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On analytic functions with generalized bounded
variation
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Abstract. In this paper we study a class introduced by Bhargava and Nanjunda
Rao which unifies a number of classes studied previously by Mocanu and others.
This class includes several known classes of analytic functions such as convex and
starlike functions of order β, α-convex functions, functions with bounded bound-
ary rotation, bounded radius rotation and bounded Mocanu variation. Several
interesting properties like inclusion results, arclength problem, coefficient bounds
and distortion results of this class are discussed.
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1. First section (Introduction)

Let A denote the class of analytic functions of the form

f(z) = z +
∞∑

n=2

anzn, (1.1)

in the unit disc E = {z; |z| < 1}. Let P designate the class of functions p which are
analytic, have positive real part in E and satisfy p(0) = 1. Let Mk denote the class of
real-valued functions µ(t) of bounded variation on [0, 2π] which satisfy the conditions,∫ 2π

0

dµ(t) = 2, and

∫ 2π

0

|dµ(t)| ≤ k. (1.2)

M2 is clearly the class of nondecreasing functions on [0, 2π] satisfying∫ 2π

0

dµ(t) = 2.
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If µ(t) ∈ Mk with k > 2 we can write µ(t) = α(t)−β(t) where α(t) and β(t) are
both nondecreasing functions on [0, 2π] and satisfy∫ 2π

0

dα(t) ≤ k

2
+ 1, and

∫ 2π

0

dβ(t) ≤ k

2
− 1. (1.3)

Let Pk denote the class of functions p analytic in E such that p(0) = 1, z = reiθ.
and having the representation

p(z) =
1
2

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t), (1.4)

where µ(t) ∈ Mk . This class has been studied by Pinchuk [5] .
Clearly P2 = P . We can write for p(z) ∈ Pk as

p(z) =
1
2

(
k

2
+ 1

)
P1(z)− 1

2

(
k

2
− 1

)
P2(z)

where P1, P2 ∈ P .

Definition 1.1. Let f ∈ A with f(z)f ′(z)
z 6= 0 in E , and let

Jf = Jf (α, b, c) = (1− α)
[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
1 +

z

b

f ′′(z)
f ′(z)

]
where α, b 6= 0 and c 6= 0 are complex numbers.

Let Bk(α, b, c) be the class of all fuctions f in E , such that if Jf ∈ Pk for
z ∈ E , k ≥ 2.

This class is a particular case of the class studied earlier by Bhargava and Nan-
junda Rao [1] which unifies and generalizes various classes studied earlier by Robert-
son [6], Moulis [3], Pinchuk [5], Padmanabhan and Parvatham [4], and Khalida Inayat
Noor and Ali Muhammad [2].

For f, g ∈ A given by f(z) = z+
∞∑

n=2

anzn, and g(z) = z+
∞∑

n=2

bnzn the Hardmard

product is given by (f ∗ g)(z) = z +
∞∑

n=2

anbnzn.

Let Γ denote the Gamma function of Euler and G(l,m, n; z) be the analytic
function for z in E defined by

G(l,m, n; z) =
Γ(n)

Γ(l)Γ(n− l)

∫ 1

0

ul−1(1− u)n−l−1(1− zu)−ndu, (1.5)

where <{l} > 0, and,<{l − n} > 0. Also we define

N(α, b, c, r) = r

[
G

(
2b

αc
,M,M + 1, r

)] 1
M

. (1.6)

and

fθ(α, b, c, z) =
[
M

∫ z

0

tM−1(1− eiθt)
−2b

α dt

] 1
M

(1.7)

where M = 1 + (1−α)b
αc , α 6= 0, 0 ≤ θ ≤ 2π.
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2. Second section

We use the following lemmas to prove the main results.

Lemma 2.1. Let p be analytic in E and p(0) = 1, then α ≥ 0, z ∈ E,
(
p + αzp′

p

)
∈ Pk

implies p ∈ Pk.

Lemma 2.2. [7] Let f ∈ A with f(z)f ′(z)
z 6= 0 in E , then f is univalent in E if and

only if for 0 ≤ θ1 < θ2 ≤ 2π and 0 < r < 1, we have∫ θ2

θ1

[
<

{
1 + z

f ′′(z)
f ′(z)

+ (β − 1)z
f ′(z)
f(z)

}
− α=z

f ′(z)
f(z)

]
dθ > −π

with z = reiθ, β > 0 and α real.

