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1. Introduction

Firstly we will present the definition of a cone.

Definition 1.1. Let X be a normed linear space. A nonempty closed, convex
set P ⊂ X is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P,−x ∈ P implies x = 0.

After the well known paper of Legget and Williams(see [6]), many au-
thors have given generalizations of the following Krasnoselskii’s fixed point
theorem:

Theorem 1.2. (Krasnoselskii) Let (X, | . |) be a normed linear space, K ⊂ X a
cone and ” ≺ ” the order relation induced by K. Let be r,R ∈ R+, 0 < r < R,
Kr,R := {u ∈ K : r ≤| u |≤ R} and let N : Kr,R → K be a completely
continuous map. Assume that one of the following conditions is satisfied:

(i) | Nu |≥| u | if | u |= r and | Nu |≤| u | if | u |= R
(ii) | Nu |≤| u | if | u |= r and | Nu |≥| u | if | u |= R.
Then N has a fixed point u∗ in K with r ≤| u∗ |≤ R.

For example, in [8], the author gives the following result. Before to
state it, we introduce a few notations. We shall consider two wedges K1,K2

of X and the corresponding wedge K := K1 × K2 of X2 := X × X. For
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r,R ∈ R2
+, r = (r1, r2), R = (R1, R2), we write 0 < r < R if 0 < r1 < R1

and 0 < r2 < R2, and we use the notations:

(Ki)riRi
:= {u ∈ Ki : ri ≤| u |≤ Ri} (i = 1, 2)

KrR := {u ∈ K : ri ≤| ui |≤ Ri for i = 1, 2}.

Clearly, KrR = (K1)r1R1
× (K2)r2R2

.

Theorem 1.3. ([8]) Let (X, | . |) be a normed linear space; K1,K2 ⊂ X two
wedges; K := K1 × K2; αi, βi > 0 with αi 6= βi for i = 1, 2, and let ri =
min{αi, βi}, Ri = max{αi, βi} for i = 1, 2. Assume that N : KrR → K,
N = (N1, N2), is a compact map and there exist hi ∈ Ki \ {0}, i = 1, 2 such
that for each i ∈ {1, 2} the following condition is satisfied in KrR :

Niu 6= λui for | ui |= αi and λ > 1;

Niu+ µhi 6= ui for | ui |= βi and µ > 0.

Then N has a fixed point u = (u1, u2) in K with ri ≤| ui |≤ Ri for i = 1, 2.

Also, in [9], the author gives the following result (Here (E, | . |) is a
normed linear space and ‖ . ‖ is another norm on E, C ⊂ E is a nonempty
convex, not necessarily closed set with 0 /∈ C and λC ⊂ C for all λ > 0),
assuming that there exist constants c1, c2 > 0 such that the norms | . | and
‖ . ‖ are topologically equivalent, which is

c1 | x |≤‖ x ‖≤ c2 | x | for all x ∈ C.

Also assume that ‖ . ‖ is increasing with respect to C , that is ‖ x+y ‖>‖ x ‖
for all x, y ∈ C.

Theorem 1.4. ([9]) Assume 0 < c2ρ < R, ‖ . ‖ is increasing with respect to
C, and the map N : D = {x ∈ C :‖ x ‖≤ R} → C is compact. In addition
assume that the following conditions are satisfied:

(H1) ‖ N(x) ‖≥‖ x ‖ for all x ∈ C with | x |= ρ,

(H2) | N(x) |<| x | for all x ∈ C with ‖ x ‖= R.

Then N has at least one fixed point x ∈ C with ρ ≤| x | and ‖ x ‖< R.

For other generalizations and applications of Krasnoselskii’s fixed point
theorem in cone the reader may see the papers [7] and [1]-[4].

In this paper we are interested to give some new abstract results and
we use conditions of type

ϕ(u) ≥ ϕ(Nu) if | u |= r

instead of condition

| u |≥| Nu | if | u |= r

which is assumed in Krasnoselskii’s fixed point theorem in cone.
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2. The main results

Throughout this paper we consider (X, | . |) be a normed linear space,
K ⊂ X a positive cone, ”�” the order relation induced by K and ”≺” the
strict order relation induced by K.

Theorem 2.1. Let be Kr,R = {x ∈ K : r ≤| x |≤ R}, where r,R ∈ R+,
r < R. We assume that N : Kr,R → K is a completely continuous operator
and ϕ : K → R+,ψ : K → R. Also, assume that the following conditions are
satisfied:

(i.1)

 ϕ(0) = 0 and there exists h ∈ K − {0} such that
ϕ(λh) > 0, for all λ ∈ (0, 1],
ϕ(x+ y) ≥ ϕ (x) + ϕ (y) for all x, y ∈ K,

(i.2) ψ (αx) > ψ (x) for all α > 1 and for all x ∈ K with | x |= R,

(i.3)
{
ϕ(u) ≤ ϕ (Nu) if | u |= r
ψ (u) ≥ ψ (Nu) if | u |= R.

