A note on strong differential superordinations using a generalized Sălăgean operator and Ruscheweyh operator

Alina Alb Lupaş

Abstract. In the present paper we establish several strong differential superordinations regardind the new operator DR_{λ}^m defined by convolution product of the extended Sălăgean operator and Ruscheweyh derivative, $DR_{\lambda}^m: \mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$, $DR_{\lambda}^m f(z,\zeta) = (D_{\lambda}^m * R^m) f(z,\zeta)$, $z \in U$, $\zeta \in \overline{U}$, where $R^m f(z,\zeta)$ denote the extended Ruscheweyh derivative, $D_{\lambda}^m f(z,\zeta)$ is the extended generalized Sălăgean operator and $\mathcal{A}_{n\zeta}^* = \{f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \zeta \in \overline{U}\}$ is the class of normalized analytic functions.

Mathematics Subject Classification (2010): 30C45, 30A20, 34A40.

Keywords: Strong differential superordination, convex function, best subordinant, extended differential operator, convolution product.

1. Introduction

Denote by U the unit disc of the complex plane $U=\{z\in\mathbb{C}:|z|<1\}$, $\overline{U}=\{z\in\mathbb{C}:|z|\leq1\}$ the closed unit disc of the complex plane and $\mathcal{H}(U\times\overline{U})$ the class of analytic functions in $U\times\overline{U}$.

Let

$$\mathcal{A}_{n\zeta}^* = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = z + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$

where $a_k(\zeta)$ are holomorphic functions in \overline{U} for $k \geq 2$, and

$$\mathcal{H}^*[a,n,\zeta] = \{ f \in \mathcal{H}(U \times \overline{U}), \ f(z,\zeta) = a + a_n(\zeta) \ z^n + a_{n+1}(\zeta) \ z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$

for $a \in \mathbb{C}$, $n \in \mathbb{N}$, $a_k(\zeta)$ are holomorphic functions in \overline{U} for $k \geq n$.

Denote by

$$K_{n\zeta} = \left\{ f \in \mathcal{H}(U \times \overline{U}) : \operatorname{Re} \frac{z f_z''(z,\zeta)}{f_z'(z,\zeta)} + 1 > 0 \right\}$$

the class of convex function in $U \times \overline{U}$.

We also extend the differential operators presented above to the new class of analytic functions $\mathcal{A}_{n\zeta}^*$ introduced in [10].

Definition 1.1. [5] For $f \in \mathcal{A}_{n\zeta}^*$, $\lambda \geq 0$ and $n, m \in \mathbb{N}$, the operator D_{λ}^m is defined by $D_{\lambda}^m : \mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$,

$$D_{\lambda}^{0}f(z,\zeta) = f(z,\zeta)$$

$$D_{\lambda}^{1}f(z,\zeta) = (1-\lambda)f(z,\zeta) + \lambda z f_{z}'(z,\zeta) = D_{\lambda}f(z,\zeta), ...,$$

$$D_{\lambda}^{m+1}f(z,\zeta) = (1-\lambda)D_{\lambda}^{m}f(z,\zeta) + \lambda z \left(D_{\lambda}^{m}f(z,\zeta)\right)_{z}'$$

$$= D_{\lambda}\left(D_{\lambda}^{m}f(z,\zeta)\right), \quad z \in U, \zeta \in \overline{U}.$$

Remark 1.2. [5] If $f \in \mathcal{A}_{n\zeta}^*$ and $f(z) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$, then

$$D_{\lambda}^{m} f\left(z,\zeta\right) = z + \sum_{j=n+1}^{\infty} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}\left(\zeta\right) z^{j}, \text{ for } z \in U, \ \zeta \in \overline{U}.$$

Definition 1.3. [4] For $f \in \mathcal{A}_{n\zeta}^*$, $n, m \in \mathbb{N}$, the operator \mathbb{R}^m is defined by

$$\begin{split} R^m: \mathcal{A}_{n\zeta}^* &\to \mathcal{A}_{n\zeta}^*, \\ R^0 f\left(z,\zeta\right) = f\left(z,\zeta\right), \\ R^1 f\left(z,\zeta\right) = z f_z'\left(z,\zeta\right), ..., \\ \left(m+1\right) R^{m+1} f\left(z,\zeta\right) = z \left(R^m f\left(z,\zeta\right)\right)_z' + m R^m f\left(z,\zeta\right), \quad z \in U, \ \zeta \in \overline{U}. \end{split}$$

Remark 1.4. [4] If $f \in \mathcal{A}_{n\zeta}^*$, $f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$, then

$$R^{m} f\left(z,\zeta\right) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} a_{j}\left(\zeta\right) z^{j}, \ z \in U, \ \zeta \in \overline{U}.$$

As a dual notion of strong differential subordination G.I. Oros has introduced and developed the notion of strong differential superordinations in [9].

Definition 1.5. [9] Let $f(z,\zeta)$, $H(z,\zeta)$ analytic in $U \times \overline{U}$. The function $f(z,\zeta)$ is said to be strongly superordinate to $H(z,\zeta)$ if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, such that $H(z,\zeta) = f(w(z),\zeta)$, for all $\zeta \in \overline{U}$. In such a case we write $H(z,\zeta) \prec \prec f(z,\zeta)$, $z \in U$, $\zeta \in \overline{U}$.