Theorem 2.3. f ∈ Bk(α, b, c) , α 6= 0, b 6= 0, c 6= 0, if and only if there is a function
g ∈ Bk(0, b, 1) = Rk such that

f(z) =

[
M

∫ z

0

tM−1

(
g(t)
t

) b
α

dt

] 1
M

, (2.1)

where M = 1 + (1−α)b
αc .

Proof. Using ( 2.1) we get,

(1− α)
z

c

f ′(z)
f(z)

+
α

b
z
f ′′(z)
f ′(z)

=
1− α

c
+ z

g′(z)
g(z)

− 1

(1− α)
[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
1 +

z

b

f ′′(z)
f ′(z)

]
= z

g′(z)
g(z)

If Jf belongs to Pk, so does the left hand side and conversely. �

Putting c = 1 and b = 1− β in above Theorem we get the following corollary.

Corollary 2.4. [2] f ∈ Bk(α, β) , α 6= 0, if and only if there is a function g ∈
Bk(0, β) = Rk such that

f(z) =

[
M

∫ z

0

tM−1

(
g(t)
t

) 1−β
α

dt

] 1
M

,

where M = 1 + (1−α)(1−β)
α .

Theorem 2.5. Let f ∈ Bk(α, b, c) then the function

g(z) = z

(
f(z)

z

) 1−α
c

(f ′(z))
α
b (2.2)

belongs to Rk for all z ∈ E.
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Proof. Logarithmic differentiation of ( 2.2) yields

z
g′(z)
g(z)

= 1 +
(1− α)

c
z
f ′(z)
f(z)

− (1− α)
c

+
α

b
z
f ′′(z)
f ′(z)

= (1− α)
[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
1 +

z

b

f ′′(z)
f ′(z)

]
Since f ∈ Bk(α, b, c) the result follows. �

For the parametric values c = 1 and b = 1− β we get the following result.

Corollary 2.6. [2] Let f ∈ Bk(α, β) then the function

g(z) = z

(
f(z)

z

)1−α

(f ′(z))
α

1−β

belongs to Rk for all z ∈ E.

Remark 2.7. The above Theorem can also be obtained as a particular case of Theorem
3.1 by Bhargava and Nanjunda Rao [1].

Theorem 2.8. Bk(α, b, c) ⊂ Rk, for α > 0, b 6= 0.

Proof. Let zf ′(z)
f(z) = p(z), p analytic in E , with p(0) = 1. Now

1
b

{
(1− α)b

[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
b +

zf ′′(z)
f ′(z)

]}
=

α

b

{
(1− α)

αc
b[(c− 1) + p(z)] + α

[
b +

zf ′′(z)
f ′(z)

]}
=

α

b

{
(M − 1)[(c− 1) + p(z)] +

[
b +

zp′(z)
p(z)

+ p(z)− 1
]}

=
α

b

[
Mp(z) +

zp′(z)
p(z)

+ (M − 1)(c− 1) + (b− 1)
]

=
α

b

[
M

{
p(z) +

1
M

zp′(z)
p(z)

}
+ (M − 1)(c− 1) + (b− 1)

]
∈ Pk.

Therefore
{

p(z) + 1
M

zp′(z)
p(z)

}
∈ Pk, and by using Lemma 2.1. it follows that p ∈ Pk,

z ∈ E . This proves that f ∈ Rk. �

Corollary 2.9. [2] Bk(α, β) ⊂ Rk, for α > 0, 0 ≤ β < 1.

Theorem 2.10. i. Bk(α, b, c) ⊂ Bk1(α1, b, c), 0 < α ≤ α1, and k1 = k
(

2α1−α
α

)
.

ii. Bk(α, b, c) ⊂ Bk(α1, b, c), 0 ≤ α1 < α.

Proof. (i) Let f ∈ Bk(α, b, c) then

1
b

{
(1− α1)b

[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α1

[
b +

zf ′′(z)
f ′(z)

]}
=

α1

α

{
(1− α)b

[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
b +

zf ′′(z)
f ′(z)

]}
− (α1 − α)

α
b

[
1− 1

c
+

z

c

f ′(z)
f(z)

]
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= b

[
α1

α
h1(z)− (α1 − α)

α
h2(z)

]
, h1, h2 ∈ Pk. (2.3)

by using Definition 1.1 and Theorem 2.8. From ( 2.3) it follows that∫ 2π

0

|<Jf |dθ ≤
[
α1

α
+

(α1 − α)
α

]
kπ =

(
2α1 − α

α

)
kπ.

