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A nonsmooth sublinear elliptic problem in RY
with perturbations

Andrea-Eva Molnér

Abstract. We study a differential inclusion problem in RY involving the p-Laplace
operator and a (p—1)-sublinear term, p > N > 1. Our main result is a multiplicity
theorem; we also show the non-sensitivity of our problem with respect to small
perturbations.
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1. Introduction

Very recently, Kristdly, Marzantowicz and Varga (see [5]) studied a quasilinear
differential inclusion problem in RY involving a suitable sublinear term. The aim of the
present paper is to show that under the same assumptions, a more precise conclusion
can be concluded by exploiting a recent result of Iannizzotto (see [3]). To be more
precise, we recall the assumptions and the relevant results from [5].

Let p > 2 and F': R — R be a locally Lipschitz function such that
max{|¢|: £ € OF ()}

(Fl) 150 ‘t|p_1 = Oa
- F(t
(F2) limsup £ < 05
[t|—+o0 | |

(F3) There exists ¢ € R such that F(f) > 0, and F(0) = 0.
Here and in the sequel, 0 stands for the generalized gradient of a locally Lipschitz
function; see for details Section 2. We consider the differential inclusion problem

{ —Apu+ |ulP~2u € Aa(z)0F (u(z)) + uB(z)0G (u(x))  on RY,

u(z) — 0 as |z| — oo,

(PA,M)

where p > N > 2, the numbers A, u are positive, and G : R — R is any locally
Lipschitz function. Furthermore, we assume that 3 € L*(RY) is any function, and
(@) aeL*RY)NLYE (RY), a >0, and supg. g essinf ;< ga(z) > 0.

loc
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The functional space where the solutions of (}5& 1) are sought is the usual Sobolev
space WLP(RY), endowed with its standard norm

= ([ rvuer s [ wer)

The main application in Kristdly, Marzantowicz and Varga [5] is as follows.

Theorem A. Assume that p > N > 2. Let o, 3 € L*(RY) be two radial functions, a
fulfilling (@), and let F,G : R — R be two locally Lipschitz functions, F satisfying
the conditions (F1)-(F3).Then there exists a non-degenerate compact interval
[a,b] C]O,4+00[ and a number ¥ > 0, such that for every A\ € [a,b] there exists
tio €]0,\ + 1] such that for each p € [0, o], the problem (Px,) has at least three
distinct, radially symmetric solutions with L™ -norms less than 7.

To be more precise, (weak) solutions for (P ,) are in the following sense: We say
that u € WHP(RY) is a solution of problem (P ), if there exist {p(z) € OF (u(z))
and £g(x) € 0G(u(x)) for a. e. € RY such that for all v € WHP(RY) we have

/ (|VulP 2 VuVo + |[u|’ *uv)de = )\/ a(z)érpvdr + u/ B(z)éqvdz. (1.1)
RN RN RN

Our main result reads as follows:

Theorem 1.1. Assume that p > N > 2. Let o € L*(RY) be a radial function fulfilling
(&), and let F : R — R be a locally Lipschitz function satisfying the conditions (F1)-
(f‘3) Then there exists A\g > 0 such that for each non-degenerate compact interval
[a,b] C]Ao, 00| there exists a number r > 0 with the following property: for every
A € [a,b], every radially symmetric function 3 € L*(RYN) and every locally Lipschitz
function G : R — R, there exists 6 > 0 such that for each p € [0,0], the problem
(IE’)\,,L) has at least three distinct, radially symmetric solutions with L*°-norms less
than r.

Remark 1.2. (a) Note that since p > N, any element u € W P(RY) is homoclinic,
i.e., u(x) — 0 as |z| — oo. This is a consequence of Morrey’s embedding theorem.

(b) The terms in the right hand side of (1.1) are well-defined. Indeed, due to
Morrey’s embedding theorem, i.e., WHP(RY) — L°°(RY) is continuous (p > N), we
have u € L>(RY). Thus, there exists a compact interval I, C R such that u(z) € I,
for a.e. x € RY. Since the set-valued mapping OF is upper-semicontinuous, the set
OF(I,) C R is bounded; let Cp = sup |0F(I,)|. Therefore,

| a@lépuds] < Cellal o] < oc.
R

Similar argument holds for the function G.
(c) Note that no hypothesis on the growth of G is assumed; therefore, the last
term in (P ,) may have an arbitrary growth.
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The paper is organized as follows. In Section 2 we recall some basic elements
from the theory of locally Lipschitz functions, a recent non-smooth three critical
points result of Ricceri-type proved by Iannizzotto [3], and a compactness embedding
theorem. In Section 3 we prove Theorem 1.1.