Remark 1.6. [9] (i) Since $f(z,\zeta)$ is analytic in $U \times \overline{U}$, for all $\zeta \in \overline{U}$, and univalent in U, for all $\zeta \in \overline{U}$, Definition 1.5 is equivalent to $H(0,\zeta) = f(0,\zeta)$, for all $\zeta \in \overline{U}$, and $H(U \times \overline{U}) \subset f(U \times \overline{U})$.

(ii) If $H(z,\zeta) \equiv H(z)$ and $f(z,\zeta) \equiv f(z)$, the strong superordination becomes the usual notion of superordination.

Definition 1.7. [9] We denote by Q^* the set of functions that are analytic and injective on $\overline{U} \times \overline{U} \setminus E(f,\zeta)$, where $E(f,\zeta) = \{y \in \partial U : \lim_{z \to y} f(z,\zeta) = \infty\}$, and are such that $f'_z(y,\zeta) \neq 0$ for $y \in \partial U \times \overline{U} \setminus E(f,\zeta)$. The subclass of Q^* for which $f(0,\zeta) = a$ is denoted by $Q^*(a)$.

We have need the following lemmas to study the strong differential superordinations.

Lemma 1.8. [9] Let $h(z,\zeta)$ be a convex function with $h(0,\zeta) = a$ and let $\gamma \in \mathbb{C}^*$ be a complex number with $\text{Re}\gamma \geq 0$. If $p \in \mathcal{H}^*[a,n,\zeta] \cap Q^*$, $p(z,\zeta) + \frac{1}{\gamma}zp_z'(z,\zeta)$ is univalent in $U \times \overline{U}$ and

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{\gamma} z p_z'(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

then

$$q(z,\zeta) \prec \prec p(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h\left(t,\zeta\right) t^{\frac{\gamma}{n}-1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and is the best subordinant.

Lemma 1.9. [9] Let $q(z,\zeta)$ be a convex function in $U \times \overline{U}$ and let

$$h(z,\zeta) = q(z,\zeta) + \frac{1}{\gamma} z q'_z(z,\zeta), \ z \in U, \ \zeta \in \overline{U},$$

where $\text{Re}\gamma \geq 0$.

If $p \in \mathcal{H}^* [a, n, \zeta] \cap Q^*$, $p(z, \zeta) + \frac{1}{\gamma} z p'_z(z, \zeta)$ is univalent in $U \times \overline{U}$ and

$$q(z,\zeta) + \frac{1}{\gamma} z q_z'(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{\gamma} z p_z'(z,\zeta), \qquad z \in U, \ \zeta \in \overline{U},$$

then

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{\gamma}{nz^{\frac{\gamma}{n}}} \int_0^z h\left(t,\zeta\right) t^{\frac{\gamma}{n}-1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is the best subordinant.

2. Main results

Definition 2.1. [2] Let $\lambda \geq 0$ and $m \in \mathbb{N} \cup \{0\}$. Denote by DR_{λ}^m the operator given by the Hadamard product (the convolution product) of the extended generalized Sălăgean operator D_{λ}^m and the extended Ruscheweyh operator R^m , $DR_{\lambda}^m : \mathcal{A}_{n\zeta}^* \to \mathcal{A}_{n\zeta}^*$,

$$DR_{\lambda}^{m}f\left(z,\zeta\right)=\left(D_{\lambda}^{m}\ast R^{m}\right)f\left(z,\zeta\right).$$

Remark 2.2. [2] If
$$f \in \mathcal{A}_{n\zeta}^*$$
, $f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$, then

$$DR_{\lambda}^{m} f(z,\zeta) = z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + (j-1) \lambda \right]^{m} a_{j}^{2}(\zeta) z^{j}, \ z \in U, \ \zeta \in \overline{U}.$$

Remark 2.3. For $\lambda = 1$ we obtain the Hadamard product SR^m ([1], [3], [7], [8]) of the extended Sălăgean operator S^m and the extended Ruscheweyh operator R^m .

Theorem 2.4. Let $h\left(z,\zeta\right)$ be a convex function in $U\times\overline{U}$ with $h\left(0,\zeta\right)=1$. Let $m\in\mathbb{N}$, $\lambda\geq0$, $f\left(z,\zeta\right)\in\mathcal{A}_{n\zeta}^{*}$, $F\left(z,\zeta\right)=I_{c}\left(f\right)\left(z,\zeta\right)=\frac{c+2}{z^{c+1}}\int_{0}^{z}t^{c}f\left(t,\zeta\right)dt$, $z\in U$, $\zeta\in\overline{U}$, $\mathrm{Re}c>-2$, and suppose that $\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}$ is univalent in $U\times\overline{U}$, $\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}\in\mathcal{H}^{*}\left[1,n,\zeta\right]\cap Q^{*}$ and

$$h(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))_{z}', \quad z \in U, \ \zeta \in \overline{U},$$
 (2.1)

then

$$q(z,\zeta) \prec \prec (DR_{\lambda}^{m}F(z,\zeta))'_{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta)=\frac{c+2}{nz^{\frac{c+2}{n}}}\int_0^z h(t,\zeta)t^{\frac{c+2}{n}-1}dt$. The function q is convex and it is the best subordinant.