(ii) Let f ∈ Bk(α, b, c). Then

(1− α1)
[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α1

[
1 +

z

b

f ′′(z)
f ′(z)

]
=

(
1− α1

α

) [
1− 1

c
+

z

c

f ′(z)
f(z)

]
+

α1

α

{
(1− α)

[
1− 1

c
+

z

c

f ′(z)
f(z)

]
+ α

[
1 +

z

b

f ′′(z)
f ′(z)

]}
=

(
1− α1

α

)
H1(z)+ α1

α H2(z), H1,H2 ∈ Pk, z ∈ E , since Pk is a convex set. Therefore
f ∈ Bk(α1, b, c), for z ∈ E . �

Corollary 2.11. [2]
i. Bk(α, β) ⊂ Bk1(α1, β), 0 < α ≤ α1, and k1 = k

(
2α1−α

α

)
ii. Bk(α, β) ⊂ Bk(α1, β), 0 ≤ α1 < α.

Theorem 2.12. Let f ∈ Bk(α, b, c). Then f is univalent in E for k ≤ 2(3αc−bc+2b−2bα)
bc .

Proof. Since f ∈ Bk(α, b, c), also we have z = reiθ, 0 ≤ r < 1, 0 ≤ θ1 < θ2 ≤ 2π∫ θ2

θ1

<
{

(1− α)
αc

[
c− 1 +

zf ′(z)
f(z)

]
+

1
b

[
1 +

zf ′′(z)
f ′(z)

]}
dθ≥ −

(
k

2
− 1

)
π

α
−

(
b− 1

b

)
2π∫ θ2

θ1

<
{[

1 +
zf ′′(z)
f ′(z)

]
+

[
b(1− α)

αc
− 1

]
zf ′(z)
f(z)

}
dθ

≥ −
[(

k

2
− 1

)
b

α
+ 2(b− 1) +

2(1− α)(c− 1)b
αc

]
π

by using Lemma 2.2, that f is univalent in E if k ≤ 2(3αc−bc+2b−2bα)
bc . �

Corollary 2.13. Let f ∈ Bk(α, β). Then f is univalent in E for k ≤ 2(α+2αβ−β+1)
(1−β) .

Theorem 2.14. Let f ∈ Bk(α, b, c), α > 0 and Lr(f) denote the length of the curve
C = f(reiθ), 0 ≤ θ ≤ 2π and N(r) = max

0≤θ≤2π
|f(reiθ)| , then for 0 < r < 1,

Lr(f) ≤ N(r)b
α

{
k +

(α− 1)
c

[(c− 1)2 + k] +
α

b
(1− b)2

}
π, α > 0.

Proof. We have, z = reiθ

Lr(f) =
∫ 2π

0

|zf ′(z)|dθ =
∫ 2π

0

zf ′(z)e−iarg(zf ′(z))dθ.

On integration we get,

Lr(f) =
∫ 2π

0

f(z)e−iarg(zf ′(z))<
{

(zf ′(z))′

f ′(z)

}
dθ
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≤ N(r)b
α

∫ 2π

0

∣∣∣∣<Jf + (α− 1)
[
1− 1

c
+

z

c

f ′(z)
f(z)

]
− α +

α

b

∣∣∣∣ dθ

≤ N(r)b
α

{
kπ + (α− 1)

[(
1− 1

c

)
2π +

πk

c

]
+ α(

1
b
− 1)2π

}
≤ N(r)b

α

{
k +

(α− 1)
c

[(c− 1)2 + k] +
α

b
(1− b)2

}
π.

�

Corollary 2.15. [2] Let f ∈ Bk(α, β), α > 2 and Lr(f) denote the length of the curve
C = f(reiθ), 0 ≤ θ ≤ 2π and N(r) = max

0≤θ≤2π
|f(reiθ)| , then for 0 < r < 1,

Lr(f) ≤ (1− β)N(r)
[
k +

2β

1− β

]
π, α > 0.

Theorem 2.16. Let f given by ( 1.1) belongs to Bk(α, b, c) for α ≥ 0. Then for n ≥ 2,
nan = O(1)N

(
n−1

n

)
, where O(1) is a constant depending on α, b, c, k only.