Then N has a fixed point in Kr,R

Proof. Let N∗ : K → K be given by

N∗(u) =


h, if u = 0,
(1− |u|

r )h+ |u|
r N( r

|u|u), if 0 <| u |< r,

Nu, if r ≤| u |≤ R,
N( R

|u|u), if | u |≥ R.

N is completely continuous, so N∗ is completely continuous too. From our
hypothesis we have that N∗(K) ⊂ K is a convex and relatively compact set,
so from Schauder’ s fixed point theorem it follows that there exists u∗ ∈ K
with N∗ (u∗) = u∗. We have to consider three cases.

Case 1. Suppose that u∗ = 0. We have 0 = N∗ (0) = h, a contradiction
with h ∈ K \ {0}.

Case 2. Suppose that 0 <| u∗ |< r. We obtain(
1− | u∗ |

r

)
h+

| u∗ |
r

N

(
r

| u∗ |
u∗

)
= u∗,(

r

| u∗ |
− 1

)
h+N(

r

| u∗ |
u∗) =

r

| u∗ |
u∗.

Let λ := r
|u∗| − 1 and u0 := r

|u∗|u
∗. Since | u∗ |< r we have that r

|u∗| > 1, so
λ > 0. Also, | u0 |=| r

|u∗|u
∗ |= r

|u∗| | u
∗ |= r, so | u0 |= r. We obtain

λh+N(u0) = u0 (2.1)

For λ > 0, from (i1) we obtain that

ϕ(N(u0) + λh) ≥ ϕ(N(u0)) + ϕ(λh) > ϕ(N(u0)).

Then, from (2.1) we obtain ϕ (u0) > ϕ (N(u0)), a contradiction with (i3).
Case 3. Suppose that | u∗ |> R. We have N( R

|u∗|u
∗) = u∗. Let u1 :=

R
|u∗|u

∗ and β := |u∗|
R > 1. We have | u1 |= R and N(u1) = u∗ = u1

|u∗|
R ,
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so N(u1) = βu1. From (i.2) we obtain ψ(N (u1)) = ψ (βu1) > ψ (u1), a
contradiction with (i.3). So r ≤| u∗ |≤ R and the conclusion follows. �

Remark 2.2. (1) If X := C[0, 1], η > 0, I ⊂ [0, 1], I 6= [0, 1], ‖ x ‖:= max
t∈[0,1]

x(t)

and K := {x ∈ C[0, 1] : x ≥ 0 on [0, 1], x(t) ≥ η ‖ x ‖ for all t ∈ I} is a cone,
a functional that satisfies (i1) is

ϕ(x) := min
t∈I

x(t).

Indeed, ϕ(0) = 0,there exists h ∈ K − {0} such that ϕ(λh) > 0, for all
λ ∈ (0, 1] and

ϕ(x+ y) = min
t∈I

[x(t) + y(t)] ≥ min
t∈I

x(t) + min
t∈I

y(t) = ϕ(x) + ϕ(y).

(2) The norm is an example of functional that satisfies (i2).

Theorem 2.3. Let Kr,R = {x ∈ K : r ≤| x |≤ R}, where r,R ∈ R+, r < R.
We assume that N : Kr,R → K is a completely continuous operator and
ϕ,ψ : K → R. Also, we assume that the following conditions are satisfied:

(ii.1) ϕ is strictly decreasing,
(ii.2) ψ (αx) < ψ (x) for all α > 1 and for all x ∈ K with | x |= R,

(ii.3)
{
ϕ (u) ≥ ϕ (Nu) if | u |= r,
ψ (u) ≤ ψ (Nu) if | u |= R.

Then N has a fixed point in Kr,R.

Proof. Let h � 0 and N∗ : K → K,

N∗(u) =


h, if u = 0
(1− |u|

r )h+ |u|
r N( r

|u|u), if 0 <| u |< r

Nu, if r ≤| u |≤ R
N( R

|u|u), if | u |≥ R.

Since N∗ is completely continuous, we have, like in Theorem 2.1, that there
exists u∗ ∈ K so that N∗(u∗) = u∗. We consider three cases.