Proof. We have

$$z^{c+1}F\left(z,\zeta\right) = \left(c+2\right)\int_{0}^{z}t^{c}f\left(t,\zeta\right)dt$$

and differentiating it, with respect to z, we obtain

$$(c+1) F(z,\zeta) + zF'_z(z,\zeta) = (c+2) f(z,\zeta)$$

and

$$\left(c+1\right)DR_{\lambda}^{m}F\left(z,\zeta\right)+z\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime}=\left(c+2\right)DR_{\lambda}^{m}f\left(z,\zeta\right),\quad z\in U,\ \zeta\in\overline{U}.$$

Differentiating the last relation with respect to z we have

$$\left(DR_{\lambda}^{m}F(z,\zeta)\right)_{z}' + \frac{1}{c+2}z\left(DR_{\lambda}^{m}F(z,\zeta)\right)_{z}'' = \left(DR_{\lambda}^{m}f(z,\zeta)\right)_{z}', \quad z \in U, \ \zeta \in \overline{U}. \ (2.2)$$

Using (2.2), the strong differential superordination (2.1) becomes

$$h(z,\zeta) \prec \prec \left(DR_{\lambda}^{m}F(z,\zeta)\right)_{z}' + \frac{1}{c+2}z\left(DR_{\lambda}^{m}F(z,\zeta)\right)_{z^{2}}''. \tag{2.3}$$

Denote

$$p\left(z,\zeta\right) = \left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}', \quad z \in U, \ \zeta \in \overline{U}. \tag{2.4}$$

Replacing (2.4) in (2.3) we obtain

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{1}{c+2} z p_z'(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

Using Lemma 1.8 for $\gamma = c + 2$, we have

$$q\left(z,\zeta\right)\prec\prec p\left(z,\zeta\right),\ z\in U,\ \zeta\in\overline{U},\ \text{i.e.}\ q\left(z,\zeta\right)\prec\prec\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}',\ z\in U,\ \zeta\in\overline{U},$$

where $q(z,\zeta)=\frac{c+2}{nz^{\frac{c+2}{n}}}\int_0^z h(t,\zeta)t^{\frac{c+2}{n}-1}dt$. The function q is convex and it is the best subordinant.

Corollary 2.5. Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$, where $\beta \in [0,1)$. Let $m \in \mathbb{N}$, $\lambda \geq 0$, $f(z,\zeta) \in \mathcal{A}^*_{n\zeta}$, $F(z,\zeta) = I_c(f)(z,\zeta) = \frac{c+2}{z^{c+1}} \int_0^z t^c f(t,\zeta) dt$, $z \in U$, $\zeta \in \overline{U}$, $\operatorname{Rec} > -2$, and suppose that $(DR^m_{\lambda} f(z,\zeta))'_z$ is univalent in $U \times \overline{U}$, $(DR^m_{\lambda} F(z,\zeta))'_z \in \mathcal{H}^*[1,n,\zeta] \cap Q^*$ and

$$h(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))_{z}', \ z \in U, \ \zeta \in \overline{U},$$
 (2.5)

then

$$q(z,\zeta) \prec \prec (DR_{\lambda}^{m}F(z,\zeta))_{z}', \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{(c+2)(1+\zeta-2\beta)}{nz^{\frac{c+2}{n}}} \int_0^z \frac{t^{\frac{c+2}{n}-1}}{t+1} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.4 and considering $p(z,\zeta) = (DR_{\lambda}^m F(z,\zeta))_z'$, the strong differential superordination (2.5) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p\left(z,\zeta\right) + \frac{1}{c + 2} z p_z'\left(z,\zeta\right), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma = c + 2$, we have $q(z, \zeta) \prec \prec p(z, \zeta)$, i.e.

$$q(z,\zeta) = \frac{c+2}{nz^{\frac{c+2}{n}}} \int_0^z h(t,\zeta) t^{\frac{c+2}{n}-1} dt = \frac{c+2}{nz^{\frac{c+2}{n}}} \int_0^z \frac{1+(2\beta-\zeta)t}{1+t} t^{\frac{c+2}{n}-1} dt$$

$$=2\beta-\zeta+\frac{\left(c+2\right)\left(1+\zeta-2\beta\right)}{nz^{\frac{c+2}{n}}}\int_{0}^{z}\frac{t^{\frac{c+2}{n}-1}}{t+1}dt\prec\prec\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime},\quad z\in U,\ \zeta\in\overline{U}.$$

The function q is convex and it is the best subordinant.

Theorem 2.6. Let $q(z,\zeta)$ be a convex function in $U \times \overline{U}$ and let

$$h(z,\zeta) = q(z,\zeta) + \frac{1}{c+2}zq'_z(z,\zeta),$$

where $z \in U$, $\zeta \in \overline{U}$, $\operatorname{Re} c > -2$.

