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a—tauberian results
Bruno de Malafosse

Abstract. In this paper we consider problems that are analoguous to
those on summability (C,1) introduced and studied by Hardy. A se-
ries ) ®y is said to be summable (C,1) (to sum S € C) if the se-
quence n” ' Y_7_, s where sp = Zle z; tends to S. Here we extend the
Hardy’s tauberian theorem for Cesaro means where it is shown that if
the sequence (z,),, satisfies sup,, {n|zn — Tn-1|} < o0, then n™'s, — x
implies z,, — x for some x € C. In this work, for given sequences A and
u, we give a—tauberian theorems which consists in determining the set
of all sequences a such that

o™ Zuk (ZI’) — [ implies a—"—>l (n — o0)

i=k n
for all X € ¢s ? Then we give simplifications of these theorems in the
cases when a € Cl, and o € T Finally we deal with the converse of the
last condition.
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1. Introduction

In this paper we study problems that are similar to those stated by
Hardy [6], Méricz and Rhoades, (cf. [10]), de Malafosse and Rakocevié¢ (cf.
[5]). In [6] it is said that a series Y .-, z% is summable (C,1) (to sum [ € C)

if
1 n
= — E Skﬂl
n
k=1

where s, = Zle x;. It was shown (cf. [6, p. 132, Theorem 77]) that if a series
> orey @k is summable (C,1) to sum S if and only if

- &)

i=k
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Moéricz and Rhoades gave a generalization of the Hardy theorem using the
weighted mean matriz N, (cf. [10, 11]). In de Malafosse and Rakocevié¢ (cf.
[5]) the series > p- | zy is said to be summable (C, A, 1) (to sum L € C) for
given sequences A and p if

Xn )\ Z*SkHL

When A\, = n and p, = 1 for all n, summability (C,\, u) reduces to
summability (C,1). In the following we extend Hardy’s tauberian theorem
for Cesaro means where it is shown that if the sequence X = (), satis-
fies sup,, {n |z, — Tn_1]} < oo, then n~'s, — y implies z,, — x for some
x € C. In this way for given sequences A and u we determine the set of all
the sequences « such that

1 & > x
— i [ implies = — I for all X €
3 kz::,uk (Zx ) — | implies —= — (n — o0) for a cs

" k=1 i=k "
for some [, I’ € C. This statement is called an a—tauberian problem. The
main result is given by Theorem 4.3.

This paper is organized as follows. In Section 2 we recall some results on
the sets of sequences and matrix transformations. In Section 3 we give some
properties of the operator ¥ defined by [ETX] = Y72 xy for all n, on
special sets of sequences. In Section 4 we state some a-tauberian theorems
in the general case and in the case when A\, = n and p, = n® where ¢ is a
real. Then we give &mphﬁcatwns of a- tauberlan theorems when «a belongs to
special sets of sequences such as Cl, or T Finally we deal with the converse
of the previous tauberian results.

2. Preliminary results

In the following we write A = (ank),, ;> for an infinite matrix of com-
plex numbers. For a given sequence X = (_a:n)n>1 of complex numbers we
define A,, (X) = Y77, ankai, (provided the series A, (X) converge) and
AX = (Z;ozl AnkTk), >, We write s, £, co and c for the sets of all complex,
bounded, naught and convergent sequences, respectively, furthermore cs is
the set of all convergent series. For E, F' C s, we write (F,F) for the set
of all matriz transformations that map E to F. For given 7 € s we define
D, = (Tnénk)n’pl, (where 6, = 1 for all n and §,, = 0 otherwise). We
define by U™ the set of all sequences (Un),>; € s with u,, > 0 for all n and

consider the spaces so = Daloo, 8% = Dyco and s((xc) = Dycfora € UT,
see [2, 3]. Tt can easily be seen that for a, 8 € Ut and E, F C s we have
A € (DoE, DgF) if and only if Dy/3AD, € (E,F). If e = (1,1,...) we put
$1 = Se. Let E and F be any subsets of s. It is well known, see [1] that
(s1,81) = (co,51) = (¢,81) = S1, where S is the set of all infinite matrices

A = (ank), x> such that sup,, (372, |ank|) < co. For any subset E of s, AE



a—tauberian results 97

is the set of all sequences Y such that Y = AX for some X € E. For any
subset F of s, the matrix domain F' (A) = F4 of A is the set of all sequences
X such that AX € F.

