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Abstract. In this paper we study the subordination of a certain subclass of convex
functions with negative coefficients.
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1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U ,

A = {f ∈ H(U) : f(0) = f ′(0)− 1 = 0}

and S = {f ∈ A : f is univalent in U}.
In [11], the subfamily T of S consisting of functions f,

f(z) = z −
∞∑

j=2

ajz
j , aj ≥ 0, j = 2, 3, ..., z ∈ U, (1.1)

was introduced.
Thus, we have the subfamily S − T consisting of functions f of the form

f(z) = z +
∞∑

j=2

ajz
j , aj ≥ 0, j = 2, 3, ..., z ∈ U (1.2)

Let consider N to be the class of all functions Φ which are analytic, convex,
univalent in U and normalized by Φ(0) = 1, Re(Φ(z)) > 0 (z ∈ U). Making use of
the subordination principle of the analytic functions, many authors investigated the
subclasses S?(Φ), K(Φ) and C(Φ, ψ) of the class A, Φ, ψ ∈ N (see [4]), as follows:

S?(Φ) :=
{
f ∈ A :

zf ′(z)
f(z)

≺ Φ(z) ∈ U
}
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K(Φ) :=
{
f ∈ A : 1 +

zf ′′(z)
f ′(z)

≺ Φ(z) ∈ U
}

(1.3)

C(Φ, ψ) :=
{
f ∈ A : ∃g ∈ S?(Φ) s.t.

zf ′(z)
g(z)

≺ ψ(z) ∈ U
}
.

Let g(z) ∈ A, g(z) = z+
∑
j≥2

bjz
j . Then, the Hadamard product (or convolution)

f ∗ g is defined by

f(z) ∗ g(z) = (f ∗ g)(z) = z +
∑
j≥2

ajbjz
j .

If g(z) ∈ A, g(z) = z−
∑
j≥2

bjz
j , the Hadamard product (or convolution) f ∗ g is

defined by
f(z) ∗ g(z) = (f ∗ g)(z) = z −

∑
j≥2

ajbjz
j .

Next, we have the basic idea of subordination as following: if f and g are analytic
in U, then the function f is said to be subordinate to g, such as

f ≺ g or f(z) ≺ g(z) (z ∈ U),

iff there exist the Schwarz function w, analytic in U, with w(0) = 0 and |w(z)| < 1,
such that f(z) = g(w(z)) (z ∈ U).

Let ψ : C2×U → C and h analytic in U. If p and ψ(p(z), zp′(z); z) are univalent
in U and satisfy the first-order differential superordination

h(z) ≺ ψ(p(z), zp′(z); z), for z ∈ U, (1.4)

then p is considered to be a function of differential superordination. The analytic
function q is a subordination of the differential superordination solutions, or more
simple a subordination, if q ≺ p for all p that satisfy (1.4).

An univalent subordination q̃ that satisfies q ≺ g̃ for all subordinations (1.4) is
said to be the best subordination for (1.4). The best subordination is unique up to a
rotation of U.

We continue our paper with already studied operators and known theories con-
cerning the subordination principle that have to help us in our research.

2. Preliminary results

Let Dn be the Sălăgean differential operator (see [10]) Dn : A → A, n ∈ N,
defined as:

D0f(z) = f(z), D1f(z) = Df(z) = zf ′(z), Dnf(z) = D(Dn−1f(z)) (2.1)

and Dk, Dk : A → A, k ∈ N ∪ {0}, of form:

D0f(z) = f(z), . . . , Dkf(z) = D(Dk−1f(z)) = z +
∞∑

n=2

nkanz
n. (2.2)
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Definition 2.1. [5] Let β, λ ∈ R, β ≥ 0, λ ≥ 0 and f(z) = z +
∞∑

j=2

ajz
j. We denote by

Dβ
λ the linear operator defined by

Dβ
λ : A→ A, Dβ

λf(z) = z +
∞∑

j=n+1

[1 + (j − 1)λ]βajz
j . (2.3)

Remark 2.2. In [1], we have introduced the following operator concerning the functions
of form (1.1):

Dβ
λ : A→ A, Dβ

λf(z) = z −
∞∑

j=n+1

[1 + (j − 1)λ]βajz
j . (2.4)

The neighborhoods concerning the class of functions defined using the operator
(2.4) is studied in [3].

Definition 2.3. [13] We denote by Q the set of functions that are analytic and injective
on U − E(f), where E(f) = {ζ ∈ ∂U : lim

z→ζ
f(z) = ∞}, and f ′(ζ) 6= 0 for ζ ∈

∂U − E(f). The subclass of Q for which f(0) = a is denoted by Q(a).