Let $m \in \mathbb{N}$, $\lambda \geq 0$, $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$, $F(z,\zeta) = I_c(f)(z,\zeta) = \frac{c+2}{z^{c+1}} \int_0^z t^c f(t,\zeta) dt$, $z \in U$, $\zeta \in \overline{U}$, and suppose that $(DR_{\lambda}^m f(z,\zeta))_z'$ is univalent in $U \times \overline{U}$, $(DR_{\lambda}^m F(z,\zeta))_z' \in \mathcal{H}^* [1,n,\zeta] \cap Q^*$ and

$$h(z,\zeta) \prec \prec (DR_{\lambda}^m f(z,\zeta))_z', \quad z \in U, \ \zeta \in \overline{U},$$
 (2.6)

then

$$q\left(z,\zeta\right)\prec\prec\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime},\quad z\in U,\ \zeta\in\overline{U},$$

where $q(z,\zeta) = \frac{c+2}{nz^{\frac{c+2}{n}}} \int_0^z h(t,\zeta) t^{\frac{c+2}{n}-1} dt$. The function q is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.4 and considering $p(z,\zeta) = (DR_{\lambda}^m F(z,\zeta))'_z$, $z \in U$, $\zeta \in \overline{U}$, the strong differential superordination (2.6) becomes

$$h\left(z,\zeta\right)=q\left(z,\zeta\right)+\frac{1}{c+2}zq_{z}'\left(z,\zeta\right)\prec\prec p\left(z,\zeta\right)+\frac{1}{c+2}zp_{z}'\left(z,\zeta\right),\quad z\in U,\ \zeta\in\overline{U}.$$

Using Lemma 1.9 for $\gamma = c + 2$, we have

$$q\left(z,\zeta\right)\prec\prec p\left(z,\zeta\right),\ z\in U,\ \zeta\in\overline{U},\ \text{i.e.}\ q\left(z,\zeta\right)\prec\prec\left(DR_{\lambda}^{m}F\left(z,\zeta\right)\right)_{z}^{\prime},\ z\in U,\ \zeta\in\overline{U},$$

where $q(z,\zeta) = \frac{c+2}{nz^{\frac{c+2}{n}}} \int_0^z h(t,\zeta) t^{\frac{c+2}{n}-1} dt$. The function q is the best subordinant. \square

Theorem 2.7. Let $h(z,\zeta)$ be a convex function, $h(0,\zeta) = 1$. Let $\lambda \geq 0$, $m,n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$ and suppose that $(DR_{\lambda}^m f(z,\zeta))_z'$ is univalent and $\frac{DR_{\lambda}^m f(z,\zeta)}{z} \in \mathcal{H}^*[1,n,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))_{z}', \qquad z \in U, \ \zeta \in \overline{U},$$
 (2.7)

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m} f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta)=\frac{1}{nz^{\frac{1}{n}}}\int_0^z h(t,\zeta)t^{\frac{1}{n}-1}dt$. The function q is convex and it is the best subordinant.

Proof. Consider

$$\begin{split} p\left(z,\zeta\right) &= \frac{DR_{\lambda}^{m} f\left(z,\zeta\right)}{z} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right) z^{j}}{z} \\ &= 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right) z^{j-1}. \end{split}$$

Evidently $p \in \mathcal{H}^*[1, n, \zeta]$.

We have $p(z,\zeta) + zp'_z(z,\zeta) = (DR_{\lambda}^m f(z,\zeta))'_z, z \in U, \zeta \in \overline{U}$.

Then (2.7) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma = 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.} \quad q(z,\zeta) \prec \prec \frac{DR_{\lambda}^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta)=\frac{1}{nz^{\frac{1}{n}}}\int_0^z h(t,\zeta)t^{\frac{1}{n}-1}dt$. The function q is convex and it is the best subordinant.

Corollary 2.8. Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $\lambda \ge 0$, $m, n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$ and suppose that $(DR_{\lambda}^m f(z,\zeta))_z'$ is univalent and $\frac{DR_{\lambda}^m f(z,\zeta)}{z} \in \mathcal{H}^* [1,n,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))_{z}', \qquad z \in U, \ \zeta \in \overline{U},$$
 (2.8)

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m}f\left(z,\zeta\right)}{z}, \quad \ z \in U, \ \zeta \in \overline{U},$$

П

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{1+\zeta-2\beta}{nz^{\frac{1}{n}}} \int_0^z \frac{t^{\frac{1}{n}-1}}{1+t} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.7 and considering

$$p(z,\zeta) = \frac{DR_{\lambda}^{m} f\left(z,\zeta\right)}{z},$$

the strong differential superordination (2.8) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \varphi(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma=1,$ we have $q(z,\zeta)\prec\prec p(z,\zeta),$ i.e.

$$q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} h\left(t,\zeta\right) t^{\frac{1}{n}-1} dt = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} t^{\frac{1}{n}-1} \frac{1+\left(2\beta-\zeta\right)t}{1+t} dt$$

$$=2\beta-\zeta+\frac{1+\zeta-2\beta}{nz^{\frac{1}{n}}}\int_{0}^{z}\frac{t^{\frac{1}{n}-1}}{1+t}dt\prec\prec\frac{DR_{\lambda}^{m}f\left(z,\zeta\right)}{z},\quad z\in U,\ \zeta\in\overline{U}.$$

The function q is convex and it is the best subordinant.

