2]) dn for n ∈ N0 = N ∪ {0} by

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z), Dnf(z) =
z(zn−1f(z))(n)

n!
(n ∈ N2)

and

d 0f(z) = f(z), d1f(z) = df(z) = zf ′(z), dnf(z) = d(dn−1f(z)) (n ∈ N2),

respectively.
For n ∈ N0,m ∈ N and β ∈ [0, 1), Sekine([4]) introduced the following class

S(n, m;β) =
{

f ∈ A : Re
dn+mf(z)
dnf(z)

> β, |z| < 1
}

(1.3)

as a subclass of the class A. For n ∈ N0, m ∈ N and α ∈ [0, 1), we([3]) introduced
the following class

R(n, m;α) =
{

f ∈ A : Re
Dn+mf(z)
Dnf(z)

= Re
n!(zn+m−1f(z))(n+m)

(n + m)!(zn−1f(z))(n)
> α, |z| < 1

}
(1.4)

as another subclass of the class A. We express R(n, 1; 1
2 ), S(n, 1; 0) and S(n, m; 0) as

R(n) ([1]), S(n) ([2]) and S(n, m), respectively. Next let T R(n, m;α), T S(n, m;β),
T R(n, m) and T S(n, m) denote the classes T ∩R(n, m;α), T ∩S(n, m;β), T ∩R(n, m)
and T ∩ S(n, m), respectively.

In the papers ([6], [5]), we researched a relation among subclasses T R(n, m;α)
and T S(n, m;β), respectively. In this paper, we will discuss a relation among sub-
classes mixed with T R(n, m;α) and T S(n, m;β).

2. Preliminaries

2.1. Fundamental results

In this subsection, we show some useful fundamental results to prove our main
theorem.

Theorem 2.1. ([1]) The relation R(n + 1) ⊂ R(n) ⊂ S∗ holds for all n ∈ N0.

Theorem 2.2. ([2]) The relation S(n + 1) ⊂ S(n) ⊂ S∗ holds for all n ∈ N0.

Theorem 2.3. ([4]) If
∞∑

k=2

kn(km − β)
1− β

|ak| 5 1 for n ∈ N0,m ∈ N , β ∈ [0, 1) and

f ∈ A, then f ∈ S(n, m;β).

Theorem 2.4. ([4]) For n ∈ N0,m ∈ N , β ∈ [0, 1) and f ∈ T , we have that

f ∈ T S(n, m;β) ⇐⇒
∞∑

k=2

kn(km − β)
1− β

ak 5 1. (2.1)

The following theorem is a result to indicate a sufficient condition for f ∈ R(n, m;α).
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Theorem 2.5. ([5]) If for n ∈ N0, m ∈ N , α ∈ [0, 1) and f ∈ A,

∞∑
k=2

(
n + m + k − 1

k − 1

)
− α

(
n + k − 1

k − 1

)
1− α

|ak| 5 1,

where
(

a
0

)
= 1 for a ∈ N and

(
a
b

)
=

a(a− 1)× . . .× (a− b + 1)
b!

for a, b ∈ N

and a = b, then f ∈ R(n, m;α).

The following theorem is a useful result to indicate a necessary and sufficient
condition for f ∈ T R(n, m;α).

Theorem 2.6. ([5]) For n ∈ N0, m ∈ N , α ∈ [0, 1) and f ∈ T , we have that

f ∈ T R(n, m;α) ⇐⇒
∞∑

k=2

(
n + m + k − 1

k − 1

)
− α

(
n + k − 1

k − 1

)
1− α

ak 5 1. (2.2)

We obtain the following corollary of Theorem (2.5) replacing m by 1.

Corollary 2.7. ([5]) If
∞∑

k=2

(
n + k
k − 1

)
− α

(
n + k − 1

k − 1

)
1− α

|ak| 5 1 for n ∈ N0 and

f ∈ A, then f ∈ R(n, 1;α).

We obtain the following corollary of Theorem (2.6) replacing m by 1.