2. Preliminaries

2.1. Locally Lipschitz functions

Let (X, || -||) be a real Banach space and X* its dual. A function h: X — R is
called locally Lipschitz if each point © € X possesses a neighborhood U, of u such
that

|h(u1) — h(uz)| < Ll|uy — usal|, Yui,ug € Uy,
for a constant L > 0 depending on U,. The generalized gradient of h at u € X is
defined as being the subset of X*
Oh(u) = {z* € X* : (2*,2) < h%(u;2) forall z € X},

which is nonempty, convex and w*-compact, where (-, -) is the duality pairing between
X* and X, h°(u; 2) being the generalized directional derivative of h at the point u € X
along the direction z € X, namely

hY(u; 2) = limsup hw +t2) = h(w)

w—u t
t—0t

)

see [2]. Moreover, h¥(u; z) = max{(xz*,2) : * € Oh(u)}, Vz € X. It is easy to verify
that (—h)%(u; 2) = h°(u; —2), and for locally Lipschitz functions hy, hs : X — R one
has
(h1 + ho)®(u; 2) < hY(u;2) + hS(u; 2), Vu,z € X,

and
The Lebourg’s mean value theorem says that for every u,v € X there exist 6 €]0, 1]
and zj; € Oh(Ou+ (1 — @)v) such that h(u) — h(v) = (z;, v — v). If hy is continuously
Gateaux differentiable, then Oha(u) = hj(u); h9(u; 2) coincides with the directional
derivative h%(u; 2) and the above inequality reduces to (hy + ho)?(u; 2) = hY(u; 2) +
hy(u; ), Yu,z € X.

A point u € X is a critical point of h if 0 € Oh(u), i.e. h°(u,w) > 0, Vw € X, see
[1]. We define A\j,(u) = inf{||z*|| : 2* € Oh(u)}. Of course, this infimum is attained,
since Oh(u) is w*-compact.

2.2. A nonsmooth Ricceri-type critical point theorem

We recall a non-smooth version of a Ricceri-type (see [7]) three critical point
theorem proved by Iannizzotto [3]. Before to do that, we need a notion: let X be a
Banach space; a functional I; : X — R is of type (N) if I1(u) = ¢(||u|]) for every
u € X, where ¢ : Ry — Ry is a continuous differentiable, convex, increasing mapping
with ¢(0) = ¢’(0) = 0.
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Theorem 2.1. [3, Corollary 7] Let X be a separable and reflexive real Banach space
with uniformly convex topological dual X*, let I; : X — R be functional of type
(N), I : X — R be a locally Lipschitz functional with compact derivative such that
Ir(ug) = 0. Setting the numbers

I I
T = max {0, lim sup 2(u) lim sup 2(u) } , (2.1)

[|u||— o0 Il(u)7 u—0 Il(u)

X = Ssup IQ (U)
L(uwyso T1(u)’

assume that T < x.

Then, for each compact interval [a,b] C (1/x,1/T) (with the conventions 1/0 =
oo and 1/oo = 0) there exists k > 0 with the following property: for every X € [a,b]
and every locally Lipschitz functional I3 : X — R with compact derivative, there exists
d > 0 such that for each p € [0, 6], the inclusion

0 € 011 (u) — MOz (u) — pdls(u)
admits at least three solutions in X having norm less than k.

2.3. Embeddings

The embedding W1P(RY) — L>(RY) is continuous (due to Morrey’s theorem
(p > N)) but it is not compact. As usual, we may overcome this gap by introducing the
subspace of radially symmetric functions of W?(R™). The action of the orthogonal
group O(N) on W1P(RY) can be defined by

(gu)(z) = u(g~ '),

for every g € O(N), u € WHP(RN), € RN, It is clear that this compact group
acts linearly and isometrically; in particular ||gu|| = ||u|| for every g € O(N) and
u € WHP(RY). The subspace of radially symmetric functions of W1P(RY) is defined
by

WhP(RNY = {u € WHP(RY) : gu = u for all g € O(N)}.

rad

Proposition 2.2. [6] The embedding era’g(RN) — L®(RY) is compact whenever 2 <
N <p<o0.

3. Proof of Theorem 1.1

Let I : WHP(RY) — R be defined by
1
I (u) = —||ul|?,
1(u) p|| I
and let I, I3 : L°(RY) — R be
Ir(u) = / a(x)F(u(z))dz and I3(u) = B(x)G(u(x))dz.
RN

RN
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Since a, 3 € L'(RY), the functionals I, I3 are well-defined and locally Lipschitz, see
Clarke [2, p. 79-81]. Moreover, we have

0I(u) C /RN a(x)0F (u(x))dz, 0lz(u) C - B(x)0G (u(x))dz.

The energy functional &, ,, : W1P(RY) — R associated to problem (PA,#), is given by
Exp(u) = Ii(u) — AMa(u) — pls(u), uve whp(RN).

It is clear that the critical points of the functional &, , are solutions of the problem
(Py,.) in the sense of relation (1.1).

Since a, § are radially symmetric, then &£, is O(NV)-invariant, i.e. & ,(gu) =
Exu(u) for every g € O(N) and u € WHP(RY). Therefore, we may apply a non-smooth
version of the principle of symmetric criticality, proved by Krawcewicz-Marzantowicz
[4], whose form in our setting is as follows.