Theorem 2.9. Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by

$$h(z,\zeta) = q(z,\zeta) + zq'_{z}(z,\zeta).$$

If $\lambda \geq 0$, $m, n \in \mathbb{N}$, $f(z, \zeta) \in \mathcal{A}_{n\zeta}^*$, suppose that $(DR_{\lambda}^m f(z, \zeta))_z'$ is univalent, $\frac{DR_{\lambda}^m f(z, \zeta)}{z} \in \mathcal{H}^* [1, n, \zeta] \cap Q^*$ and satisfies the strong differential superordination

$$h(z,\zeta) = q(z,\zeta) + zq_z'(z,\zeta) \prec \prec (DR_{\lambda}^m f(z,\zeta))_z', \qquad z \in U, \ \zeta \in \overline{U}, \tag{2.9}$$

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m} f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta)t^{\frac{1}{n}-1}dt$. The function q is the best subordinant.

Proof. Let

$$\begin{split} p\left(z,\zeta\right) &= \frac{DR_{\lambda}^{m}f\left(z,\zeta\right)}{z} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right) z^{j}}{z} \\ &= 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right) z^{j-1}. \end{split}$$

Evidently $p \in \mathcal{H}^*[1, n, \zeta]$.

Differentiating, we obtain $p(z,\zeta) + zp'_z(z,\zeta) = \left(DR^m_{\lambda}f(z,\zeta)\right)'_z$, $z \in U$, $\zeta \in \overline{U}$, and (2.9) becomes

$$q(z,\zeta) + zq'_z(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

Using Lemma 1.9 for $\gamma = 1$, we have

$$\begin{split} q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \; \zeta \in \overline{U}, \; \text{i.e.} \\ q(z,\zeta) &= \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt \prec \prec \frac{DR_\lambda^m f\left(z,\zeta\right)}{z}, \; \; z \in U, \zeta \in \overline{U}, \end{split}$$

and q is the best subordinant.

Theorem 2.10. Let $h(z,\zeta)$ be a convex function, $h(0,\zeta) = 1$. Let $\lambda \geq 0$, $m,n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$ and suppose that $\left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_{z}'$ is univalent and $\frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)} \in \mathcal{H}^*\left[1,n,\zeta\right] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_{z}', \qquad z \in U, \ \zeta \in \overline{U},$$
 (2.10)

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}, \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt$. The function q is convex and it is the best subordinant.

Proof. Consider

$$\begin{split} p\left(z,\zeta\right) &= \frac{DR_{\lambda}^{m+1}f\left(z,\zeta\right)}{DR_{\lambda}^{m}f\left(z,\zeta\right)} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j}^{m+1} \left[1 + \left(j-1\right)\lambda\right]^{m+1} a_{j}^{2}\left(\zeta\right)z^{j}}{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right)z^{j}} \\ &= \frac{1 + \sum_{j=n+1}^{\infty} C_{m+j}^{m+1} \left[1 + \left(j-1\right)\lambda\right]^{m+1} a_{j}^{2}\left(\zeta\right)z^{j-1}}{1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + \left(j-1\right)\lambda\right]^{m} a_{j}^{2}\left(\zeta\right)z^{j-1}}. \end{split}$$

Evidently $p \in \mathcal{H}^*[1, n, \zeta]$.

We have

$$p_{z}'\left(z,\zeta\right)=\frac{\left(DR_{\lambda}^{m+1}f\left(z,\zeta\right)\right)_{z}'}{DR_{\lambda}^{m}f\left(z,\zeta\right)}-p\left(z,\zeta\right)\cdot\frac{\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}'}{DR_{\lambda}^{m}f\left(z,\zeta\right)}.$$

Then

$$p(z,\zeta) + zp'_{z}(z,\zeta) = \left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)'_{z}.$$

Then (2.10) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma = 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \ z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.} \quad q(z,\zeta) \prec \frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}, \ z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt$. The function q is convex and it is the best subordinant.

Corollary 2.11. Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $\lambda \ge 0$, $m, n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$ and suppose that $\left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_{z}'$ is univalent, $\frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)} \in \mathcal{H}^*\left[1,n,\zeta\right] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_{z}', \quad z \in U, \ \zeta \in \overline{U},$$
 (2.11)

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}, \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{1+\zeta-2\beta}{nz^{\frac{1}{n}}} \int_0^z \frac{t^{\frac{1}{n}-1}}{1+t} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.10 and considering

$$p(z,\zeta) = \frac{DR_{\lambda}^{m+1} f(z,\zeta)}{DR_{\lambda}^{m} f(z,\zeta)},$$

the strong differential superordination (2.11) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma=1,$ we have $q(z,\zeta)\prec\prec p(z,\zeta),$ i.e.