Corollary 2.8. ([5]) For n ∈ N0 and f ∈ T , we have that

f ∈ T R(n, 1;α) ⇐⇒
∞∑

k=2

(
n + k
k − 1

)
− α

(
n + k − 1

k − 1

)
1− α

ak 5 1.

2.2. Examples

Before proving our theorem, we present two examples. Their proof can be found
in [3].

Example 2.9. The following relations hold true for m ∈ N2 and 0 5 β < 1:
(a) T R(0,m;α) $ T S(0,m;β) for 1− 1−β

m! 5 α < 1,
(b) T S(0,m;β) $ T R(0,m;α) for 0 5 α < 1− m

2m−1 (1− β),
(c) T R(0,m;α) 6⊂ T S(0,m;β) for 1− m

2m−1 (1− β) < α < 1− 1−β
m!

and
(d) T S(0,m;β) 6⊂ T R(0,m;α) for 1− m

2m−1 (1− β) < α < 1− 1−β
m! .

Example 2.10. The following relations hold true for m ∈ N2 and 0 5 β < 1:
(a) T R(1,m;α) $ T S(1,m;β) for 1− 1−β

(m+1)! 5 α < 1,

(b) T S(1,m;β) 6⊂ T R(1,m;α) and T R(1,m;α) 6⊂ T S(1,m;β)
for 1− m

2(2m−1) (1− β) < α < 1− (1−β)
(m+1)!
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and
(c) T S(1,m;β) $ T R(1,m;α) for 0 5 α 5 1− m

2(2m−1) (1− β).

3. Main result

Theorem 3.1. The following relation holds true for n ∈ N0, m ∈ N2 and 0 5 β < 1 :

T R(n, m;α) $ T S(n, m;β) for 1− 1− β

(m + n)!
5 α < 1.

Proof. In order to prove that T R(n, m;α) $ T S(n, m;β) for 1 − 1−β
(m+n)! 5 α < 1,

n ∈ N0, m ∈ N2, β ∈ [0, 1), we have to prove that G(α, β; k, n,m) ≤ 0, where

G(α, β; k, n,m) =

(1− α)kn+m − 1− β

(n + m)!

n+m−1∏
l=0

(k + l)− β(1− α)kn +
α(1− β)

n!

n−1∏
l=0

(k + l),

for k, m ∈ N2, n ∈ N0, 1− 1−β
(m+n)! 5 α < 1 β ∈ [0, 1). We show that G(α, β; k, n,m)

is a decreasing function of α for all β, k, n,m (with the conditions in the Theorem)
and that

G(1− 1− β

(n + m)!
, β; k, n,m) ≤ 0. (3.1)

We have

∂

∂α
G(α, β; k, n,m) = −kn+m + βkn +

1− β

n!

n−1∏
l=0

(k + l) = H(n, m;β);

and we will prove that

∂

∂β
H(n, m;β) = kn − 1

n!

n−1∏
l=0

(k + l) ≥ 0, n ∈ N ,

or equivalently, that

n!kn −
n−1∏
l=0

(k + l) ≥ 0, (3.2)

by the mathematical induction.

Case n = 1.
∂

∂β
H(1,m;β) = k − k = 0;

Suppose that (3.2)holds true.
Case (n + 1). We have

(n + 1)!kn+1 = (n + 1)k{n!kn} > (n + 1)k
n−1∏
l=0

(k + l) >
n∏

l=0

(k + l)

because (n + 1)k > k + n.
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From
∂

∂β
H(n, m;β) ≥ 0 we have that

H(n, m;β) ≤ H(n, m; 1) = −kn+m + kn < 0

for all n ∈ N0, β ∈ [0, 1). From
∂

∂α
G(α, β; k, n,m) = H(n, m;β) < 0 we deduce that

G(α, β; k, n,m) is a decreasing function of α; then

G(α, β; k, n,m) ≤ G

(
1− 1− β

(n + m)!
, β; k, n,m

)
(3.3)

Now we have to show that (3.1) holds. We can write

G

(
1− 1− β

(n + m)!
, β; k, n,m

)
=

1− β

(n + m)!
L(β; k;n, m), (3.4)

where

L(β; k;n, m) = kn+m −
n+m−1∏

l=0

(k + l) + βkn +
(n + m)!

n!

n−1∏
l=0

(k + l)− 1− β

n!

n−1∏
l=0

(k + l).