Proof. We have,

nan =
1

2πrn

∫ 2π

0

zf ′(z)e−inθdθ, z = reiθ

nan ≤
1

2πrn

∫ 2π

0

|zf ′(z)|dθ =
1

2πrn
Lr(f).

By using Theorem 2.14 and r = n−1
n , we get the required result. �

Corollary 2.17. [2] Let f given by ( 1.1) belongs to Bk(α, β) for α ≥ 0. Then for
n ≥ 2, nan = O(1)N

(
n−1

n

)
, where O(1) is a constant depending on α, β, k only.

Theorem 2.18. Let f ∈ B2(α, b, c), α 6= 0, b 6= 0, c 6= 0 and |z| = r (0 < r < 1).
Then

(i) N(α, b, c,−r) ≤ |f(z)| ≤ N(α, b, c, r), for α > 0.

(ii) N(α, b, c, r) ≤ |f(z)| ≤ N(α, b, c,−r), for α < 0.

This result is sharp and equality occurs, for the function fθ(α, b, c, z) defined by (1.7),
with suitably chosen θ.

Proof. We consider α > 0. From Theorem 2.3, certifies the existence of f ∈ B2(α, b, c)
if and only if there exists a g ∈ R2 = S∗ such that

f(z) =

[
M

∫ z

0

tM−1

(
g(t)
t

) b
α

dt

] 1
M

, where M = 1 +
(1− α)b

αc
. (2.4)

Taking z = r, t = ρeiθ and integrating , we get from( 2.4),

f(r) =
[
MeiθM

∫ r

0

ρM−1

(
g(ρ)
ρ

)
dρ

] 1
M

. (2.5)

Since g is starlike , we have
ρ

(1 + ρ)2
≤ |g(t)| ≤ ρ

(1− ρ)2
. (2.6)
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Using (2.6) in (2.5), we get

|f(r)|M ≤ M

∫ r

0

ρM−1(1− ρ)
−2b

α dρ = MrM

∫ 1

0

uM−1(1− ru)
−2b

α du. (2.7)

Therefore |f(r)| ≤ N(α, b, c, r), α > 0.
It remains only to prove that the left-hand inequality. We consider the straight

line Γ∗ joining 0 to f(z) = Reiφ. Γ∗ is the image of a Jordan arc γ in E connecting 0
and z = reiθ. If z0 is a point on the circumference |z| = r such that

|f(z0)| = min
0≤θ≤2π

|f(reiθ)|.

Using (2.5) and (2.6), we get

|f(z0)|M ≥ M

∫ r

0

ρM−1(1 + ρ)
−2b

α dρ = MrM

∫ 1

0

uM−1(1 + ru)
−2b

α du.

|f(z)| ≥ N(α, b, c,−r), α > 0.

Proof of (ii) is analogous to proof of (i). �

Corollary 2.19. [2] Let f ∈ B2(α, β), α 6= 0, 0 < β < 1 and |z| = r (0 < r < 1).
Then

(i) N(α, β,−r) ≤ |f(z)| ≤ N(α, β, r), for α > 0.

(ii) N(α, β, r) ≤ |f(z)| ≤ N(α, β,−r), for α < 0.

This result is sharp and equality occurs, for the function fθ(α, b, c, z) defined by ( 1.7),
with suitably chosen θ.

Remark 2.20. The above Theorem can be obtained as a particular case of Corollary
3.2 by Bhargava and Nanjunda Rao [1].

Theorem 2.21. Let f ∈ B2(α, 1, c), α > 0. Then, for |z| = r (0 < r < 1), we have

r + |α− 1|(1 + r)2N(α, 1, c,−r)
αr(1 + r)2

≤ |f ′(z)| ≤ r + |α− 1|(1− r)2N(α, 1, c,−r)
αr(1− r)2

.

This result is sharp.

Theorem 2.22. Let f ∈ B2(α, b, c), α 6= 0, b 6= 0. and be given by ( 1.1). Then

|a2| ≤
2b

|(1− α)b + 2αc|
.

Proof. By using Theorem 2.18, we have

N(α, b, c, r) = r +
2b

(1− α)b + 2αc
r2 + O(r3),

and
|f(r)| = r + a2r

2 + O(r3).
Therefore, we have

a2 ≤
2b

(1− α)b + 2αc
(α > 0). �
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Corollary 2.23. [2] Let f ∈ B2(α, β) ,α 6= 0, 0 < β < 1. and be given by ( 1.1). Then

|a2| ≤
2(1− β)

|(1− α)(1− β + 2α|
.

