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An application of generalized integral operator
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Abstract. In this paper the authors introduced a new certain integral operator
for analytic univalent functions defined in the open unit disc U. The object of
this paper is to give an application of this operator to the differential inequalities.
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1. Introduction

Let A denote the class of functions of the form:
f(2) :Z+Zanz", (1.1)
n=2

which are analytic in the open unit disc U= {z € C: |z] < 1}.
In [3], Catag extended the multiplier transformations and defined the operator
I'"™(\, 1) on A by the following series

mADf(z) =2+ {W

n=2
where A > 0, 1 > 0, and m € Ny = NU {0}. We note that 1°(1,0)f(z) = f(z) and
I'(1,0)f(2) = 2f'(2).
Now, we define the integral operator J™(\,1) : A — A, with A > 0,1 > 0, and
m € Ny as follows:

PODIE) = ),
FODfE) = SR e

m
} anz", z €U,

2O = 1L —T'/Zt¥—2jl(x,1)f(t)dt,
0
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and, in general,

FADSG) = e /0 R I ORY

= J'\ 1) <1fz) « TV D) (1fz> ok JYO D) <1 z z) «f(z). (12

m times
We note that if f € A, then from (1.1) and (1.2), we have

1+1 "o
J ( Z+Z [1—|—l—|—)\n—l)] anz ZGU, (13)

for A > 0,1 >0, and m € Ny. From (1.3), it is easy to verify that
A(JE D () = L+ DI ADf(2) = (L+T=NT" TN D f(2),  (14)

whenever A > 0.
We note that:
(i) J™(1,1)f(2) = I"™ f(2) (see Flett [4], and Uralegaddi and Somanatha [9]);
(ii) J™(1,0)f(z) = I"™f(2), m € Ny (see Silagean [8]);
(iii) J(1,1)f(z) = I*f(2), a > 0 (see Jung et al. [5]);
(iv) J™(X,0)f(2) = J, ™ f(2), m € Ny (see Patel [7]).
For our purpose, we introduce the next definition:

Definition 1.1. Let H be the set of complex-valued function h(r,s,t) : C* — C such
that:

(i) h(r,s,t) is continuous in a domain D C C3;
(id) (1,1,1) € D and |h(1,1,1)| < 1;

) ’h ( if (1 _ m) ¢ + 2Arce?,

A\ A AN\ L AN\,
o (3 _ _ (3 _ (3 >
(1 z+1) ¢ +<2z+1 <z+1> )Ce +<z+1) Le?)| 21

whenever

A 21'0 A A ? 6 A ? 0
<1l+1) ¢ +(2l+1<z+1> )C +<l+1> Le >€D’

with Re (e7"L) > ((¢ — 1) for all real 0, and for { > 1.
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2. Main result

To prove our main result we shall need the following lemma due to Miller and
Mocanu:

Lemma 2.1. [6] Let w(z) = a+w,z"+... be analytic in U, with w(z) # a. If zg = roe®
(0 <rg < 1), and |w(zo)| = ‘n‘lgx |w(z)|. Then,
Z|STo
zow'(20) = Cw(z0),
and

Re

1+23§,)(Z(j)0)] >, (2.1)

where ¢ is a real number, and ¢ > 1.
Theorem 2.2. Let h(r,s,t) € H, and let f € A satisfying
(T ADF ), TN f(2), T2 (A D f(2) € D C CP (2.2)
and
| (TN D f(2), J™THAN D F(2), TP 2N D f(2)] < 1 (2.3)
for all z € U, and for some A > 0,1 >0, and m > 2. Then, we have
TN D f(2)] <1, z€ U.
Proof. If we define the function w by
J" (A D f(2) = w(z), m € No,

with f € A, then we have w € A, and w(z) # 0 at least for one z € U. With the aid
of the identity (1.4), we obtain

Jr
We claim that |w(z)| < 1 for all z € U. Otherwise, there exists a point zy € U
such that lrlnalx ‘ lw(z)| = |w(z)| = 1. Letting w(zg) = ¢ and using Lemma 2.1 we
z|<|zo
deduce that ‘
TN f(20) = w(z0) = €',
A

TN D f(20) = (1 - l+1> R (HAl) cei,
and

A \2 A A )2 . A\
- B A 0 A A i0 AN 6
J (/\,l)f(ZO)—(l l+1> ¢ +<21+1 <l+1) )Ce +<l+1) e
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where L = 22w’ (z), and ¢ > 1.
Further, an application of (2.1) from Lemma 2.1 gives that

zow”(zo) — Re zgw”(zo)

Re 'UJ/(ZO) Cei@

2 C - 17
or
Re (e L) > ¢(¢ - 1).
Since h(r,s,t) € H, we have

[h (TN f(20), ™ HD f(20), T 2N D) f(20)) |
= ‘h(eie, (1 — lil) el 4 H%Cew,

AN\ A A\ L A\ L
- g IR B 7 - % >
(1 l+1) ‘ +<21+1 <l+1) >Ce +<l+1) Le )‘—1’

which contradicts the condition (2.3) of the theorem, and therefore we conclude that
[N D f(2)] <1, ze U.
O

Corollary 2.3. Let h(r,s,t) = s and f € A satisfying the conditions (2.2) and (2.3)
for m > 2. Then,

[T\ Df(2)] <1, z€ U,
forj >0, A>0,1>0, m>2.
Proof. Since h(r,s,t) = s € H, with the aid of the above theorem we have that
|J" YD f(2)| <1, 2 €T,
implies
[T A Df(2)] <1, z2€ U, (m=2),
and from here it follows
|Jm+j(/\,l)f(z)| <1,2z€U, (j>0).
O

Remark 2.4. (i) Putting { = 0 and A = 1 in the above results we obtain the results
obtained by Aouf et al. [1];

(ii) Putting A = 1 = 1 in the above results we obtain the results obtained by
Aouf et al. [2, Theorem 1 and Corollary 1] respectively;

(iii) Putting { = 0 in the above results we obtain the corresponding results for
the operator J; ™ f(z).
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