Lemma 2.4. [13] Let h be a convex function with h(0) = a, and let γ ∈ C− {0} be a
complex number with Reγ ≥ 0. If p ∈ H[a, n] ∩ Q, p(z) + 1

γ zp
′(z) is univalent in U

and
h(z) ≺ p(z) +

1
γ
zp′(z), for z ∈ U,

then
q(z) ≺ p(z), for z ∈ U,

where q(z) =
γ

nzγ/n

z∫
0

h(t)tγ/n−1dt, for z ∈ U. The function q is convex and it is

the best subordination.

Lemma 2.5. [13] Let q be a convex function and let h(z) = q(z) + 1
γ zq

′(z), for z ∈ U ,
where Reγ ≥ 0. If p ∈ H[a, n] ∩Q, p(z) + 1

γ zp
′(z) is univalent in U and

q(z) +
1
γ
zp′(z) ≺ p(z) +

1
γ
zp′(z), for z ∈ U,

then
q(z) ≺ p(z), for z ∈ U,

where q(z) =
γ

nzγ/n

z∫
0

h(t)tγ/n−1dt, for z ∈ U. The function q is the best subordina-

tion.

Definition 2.6. For f ∈ A, the generalized derivative operator µn,m
λ1,λ2

is defined by

µn,m
λ1,λ2

: A → A
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µn,m
λ1,λ2

f(z) = z +
∑
k≥2

[1 + λ1(k − 1)]m−1

[1 + λ2(k − 1)]m
c(n, k)akz

k, (z ∈ U), (2.5)

where n,m ∈ N, λ2 ≥ λ1 ≥ 0 and c(n, k) =
(n+ 1)k−1

(1)k−1
, (x)k is the Pochammer

symbol (or the shifted factorial).

Remark 2.7. If we denote by (x)k the Pochammer symbol, we define it as follows:

(x)k =
{

1 for k = 0, x ∈ C− {0}
x(x+ 1)(x+ 2) · . . . · (x+ k − 1) for k ∈ N? and x ∈ C.

Lemma 2.8. [14] Let 0 < a ≤ c. If c ≥ 2 or a+ c ≥ 3, then the function

h(a, c; z) = z +
∑
k≥2

(a)k−1

(c)k−1
zk (z ∈ U),

belongs to the class K of convex functions (defined in (1.3)).

Lemma 2.9. [12] Let Φ ∈ A, convex in U, with Φ(0) = 1 and

Re(βΦ(z) + γ) > 0 (β, γ ∈ C ; z ∈ U).

If p(z) is analytic in U, p(0) = Φ(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ Φ(z) ⇒ p(z) ≺ Φ(z).

Next we study the subordination of a certain subclass of convex functions defined
by using the Hadamard (convolution) product.

3. Main results

We consider the following operator (see [8], [9]):

ψ1(z) =
∑
k≥1

1 + c

k + c
zk (Re{c} ≥ 0 ; z ∈ U). (3.1)

Let the operator Dn,β
λ1,λ2

f(z), n ∈ N, β ≥ 0, λ1, λ2 ≥ 0 to be the following:

Dn,β
λ1,λ2	

f(z) = µn,β
λ1,λ2

f(z) ∗ ψ1(z)

= z −
∑
k≥2

[1− λ1(k − 1))]β−1

[1− λ2(k − 1))]β
· 1 + c

k + c
· c(n, k) · akz

k, (3.2)

where f(z) is of form (1.1) and

Dn,β
λ1,λ2⊕

f(z) = µn,β
λ1,λ2

f(z) ∗ ψ1(z)

= z +
∑
k≥2

[1− λ1(k − 1))]β−1

[1− λ2(k − 1))]β
· 1 + c

k + c
· c(n, k) · akz

k, (3.3)

where f(z) is of form (1.2).
Furthermore, we consider Dn,β

λ1,λ2
f(z) to be of form (3.2) or (3.3).
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Definition 3.1. Let f(z) of form (1.2), z ∈ U. We say that f is in the class Kβ
λ (Φ(z))

if:

1 +
z(Dn,β

λ1,λ2
f(z))′′

(Dn,β
λ1,λ2

f(z))′
≺ Φ(z), n ∈ N, β ≥ 0, λ1, λ2 ≥ 0, z ∈ U,

where the function Φ is analytic, convex and univalent in U, normalized by

Φ(0) = 1, Re(Φ(z)) > 0 (z ∈ U).

Remark 3.2. From Definition 3.1, we have the class Kβ
λ (Φ(z)) as follows:

Kβ
λ (Φ(z))=

{
f(z) ∈ S : 1 +

z(Dn,β
λ1,λ2

f(z))′′

(Dn,β
λ1,λ2

f(z))′
≺ Φ(z), Φ(z) ∈ S, Φ is convex, z ∈ U

}
,

where n ∈ N, β ≥ 0, λ1, λ2 ≥ 0.