$$\begin{split} q(z,\zeta) &= \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} h\left(t,\zeta\right) t^{\frac{1}{n}-1} dt = \frac{1}{nz^{\frac{1}{n}}} \int_{0}^{z} t^{\frac{1}{n}-1} \frac{1 + \left(2\beta - \zeta\right) t}{1 + t} dt \\ &= 2\beta - \zeta + \frac{1 + \zeta - 2\beta}{nz^{\frac{1}{n}}} \int_{0}^{z} \frac{t^{\frac{1}{n}-1}}{1 + t} dt \prec \prec \frac{DR_{\lambda}^{m+1} f\left(z,\zeta\right)}{DR_{\lambda}^{m} f\left(z,\zeta\right)}, \quad z \in U, \ \zeta \in \overline{U}. \end{split}$$

The function q is convex and it is the best subordinant

Theorem 2.12. Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by

$$h\left(z,\zeta\right)=q\left(z,\zeta\right)+zq_{z}^{\prime}\left(z,\zeta\right).$$

If $\lambda \geq 0$, $m, n \in \mathbb{N}$, $f(z, \zeta) \in \mathcal{A}_{n\zeta}^*$, suppose that $\left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_{z}'$ is univalent, $\frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)} \in \mathcal{H}^*\left[1,n,\zeta\right] \cap Q^*$ and satisfies the strong differential superordination

$$h(z,\zeta) = q(z,\zeta) + zq_z'(z,\zeta) \prec \prec \left(\frac{zDR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}\right)_z', \quad z \in U, \ \zeta \in \overline{U}, \quad (2.12)$$

then

$$q(z,\zeta) \prec \prec \frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)}, \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt$. The function q is the best subordinant.

Proof. Let

$$p(z,\zeta) = \frac{DR_{\lambda}^{m+1}f(z,\zeta)}{DR_{\lambda}^{m}f(z,\zeta)} = \frac{z + \sum_{j=n+1}^{\infty} C_{m+j}^{m+1} \left[1 + (j-1)\lambda\right]^{m+1} a_{j}^{2}(\zeta) z^{j}}{z + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + (j-1)\lambda\right]^{m} a_{j}^{2}(\zeta) z^{j}}$$

$$= \frac{1 + \sum_{j=n+1}^{\infty} C_{m+j}^{m+1} \left[1 + (j-1)\lambda\right]^{m+1} a_{j}^{2}(\zeta) z^{j-1}}{1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} \left[1 + (j-1)\lambda\right]^{m} a_{j}^{2}(\zeta) z^{j-1}}.$$

Evidently $p \in \mathcal{H}^*[1, n, \zeta]$.

Differentiating with respect to z, we obtain

$$p(z,\zeta)+zp_{z}'(z,\zeta)=\left(\frac{zDR_{\lambda}^{m+1}f\left(z,\zeta\right)}{DR_{\lambda}^{m}f\left(z,\zeta\right)}\right)_{z}',\ z\in U,\ \zeta\in\overline{U},$$

and (2.12) becomes

$$q(z,\zeta)+zq_{z}^{\prime}(z,\zeta)\prec\prec p(z,\zeta)+zp_{z}^{\prime}\left(z,\zeta\right),\hspace{0.5cm}z\in U,\hspace{0.1cm}\zeta\in\overline{U}.$$

Using Lemma 1.9 for $\gamma = 1$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}, \quad \text{i.e.}$$

$$q(z,\zeta) = \frac{1}{n^{\frac{1}{n}}} \int_{0}^{z} h(t,\zeta) \, t^{\frac{1}{n}-1} dt \prec \prec \frac{DR_{\lambda}^{m+1} f(z,\zeta)}{DR^{m} f(z,\zeta)}, \ z \in U, \zeta \in \overline{U},$$

and q is the best subordinant.

Theorem 2.13. Let $h(z,\zeta)$ be a convex function, $h(0,\zeta)=1$. Let $\lambda \geq 0$, $m,n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}^*_{n\zeta}$ and suppose that $\frac{m+1}{(m\lambda+1)z}DR^{m+1}_{\lambda}f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z}DR^m_{\lambda}f(z,\zeta)$ is univalent and $(DR^m_{\lambda}f(z,\zeta))'_z \in \mathcal{H}^*[1,n,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \frac{m+1}{(m\lambda+1)z} DR_{\lambda}^{m+1} f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z} DR_{\lambda}^{m} f(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

$$(2.13)$$

then

$$q(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))'_{z}, \qquad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m\lambda+1}{n\lambda z} \int_0^z h\left(t,\zeta\right) t^{\frac{(m-n)\lambda+1}{n\lambda}} dt$. The function q is convex and it is the best subordinant.