In this paper we consider the operators represented by the infinite ma-
trices C'(A) and A () for A € U™, see [3]. Recall that [C'(N)],, , = 1/A, for
k < n and 0 otherwise. In the following we will use the convention that any
term with nonpositive subscript is equal to zero. It can be proved that the ma-
trix A () defined by [A (A)],,,, = An, [A (V)] = —An—1and [A (N)],,, =0
for k £#n—1,n,n > 1, is the inverse of C (A\). If A = e we get the well-known
operator of the first difference represented by A (e) = A and it is usually
written ¥ = C'(e). We have [AX], = z,, — 2,1 for all n > 1. Then A =
Y~ land A, ¥ € Sg = (S(Rn)n7s(R7L)n) for R > 1. We also use the transpose
of C'(\) denoted by CT ()). We easily see that C* () = XDy, where XF
is the transpose of X.

3. Some properties of the infinite matrix X" considered as

: 0 (c)
operator in s,, S, , O S,

In this section we are interested in the study of the set of all sequences
X such that

Z,ukrk — [ for some [ € C,

1
An k=1

oo
where 1, = Z ;.
i=k
In the following we will use the characterizations of the sets (E, F),

where E, F' are either of the sets ¢ or c¢g.
We will consider the next conditions

A€ S, (3.1)

lim apj = I; for some [, € C and for all k. (3.2)

n—oo

From [9, Theorem 1.36, p. 160] we immediately deduce the next lemma.

Lemma 3.1. i) A € (co, o) if and only if (3.1) and (3.2) hold with I, = 0;
ii) A € (c,co) if and only if (3.1), (3.2) hold with I, = 0 and

oo

lim E anr = 0.

n—oo
k=1

iii) A € (co,c) if and only if (3.1) and (3.2) hold;
w) a) A € (¢,c) if and only if (3.1), (3.2) hold and

lim Za"k =1 for some l € C. (3.3)
k=1
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b) Let A € (¢c,c) and x € c. If (3.3) and (3.2) hold with l;; = 0, then

o
lim g anpxr =1 lim x,,.

n—oo n—oo

k=1

Note that the statements given in iv) are direct consequences of Silver-
man Toeplitz theorem.

We will use the next lemma where T' = (t,x),, >, is called a lower
triangular matrix if ¢, = 0 for k& > n.

Lemma 3.2. Let A = (ank)n p>1 be an infinite matriz and T a lower triangular
matriz. Then -

T(AX)=(TA)X forall X € s(A).

Proof. Since X € s(A) the series Yy, anxy is convergent for all n. Then

[T (AX)], = > tum (Z amkxk> => (Z tnmamk> z, = [(TA) X,
m=1 k=1

k=1 \m=1
for all n and for all X € s(A). O

In all that follows we use the operator represented by the infinite matrix

>*. For the convenience to the reader we note that
1 1 .

1 1
+ _
= 0

We use the following results where A™ is the transpose of A.

Lemma 3.3. i) X7 (ATX) = X for all X € ¢y and AT (XTX) = X for all
X € cs,

ii) the operator 1 is bijective from cs to co and AT is bijective from
co to cs.

Proof. i) comes from [1, Lemma 3, p. 19]. ii) is a direct consequence of i). [

Lemma 3.2 and Lemma 3.3 lead to define the product TSt by
(TET)X =T (X1X) for all X € cs where T is a triangle, that is a lower
triangle with [T, # 0 for all n. We note that T is bijective from s to itself
and that 7! is again a triangle matrix. In this way we have

Lemma 3.4. Let T be a triangle, then TXT € (cs,Tcy) is bijective and
(TsH) ™ = At
Proof. Let B € Tcy and consider the equation
(TS*) X = B for X € cs. (3.4)

Since
(TZ+) X=T (E+X) for all X € cs,
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and T : ¢y — Tcp is bijective, equation (3.4) is equivalent to XTX =
T~ 'B. Then since T7'B € ¢y and It is bijective from cs to cg, we
deduce TXV is bijective and (3.4) has a unique solution given by X =
(TE'*’)_1 B = A" (T7!'B). Finally by Lemma 2 it can easily be seen that
X = At (T1B) = (A*T-1) B for all B and (T£) "' = A+T-1, O

Let A\, p € UT. In the following we will use the notation o, = Y ;_; px
and define the map

n

1
on (X) = = (Z ORTE + Unrn+1> for all X € ¢s and n > 1.
™ \k=1

Let us state the next result where R™* is the set of all reals > 0.