Remark 2.24. The above Theorem can be obtained as a particular case of Corollary
3.1 by Bhargava and Nanjunda Rao [1].

Theorem 2.25. Let f ∈ Bk(1, b, c). Then, with |z| = r, r1 = 1−r
1+r we have

2m−1

l
[G(l,m, n,−1)− rl

1G(l,m, n,−r1)] ≤ |f(z)|

≤ 2m−1

l
[G(l,m, n,−1)− r−l

1 G(l,m, n,−r−1
1 )]

where l =
(

k
2 − 1

)
b + 1, m = 2(1− b), n =

(
k
2 − 1

)
b + 2.

Proof. Since f ∈ Bk(1, b, c). we have from ( 2.4)

f ′(z) =
(

g(z)
z

)b

, g ∈ Rk.

Since g ∈ Rk

(1− |z|) k
2−1

(1 + |z|) k
2 +1

≤ |g(z)| ≤ (1 + |z|) k
2−1

(1− |z|) k
2 +1

.

Therefore, we have

|f ′(z)| ≥ (1− |z|)(
k
2−1)b

(1 + |z|)(
k
2 +1)b

.

Let dr denote the radius of the largest Schlicht disc centered at the origin contained
in the image |z| < r under f(z).

dr = |f(z0)| =
∫

c

|f ′(z)||dz| ≥
∫

c

(1− |z|)(
k
2−1)b

(1 + |z|)(
k
2 +1)b

|dz| ≥
∫ |z|

0

(1− s)(
k
2−1)b

(1 + s)(
k
2 +1)b

ds

=
∫ |z|

0

[
1− s

1 + s

]( k
2 +1)b

ds

(1 + s)2b

Replacing 1−s
1+s = t we get

≥ −2
4b

∫ 1−|z|
1+|z|

1

t(
k
2−1)b(1 + t)2b−2dt

= −21−2b

∫ 1−r
1+r

0

t(
k
2−1)b(1 + t)2(b−1)dt + 21−2b

∫ 0

1

t(
k
2−1)b(1 + t)2(b−1)dt = I1 + I2.

Taking 1−r
1+r = r1, t = r1u, we have

I1 = −21−2brl
1

∫ 1

0

u( k
2−1)b(1 + r1u)2(b−1)du
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using ( 1.5) we obtain,

I1 = rl
1

(
−2m−1

l

)
G(l,m, n,−r1),

where l =
(

k
2 − 1

)
b + 1, m = 2(1− b), n =

(
k
2 − 1

)
b + 2.

I2 = 21−2b

∫ 1

0

t(
k
2−1)b(1 + t)2(b−1)dt =

(
2m−1

l

)
G(l, m, n,−1),

where l =
(

k
2 − 1

)
b + 1, m = 2(1− b), n =

(
k
2 − 1

)
b + 2.

Therefore

|f(z)| ≥
(

2m−1

l

)
G(l,m, n,−1)− rl

1

(
2m−1

l

)
G(l,m, n,−r1).

On the other hand we have

|f ′(z)| ≤ (1 + |z|)(
k
2−1)b

(1− |z|)(
k
2 +1)b

.

Therefore

|f(z)| ≤
∫ |z|

0

(1− s)(
k
2−1)b

(1 + s)(
k
2 +1)b

ds ≤ −21−2b

∫ 1−|z|
1+|z|

1

ζ( k
2−1)b(1 + ζ)2(b−1)dζ

=
2m−1

l
[G(l,m, n,−1)− r−l

1 G(l,m, n,−r−1
1 )],

where l =
(

k
2 − 1

)
b + 1, m = 2(1− b), n =

(
k
2 − 1

)
b + 2. �

Corollary 2.26. Let f ∈ Bk(1, β). Then, with |z| = r, r1 = 1−r
1+r we have

2m−1

l
[G(l,m, n,−1)− rl

1G(l,m, n,−r1)] ≤ |f(z)|

≤ 2m−1

l
[G(l,m, n,−1)− r−l

1 G(l,m, n,−r−1
1 )]

where l =
(

k
2 − 1

)
(1− β) + 1, m = 2β, n =

(
k
2 − 1

)
(1− β) + 2.
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