Proof. With notation

$$p(z,\zeta) = (DR_{\lambda}^{m} f(z,\zeta))'_{z} = 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^{m} [1 + (j-1)\lambda]^{m} j a_{j}^{2}(\zeta) z^{j-1}$$

and $p(0,\zeta) = 1$, we obtain for $f(z,\zeta) = z + \sum_{j=n+1}^{\infty} a_j(\zeta) z^j$,

$$p(z,\zeta) + zp'_{z}(z,\zeta)$$

$$=\frac{m+1}{\lambda z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\left(m-1+\frac{1}{\lambda}\right)\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}^{\prime}-\frac{m\left(1-\lambda\right)}{\lambda z}DR_{\lambda}^{m}f\left(z,\zeta\right)$$

and

$$p\left(z,\zeta\right)+\frac{\lambda}{m\lambda+1}zp_{z}'\left(z,\zeta\right)=\frac{m+1}{\left(m\lambda+1\right)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\frac{m\left(1-\lambda\right)}{\left(m\lambda+1\right)z}DR_{\lambda}^{m}f\left(z,\zeta\right).$$

Evidently $p \in \mathcal{H}^*[1, n, \zeta]$.

Then (2.13) becomes

$$h(z,\zeta) \prec \prec p(z,\zeta) + \frac{\lambda}{m\lambda + 1} z p'_z(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma = m + \frac{1}{\lambda}$, we have

$$q(z,\zeta) \prec \prec p(z,\zeta), \ z \in U, \ \zeta \in \overline{U}, \text{ i.e. } q(z,\zeta) \prec \prec (DR_{\lambda}^m f(z,\zeta))_z', \ z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m\lambda+1}{n\lambda z^{\frac{m\lambda+1}{n\lambda}}} \int_0^z h\left(t,\zeta\right) t^{\frac{(m-n)\lambda+1}{n\lambda}} dt$. The function q is convex and it is the best subordinant.

Corollary 2.14. Let $h(z,\zeta) = \frac{1+(2\beta-\zeta)z}{1+z}$ be a convex function in $U \times \overline{U}$, where $0 \le \beta < 1$. Let $\lambda \ge 0$, $m, n \in \mathbb{N}$, $f(z,\zeta) \in \mathcal{A}^*_{n\zeta}$ and suppose that $\frac{m+1}{(m\lambda+1)z}DR^{m+1}_{\lambda}f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z}DR^m_{\lambda}f(z,\zeta)$ is univalent, $(DR^m_{\lambda}f(z,\zeta))'_z \in \mathcal{H}^*[1,n,\zeta] \cap Q^*$. If

$$h(z,\zeta) \prec \prec \frac{m+1}{(m\lambda+1)z} DR_{\lambda}^{m+1} f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z} DR_{\lambda}^{m} f(z,\zeta), \quad z \in U, \ \zeta \in \overline{U},$$

$$(2.14)$$

then

$$q(z,\zeta) \prec \prec (DR_{\lambda}^{m} f(z,\zeta))_{z}', \quad z \in U, \ \zeta \in \overline{U},$$

where q is given by $q(z,\zeta) = 2\beta - \zeta + \frac{(1+\zeta-2\beta)(m\lambda+1)}{\lambda nz^{\frac{m\lambda+1}{\lambda n}}} \int_0^z \frac{t^{\frac{m\lambda+1}{\lambda n}-1}}{1+t} dt$, $z \in U$, $\zeta \in \overline{U}$. The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.13 and considering $p(z,\zeta) = (DR_{\lambda}^m f(z,\zeta))_z'$, the strong differential superordination (2.14) becomes

$$h(z,\zeta) = \frac{1 + (2\beta - \zeta)z}{1 + z} \prec \prec p(z,\zeta) + zp'_z(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$

By using Lemma 1.8 for $\gamma = \frac{m\lambda + 1}{\lambda}$, we have $q(z,\zeta) \prec \prec p(z,\zeta)$, i.e.

$$q(z,\zeta)\!=\!\frac{m\lambda+1}{n\lambda z^{\frac{m\lambda+1}{n\lambda}}}\int_{0}^{z}h\left(t,\zeta\right)t^{\frac{(m-n)\lambda+1}{n\lambda}}dt=\frac{m\lambda+1}{n\lambda z^{\frac{m\lambda+1}{n\lambda}}}\int_{0}^{z}t^{\frac{(m-n)\lambda+1}{n\lambda}}dt\frac{1+\left(2\beta-\zeta\right)t}{1+t}dt$$

$$=2\beta-\zeta+\frac{\left(1+\zeta-2\beta\right)\left(m\lambda+1\right)}{\lambda nz^{\frac{m\lambda+1}{\lambda n}}}\int_{0}^{z}\frac{t^{\frac{m\lambda+1}{\lambda n}-1}}{1+t}dt\prec\prec\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}',\ z\in U,\ \zeta\in\overline{U}.$$

The function q is convex and it is the best subordinant.