Theorem 3.5. Let E be a set of sequences.
i) co C E implies E (X7) = cs;
i) o) E(S1) C ATE;
b) E C co implies that E (X7) = ATE;
iii) co (5F) C s if and only if 1/ € lo.
iv) a) Let E be either of the sets sq, 5, or s Then
E(S7) =cs if and only if 1/ € lo.
b) co (X)) =c(X) =Atcy =cs.
v) a) Assume that
o/A €l and N, — 00 (n — 00). (3.5)
Then
co (C(\) DY) = cs,

and

1 n
W Zﬂkrk — 0 for all X € cs. (3.6)
" k=1

b) The condition sup,, (n/A,) < oo implies ¢ (C'(A\) XT) = cs.
vi) Assume that

o/\ € ly and N, — 1 (n — ) for somel € RT* U {400} . (3.7
Then
c(C(N\)D,xF) = cs,
and

1 n
)\—Z,ukrk — Lx for some Lx € C and for all X € cs.

" k=1
Proof. i) Necessity. Let X € FE(X7T). Then ¥ TX exists and X € ¢s, so
E (X%) C cs. Sufficiency. Let X € cs. Then the series Y~z are convergent
for all n and ©TX € ¢y, but the inclusion ¢y C E implies Xt X € E and
X € E(X1). So we have shown ¢s C E (XT). We conclude E (X1) = ¢s.
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ii) a) If E(X%) = 0 trivially we have E(XT) C ATE. Now assume
E(X%) # 0 and let X € E(XT). Then Y = S1X exists, XTX € F and
X € cs. Since ¢s C ¢y, we have by Lemma 3.3

At (ZFX) = ATY = X,

We conclude that X € ATE and E(X7) C ATE. b) We show that E C ¢
implies E (1) D ATE. For every X € F we have Y = ATX € ATE and
from Lemma 3.3 we have 7Y = X+ (AT X) = X since X € E C ¢y. Then
Y'Y =X € Fand Y € E(X1). So we have shown ATE C F(X1). This
result and a) imply b).

iii) Assume ¢o (X7) C s Then € (co (1) ,s&c)> and since ¢g (X7) =

¢ (X) we deduce A € (c, s((f)), DijoA € (¢,c) and 1/ € .

iv) a) Using i) we see that it is enough to show that ¢y C F if and
only if 1/a € ly for E = s,, 82, or sgf). We have ¢y C s, if and only if
I € (co,5a), that is Dy/q € (co,51) = S1 and 1/a € £. In the same way
using the characterizations of (cg,co) and (cg, ) we deduce ¢y C F if and
only if 1/a € o, for E = sY, or sLo),

b) Let X € ¢y (XT). Then T X € ¢y, X € ¢s and so ¢p () C ¢s. Now
X € csimplies 37X = (307, 2x), 5, € cosince Y ;7 xp — 0 (n — oo) and
X € ¢ (). This shows ¢s C ¢o (E1) and as we have just shown ¢y (X1) C
¢s, 80 ¢ (XT) = cs. Finally by ii) b) we have cg (X1) = Atcy.

v) a) We show ¢s C ¢g (C'(A) D,E). By Lemma 3.2 we have

CA)D,(ETX)=(C(\)D,ET) X forall X €cs (3.8)

since C'(\) D,, is a triangle and X € s(X%) = c¢s. Now for every X € cs we
have ¥7X € ¢y and since (3.5) holds we have C'(\) D,, € (co, o) and then
C(A) D, (2TX) € ¢ for all X € cs. Finally since (3.8) holds we conclude
(C(AN)D,ET)X € ¢ forall X € csand ¢s C ¢y (C(N)D,XET).