Proposition 3.1. Any critical point of 5;?3 = SA’M\WTZE;(RN) will be also a critical point

Ofg)\,#.

Therefore, it remains to find critical point for the functional Sﬁf‘g; here, we will

check the assumptions of Theorem 2.1 with the choice X = eraig (RM).
It is standard that X is a reflexive, separable Banach space with uniformly convex
topological dual X*. The functional I is of type (N) on X since I (u) = ¢(]|u||) where

— 2
p(s) ==, 5=0.
Proposition 3.2. 0I5 is compact on X = era’g (RN).

Proof. Let {u,} be a bounded sequence in X and let u} € dl2(uy). It is clear that
u’ is also bounded in X* by exploiting Remark 1.2 (b) and hypothesis (&). Thus,
up to a subsequence, we may assume that u) — u* weakly in X* for some u* € X*.
By contradiction, let us assume that ||u) — v*||. > M, Vn € N, for some M > 0. In
particular, there exists v, € X with |jv,]| < 1 such that

(uy, —u*)(vyn) > M.

n
Once again, up to a subsequence, we may suppose that v, — v weakly in X for some
v € X. Now, applying Proposition 2.2, we may also assume that

[l — v]|pe — 0.

Combining the above facts, we obtain that

M < (ug, = u")(vn) = (uy, — u") () + up (v — ) + u" (v — vn)
< (uy, —u”)(v) + Cllon — vz +u" (v — vn)
for some C > 0. Since all the terms from the right hand side tend to 0, we get a
contradiction. O

s iy L2(w)
Proposition 3.3. i% It = 0.
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Proof. Due to (F1), for every € > 0 there exists d(g) > 0 such that
€] < el Ve e [<8(2), 6(e)], Y € OF (1), (3.1)

For any 0 <t < % (%)p define the set

Sy = { ue Wh(RY) : [[ul]” < pt},

rad

where ¢, > 0 denotes the best constant in the embedding WP (RY) — L>(RN).
Note that u € Sy implies that ||ul|e < d(g); indeed, we have |Julco < coollul| <

Coo(pt)/P < §(€). Fix u € Sy; for a.e. z € RN, Lebourg’s mean value theorem and
(3.1) imply the existence of &, € IF (0 u(x)) for some 0 < 6, < 1 such that

IF(a(2))] = |[F(u(@)) — FO)] = [&u(2)] < elu(z)P.
Consequently, for every u € S; we have
Bl = | [ o@F@)dd < [ o)

el llullés < ellallLreflull?.

IN

P
Therefore, for every u € S; \ {0} with 0 <t < % (@) we have

|£2(u)]
Il (’LL)
Since € > 0 is arbitrary, we obtain the required limit. O

0<

<cellallzrcEp-

Proposition 3.4. limsup,_ ﬁ'gzg <0.

Proof. By (F2), for every e > 0 there exists d(¢) > 0 such that
F(t) < eltP, ¥it] € [5(c), o, (3.2)

Consequently, for every u € Wi;g (RY) we have
Ir(u) :/ a(z)F (u(x))dx
RN

a(x)F(u(x))dz + / a(x)F (u(x))dz
{zeRN:Ju(z)|<é(e)}

B /{xERN:u(ac)>6(s)}

gs/ a(x)|u(x)|Pde + max |F(t)|/ a(z)dz
{€RN:|u(x)|>5(c) } It1<d(e) {zERN:|u(x)|<5(<)}
<ellaflpreglull” + ol L e |E(t)].

Therefore, for every u € WoF(RV) \ {0}, we have

ra
Ir(u) _
< P4 m F(t P,
Ti(u) = epllallpiel, + pllallz \tls%é)| O[]

Once |Ju|| — oo, the claim is proved, taking into account that € > 0 is arbitrary. O
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Due to hypothesis (&), one can fix R > 0 such that ar = essinf|,j<ga(x) > 0.
For o €]0, 1] define the function

, if xeRN\By(0,R);
~ it x€ By(0,0R);
ﬁ(R—M), if z€By(0,R)\ By(0,0R),

O

wey(x) =

where By (0,7) denotes the N —dimensional open ball with center 0 and radius r > 0,
and t comes from (F3). Since a € L. (R"Y), then M (a, R) = sup,c g, (0,r) @(x) < 0.
A simple estimate shows that
I(wy) > wy RN [apF(f)o™ — M(a, R) max |F(t)|(1 — o™)].
I¢1<I]

When o — 1, the right hand side is strictly positive; choosing oy close enough to 1,
for ug = we, we have Iz(ug) > 0.

Proof of Theorem 1.1. It remains to combine Theorem 2.1 with Propositions 3.1-3.4.
The definitions of the number 7 and Y, see relations (2.2)-(2.1), show that 7 = 0 and

Il(u)

Aoi=x"1=
0 =X I (IB)>0 Ir(u)

is well-defined, positive which is the number appearing in the statement of Theorem
1.1. O
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