Theorem 2.15. Let $q(z,\zeta)$ be convex in $U \times \overline{U}$ and let h be defined by

$$h(z,\zeta) = q(z,\zeta) + \frac{\lambda}{m\lambda + 1} z q'_z(z,\zeta), \ \lambda \ge 0, \ m,n \in \mathbb{N}.$$

If $f(z,\zeta) \in \mathcal{A}_{n\zeta}^*$, suppose that $\frac{m+1}{(m\lambda+1)z}DR_{\lambda}^{m+1}f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda+1)z}DR_{\lambda}^{m}f(z,\zeta)$ is univalent and $(DR_{\lambda}^{m}f(z,\zeta))_{z}' \in \mathcal{H}^*[1,n,\zeta] \cap Q^*$ and satisfies the strong differential superordination

$$h(z,\zeta) = q(z,\zeta) + \frac{\lambda}{m\lambda + 1} z q_z'(z,\zeta) \prec \prec$$

$$\frac{m+1}{(m\lambda + 1)z} DR_{\lambda}^{m+1} f(z,\zeta) - \frac{m(1-\lambda)}{(m\lambda + 1)z} DR_{\lambda}^{m} f(z,\zeta), \ z \in U, \zeta \in \overline{U},$$
(2.15)

then

$$q(z,\zeta) \prec \prec \left(DR_{\lambda}^{m} f(z,\zeta)\right)_{z}', \quad z \in U, \ \zeta \in \overline{U},$$

where $q(z,\zeta) = \frac{m\lambda+1}{n\lambda z^{\frac{m\lambda+1}{n\lambda}}} \int_0^z h(t,\zeta) t^{\frac{(m-n)\lambda+1}{n\lambda}} dt$. The function q is the best subordinant.

Proof. Let
$$p(z,\zeta) = (DR_{\lambda}^m f(z,\zeta))' = 1 + \sum_{j=n+1}^{\infty} C_{m+j-1}^m [1 + (j-1)\lambda]^m j a_j^2(\zeta) z^{j-1}$$
.

Differentiating, we obtain

$$\begin{split} &p\left(z,\zeta\right)+zp_{z}'\left(z,\zeta\right)\\ &=\frac{m+1}{\lambda z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\left(m-1+\frac{1}{\lambda}\right)\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}'-\frac{m\left(1-\lambda\right)}{\lambda z}DR_{\lambda}^{n}f\left(z,\zeta\right)\end{split}$$

and

$$\begin{split} &p\left(z,\zeta\right)+\frac{\lambda}{m\lambda+1}zp_{z}'\left(z,\zeta\right)\\ &=\frac{m+1}{\left(m\lambda+1\right)z}DR_{\lambda}^{m+1}f\left(z,\zeta\right)-\frac{m\left(1-\lambda\right)}{\left(m\lambda+1\right)z}DR_{\lambda}^{m}f\left(z,\zeta\right),\ z\in U,\ \zeta\in\overline{U}, \end{split}$$

and (2.15) becomes

$$q(z,\zeta)+\frac{\lambda}{m\lambda+1}zq_z'(z,\zeta)\prec\prec p(z,\zeta)+\frac{\lambda}{m\lambda+1}zp_z'\left(z,\zeta\right), \quad z\in U,\ \zeta\in\overline{U}.$$

Using Lemma 1.9 for $\gamma=m+\frac{1}{\lambda}$, we have $q(z,\zeta)\prec\prec p(z,\zeta),\,z\in U,\,\zeta\in\overline{U}$, i.e.

$$q(z,\zeta)=\frac{m\lambda+1}{n\lambda z^{\frac{m\lambda+1}{n\lambda}}}\int_{0}^{z}h\left(t,\zeta\right)t^{\frac{(m-n)\lambda+1}{n\lambda}}dt\prec\prec\left(DR_{\lambda}^{m}f\left(z,\zeta\right)\right)_{z}',\quad z\in U,\ \zeta\in\overline{U},$$

and q is the best subordinant.

References

- [1] Alb Lupas, A., Certain strong differential subordinations using Sălăgean and Ruscheweyh operators, Advances in Applied Mathematical Analysis, 6(2011), no. 1, 27-34.
- [2] Alb Lupaş, A., A note on strong differential subordinations using a generalized Sălăgean operator and Ruscheweyh operator, submitted 2011.
- [3] Alb Lupas, A., A note on strong differential subordinations using Sălăgean and Ruscheweyh operators, Libertas Mathematica, 31(2011), 15-21.
- [4] Alb Lupaş, A., Oros, G.I., Oros, Gh., On special strong differential subordinations using Sălăgean and Ruscheweyh operators, Journal of Computational Analysis and Applications, Vol. 14, 2012 (to appear).
- [5] Alb Lupaş, A., On special strong differential subordinations using a generalized Sălăgean operator and Ruscheweyh derivative, Journal of Concrete and Applicable Mathematics, 10(2012), no. 1-2, 17-23.
- [6] Alb Lupas, A., On special strong differential superordinations using Sălăgean and Ruscheweyh operators, Archimedes Journal of Mathematics, 1(2011) (to appear).
- [7] Alb Lupas, A., Certain strong differential superordinations using Sălăgean and Ruscheweyh operators, Acta Universitatis Apulensis, submitted 2011.
- [8] Alb Lupas, A., A note on strong differential superordinations using Sălăgean and Ruscheweyh operators, Journal of Applied Functional Analysis, submitted 2011.
- [9] Oros, G.I., Strong differential superordination, Acta Universitatis Apulensis, 19(2009), 101-106.
- [10] Oros, G.I., On a new strong differential subordination, (to appear).

Alina Alb Lupaş

Department of Mathematics and Computer Science University of Oradea

str. Universitatii nr. 1, 410087 Oradea, Romania

e-mail: dalb@uoradea.ro