But
∂

∂β
L(β; k;n, m) = kn +

1
n!

n−1∏
l=0

(k + l) > 0,

hence
L(β; k;n, m) ≤ L(1; k;n, m). (3.5)

Now we prove that L(1; k;n, m) ≤ 0 by mathematical induction with respect to n.
We have

L(1; k; 1,m) = k1+m − k(k + 1)× . . .× (k + m) + k + (1 + m)!k = kφ(k),

where the function

φ(x) = xm − (x + 1)× . . .× (x + m) + 1 + (1 + m)! for x ≥ 2

is increasing, because

φ′(x) = mxm−1 − (x + 1)× . . .× (x + m)
m∑

s=1

1
x + s

< 0.

Since

φ(x) ≤ φ(2) = 2m − 3× . . .× (m + 2) + (m + 1)! + 1 = 2m − (m + 1)!m
2

+ 1 < 0,

for m ≥ 2, we obtain that L(1; k; 1,m) < 0 for m, k ≥ 2.
Now we suppose that L(1; k;n, m) < 0, that is

kn+m + kn <
n+m−1∏

l=0

(k + l)− (n + m)!
n!

n−1∏
l=0

(k + l) (3.6)

We have (the case (n + 1))

kn+1+m + kn+1 = k(kn+m + kn) < k

[
n+m−1∏

l=0

(k + l)− (n + m)!
n!

n−1∏
l=0

(k + l)

]
, (3.7)
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where we used (3.6). The following inequalities

k

[
n+m−1∏

l=0

(k + l)− (n + m)!
n!

n−1∏
l=0

(k + l)

]
<

n+m∏
l=0

(k + l)− (n + m + 1)!
(n + 1)!

n∏
l=0

(k + l),

k
n−1∏
l=0

(k + l)

[
n+m−1∏

l=n

(k + l)− (n + m)!
n!

]
<

(k + n)
n−1∏
l=0

(k + l)

[
n+m∏
l=n

(k + l)− (n + m + 1)!
n!

]
,

k

[
n+m−1∏

l=n

(k + l)− (n + m)!
n!

]
<(k + n)

[
n+m∏
l=n

(k + l)− (n + m + 1)!
n!

]
,

k(k + n)× . . .× (k + n + m− 1)− k(n + 1)× . . .× (n + m) <

(k + n)(k + n + 1)× . . .× (k + n + m)− (k + n)(n + 2)× . . .× (n + m + 1)
and

(k + n)× . . .× (k + n + m− 1)[k − (k + n + m)]−
(n + 2)× . . .× (n + m)[k(n + 1)− (k + n)(n + m + 1)] < 0

(3.8)

are equivalent to (3.7). We denote

M(k,m, n) =− (k + n)× . . .× (k + n + m− 1)(n + m)−
(n + 2)× . . .× (n + m)[k(n + 1)− (k + n)(n + m + 1)].

(3.9)

Since k ≥ 2 we deduce
M(k,m, n) ≤ −(2 + n) × . . . × (2 + n + m − 2)(k + n + m − 1)(n + m) + (n + 2) ×
. . .× (n + m)[n2 + n + nm + km]
= (n + 2)× . . .× (n + m)[−(k + n + m− 1)(n + m) + (n2 + n + nm + km)]
= (n + 2)× . . .× (n + m)[(2− k)n + m(1− n)−m2] < 0.

From M(k, m, n) < 0, notation (3.9) and the equivalence of the inequalities
between (3.7) and (3.8), we obtain that (3.6) holds and this means that

L(1; k;n, m) ≤ 0. (3.10)

Combining (3.10), (3.5), (3.4) and (3.3) we complete the proof. �
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