Case 1. If u∗ = 0 we obtain 0 = N∗(0) = h , a contradiction with h � 0.
Case 2. If 0 <| u∗ |< r. We obtain (2.1) with λ > 0 and | u0 |= r, like

in Theorem 2.1. From λh � 0, we have that

N (u0) + λh � N (u0) ,

so, from (ii.1), we have that

ϕ (N (u0) + λh) < ϕ (N (u0))

and from (2.1) we obtain

ϕ (u0) < ϕ (N (u0)) for | u0 |= r,

a contradiction with (ii.3).
Case 3. If | u∗ |> R, we have that

N

(
R

| u∗ |
u∗

)
= u∗,
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so

N

(
R

| u∗ |
u∗

)
=

(
R

| u∗ |
u∗

)
| u∗ |
R

.

Let be u1 := R
|u∗|u

∗, so | u1 |= R and let be β := |u∗|
R > 1. We obtain

N(u1) = βu1, so
ψ (N(u1)) = ψ (βu1) (2.2)

From (ii.2) we obtain
ψ (βu1) < ψ (u1)

and from (2.2) we have

ψ (N(u1)) < ψ (u1) for | u1 |= R,

a contradiction with (ii.3). So r ≤| u∗ |≤ R and the conclusion follows. �

Remark 2.4. ψ(x) := 1
|x|+1 is an example of functional that satisfies (ii.2).

Indeed, for α > 1 and | x |= R, we have that

ψ(αx) =
1

α | x | +1
<

1
| x | +1

= ψ(x).

Also, if | . | is strictly increasing, i.e., x < y implies | x |<| y |, then ϕ(x) :=
1

|x|+1 is strictly decreasing, so it satisfies (ii.1).

Theorem 2.5. Let Kr,R := {x ∈ K : r ≤| x |≤ R}, where r,R ∈ R+, r < R.
We assume that N : Kr,R → K is a completely continuous operator and
ϕ,ψ : K → R+. Also, we assume that the following conditions are satisfied:

(iii.1)
{
ϕ(αx) = αϕ(x), for all α > 0 and for all x ∈ K,
ϕ(αx) > ϕ(x), for all α > 1 and for all x ∈ K with | x |= R,

(iii.2)


ψ(0) = 0 and there exists h ∈ K \ {0} such that
ψ(λh) > 0 for all λ ∈ (0, 1],
ψ(αx) = αψ(x) for all α > 0 and for all x ∈ K,
ψ(x+ y) ≥ ψ(x) + ψ(y) for all x, y ∈ K,

(iii.3) {
ϕ(u) ≥ ϕ(Nu) if | u |= r,
ψ(u) ≤ ψ(Nu) if | u |= R.

Then N has a fixed point in Kr,R.

Proof. Define N∗ : Kr,R → K by

N∗(u) := (
R

| u |
+

r

| u |
− 1)−1N((

R

| u |
+

r

| u |
− 1)u).

Since N is completely continuous, it follows that N∗ is completely continuous
too. Let

α :=
R

| u |
+

r

| u |
− 1

and
u0 := αu.

We have now,
αN∗(u) = N(αu).
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If | u |= r, then

α =
R

r
and | u0 |=| αu |=

R

r
r = R.

So, from (iii.2),

ψ(N(u0)) = ψ(N(αu)) = ψ(αN∗(u)) = αψ(N∗(u)) (2.3)

and from (iii.3),

ψ(N(u0)) ≥ ψ(u0) = ψ(αu) = αψ(u). (2.4)

From (2.3) and (2.4) we obtain that

ψ(N∗(u) ≥ ψ(u) if | u |= r. (2.5)

If | u |= R, then

α =
r

R
and | u0 |=| αu |=

r

R
R = r.

Using (iii.3) we obtain that

ϕ(αu) = ϕ(u0) ≥ ϕ(N(u0)) = ϕ(N(αu)) = ϕ(αN∗(u)) (2.6)

and from (iii.1),

ϕ(αu) = αϕ(u) and ϕ(αN∗(u)) = αϕ(N∗(u)). (2.7)

From (2.6) and (2.7) we deduce that

ϕ(u) ≥ ϕ(N∗(u)) if | u |= R. (2.8)

So, (2.5) and (2.8) imply that ϕ, ψ and N∗ satisfy all the conditions of
Theorem 2.1 (with ϕ and ψ changing their places and N∗ instead of N). So
N∗ has a fixed point u∗ in Kr,R. It follows that

N∗(u∗) = u∗, with r ≤| u∗ |≤ R,

so
1
α
N(αu∗) = u∗.

Making the notation u1 := αu∗, where α = R
|u∗| + r

|u∗| − 1 , we obtain

N(u1) = u1 (2.9)

and
| u1 |= α | u∗ |= R+ r− | u∗ | .

Since

R+ r− | u∗ |≥ r, for r ≤| u∗ |≤ R,

R+ r− | u∗ |≤ R, for r ≤| u∗ |≤ R,

we have that
r ≤| u1 |≤ R, that is u1 ∈ Kr,R. (2.10)

From (2.9) and (2.10) the conclusion follows. �
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