Theorem 3.3. Let the function Φ(z) to be analytic, convex and univalent in U,
normalized by Φ(0) = 1, Re(Φ(z)) > 0 (z ∈ U). Let λ ≥ 0, γ, χ ∈ C, with
Re(χΦ(z) + γ) > 0, n ∈ N, f ∈ An and suppose that

[Dn,β
λ1,λ2

f(z)]′ +
(n+ 1)[(Dn+1,β

λ1,λ2
f(z)−Dn,β

λ1,λ2
f(z)]′

χ[Dn,β
λ1,λ2

f(z)]′ + γ
, β ≥ 0, λ1, λ2 ≥ (z ∈ U),

is univalent and the operator Dn,β
λ1,λ2

f(z) is in H[1, n] ∩Q. If

Φ(z) ≺ [Dn,β
λ1,λ2

f(z)]′ +
(n+ 1)[(Dn+1,β

λ1,λ2
f(z)−Dn,β

λ1,λ2
f(z)]′

χ[Dn,β
λ1,λ2

f(z)]′ + γ
, z ∈ U, (3.4)

then
q(z) ≺ [Dn,β

λ1,λ2
f(z)]′ for z ∈ U,

where q(z) =
1

nz
u(z)

n

·
z∫

0

Φ(t) · t
u(t)
n−1 dt, u(z) = χΦ(z) + γ, z ∈ U.

Proof. We are going to prove the Theorem 3.3 by taking into account the operator
Dn,β

λ1,λ2⊕
f(z). We use the notation Dn,β

λ1,λ2
f(z) = Dn,β

λ1,λ2⊕
f(z) for simplification.

Let

Φ(z) =
z(Dn,β

λ1,λ2
f(z))′

(Dn,β
λ1,λ2

f(z))
=

[hn,β
λ1,λ2

∗ ψ1 ∗ zf ′](z)
[hn,β

λ1,λ2
∗ ψ1 ∗ f ](z)

,

where hn,β
λ1,λ2

(z) = z+
∑
k≥2

[1− λ1(k − 1))]β−1

[1− λ2(k − 1))]β
·c(n, k)·akz

k, β ≥ 0, λ1, λ2 ≥ (z ∈ U).

Thus, we obtain from Re(χΦ(z) + γ) > 0 that |χ|+ |γ| ≤ 2.
We consider p(z) = [Dn,β

λ1,λ2
f(z)]′ and we obtain the following:

p(z)+zp′(z)=[hn,β
λ1,λ2

∗ψ1∗zf ′](z)=[Dn,β
λ1,λ2

f(z)]′+(n+1)[[Dn+1,β
λ1,λ2

f(z)]′−[Dn,β
λ1,λ2

f(z)]′]
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and

p(z) +
zp′(z)

χp(z) + γ
= [Dn,β

λ1,λ2
f(z)]′ ·

[
1− n+ 1

χ[Dn,β
λ1,λ2

f(z)]′ + γ

]
+

(n+ 1)[Dn+1,β
λ1,λ2

f(z)]′

χ[Dn,β
λ1,λ2

f(z)]′ + γ

= [Dn,β
λ1,λ2

f(z)]′ +
(n+ 1)[(Dn+1,β

λ1,λ2
f(z)−Dn,β

λ1,λ2
f(z)]′

χ[Dn,β
λ1,λ2

f(z)]′ + γ
.

It is obviously that p ∈ H[1, n].
Further, we see that (3.4) can be written as follows

Φ(z) ≺ p(z) +
zp′(z)

χp(z) + γ
, z ∈ U.

Making use of Lemma 2.9, we obtain

q(z) ≺ p(z), z ∈ U i.e. q(z) ≺ [Dn,β
λ1,λ2

f(z)]′ for z ∈ U,

where q(z) =
1

nz
u(z)

n

·
z∫

0

Φ(t) · t
u(t)
n−1 dt. The function q is convex and it is the best

subordinant.

Remark 3.4. The proof is similar for Dn,β
λ1,λ2

f(z) of form (3.2).

Example 3.5. If we consider β ∈ N and ψ1(z) = 1z we obtain the operator
Dn,β

λ1,λ2⊕
f(z). Therefore we have

Dn,β
λ1,λ2⊕

f(z) = z +
∑
k≥2

[1− λ1(k − 1))]β−1

[1− λ2(k − 1))]β
· c(n, k) · akz

k = µn,β
λ1,λ2

f(z),

which is a particular case of the Theorem 3.3. Thus, the open problem from [5]
concerning the subordination of the class of convex functions is solved.
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