Conversely let X € ¢ (C'(\) D,X"). By elementary calculations we
easily get

0'1//\1 . . . . 0'1//\1

C(\) D, = . . S S . (3.9)
o1/An o2/An . on/An . on/An .

that is

o/ for k <mn,
[C(\) DIJ«ZJ’_]nk = { on/ A for k > n.

We deduce
(CN)DEY) X = (¢n (X)) 1 € co-
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Then the series r,, = Zzozn x, is convergent for all n and X € cs. This shows
co (C(N) D, ") C es. We conclude ¢q (C'(\) D,X1) = ¢s. Since

[C(AN) D, (5TX)] = S Zﬂkrk for all n,
" k=1
statement (3.6) comes from identity (3.8).
v) b) is a direct consequence of v) a) where we put pu = e, furthermore
condition sup,, (n/A\,) < oo trivially implies A, — 0o (n — 00).
vi) can be obtained reasoning as in v) a) by using the characterization
of (co, ). O

4. o—tauberian results

4.1. General case

For given A, n € U™ the aim of this paper is to determine the set of all
sequences o € U such that

1

X Zuk ij — [ implies a—n — 1" (n— o0) forall X €cs, (4.1)

k=1 j=k n

for some [, I’ € C.
Now state a lemma which is a characterization of condition (4.1).

Lemma 4.1. For \, p, « € UT condition (4.1) holds if and only if

A*D, A ( ( N C (N Dyuco, s ) . (4.2)
Proof. First condition (4.1) means that
C(A) D, (£7X) € cimplies X € s{9) for all X € cs. (4.3)

Since T X € ¢g for all X € cs, condition (4.3) is equivalent to the statement

Y =C(A\)D, (SX) €c[)C(\) Dyco implies X € s{. (4.4)
Since C (\) D,, is a triangle and 1 € (cs, ¢g) by Lemma 3.2 we have

C(N) D, (X"X) = (C(N\)D,X") X for all X € cs.
Then by Lemma 3.4 the operator C (X) D, X+ € (¢s,C (X)s)) is invertible
and
(CNDSH) T =ATD, AN,

we deduce Y = C'(\) D, (X*X) if and only if X = ATD;,,A(\)Y for all
X € cs and condition (4.4) is equivalent to

Y € ¢()C (A) Duco implies X = ATDy ), A(\)Y € s
and to (4.2). O

To state the next results we need the next lemma.
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Lemma 4.2. Let k and ' € UT. Then conditions k+ k' € bog and Kk — K’ € ¢
together are equivalent to k € Ly and kK — K € c.

Proof. First we have k+ k' € {, if and only if k, k' € £s. Then kK — k' € ¢
is equivalent to k, = k), + L +0(1) (n — o0), for some L € C, which shows
that  is bounded if and only if s’ is bounded. This gives the conclusion. [

In this way it can be easily seen that conditions k+ k' € £o, and k—k’ €
¢ together are equivalent to k' € £o, and k — k' € c.
Now consider the next conditions

I W An
( ! ++1) =0(1) (n— ) (4.5)
Qo Hn Hn+1
1 An— 1 1 An
lim {{— 1+>\n<+ >— +1}}:LforsomcL€C
n—oo [ Qp Hn Hn Mn+1 Hn41

(4.6)

We obtain the following a—tauberian theorem.

Theorem 4.3. Let A\, u € UT. Then

i) condition (4.1) holds if a satisfies one of the conditions a) or b),
where

a) l/a € lo,

b) conditions (4.5) and (4.6) hold.

ii) If there is L € RT™* J {400} such that

/X €ls and Ay = L (n — o) (4.7

then condition (4.1) holds if and only if 1/a € L.
iii) If (—=An—1+ An) [t — 0 (n — 00) and there is K' > 0 such that

)\nfl + )\n

Hn

then condition (4.1) holds if and only if (4.5) and (4.6) hold.

<K' foralln>1 (4.8)

Proof. i) First we show that a) implies (4.1). Assume 1/a € fo. Then the

condition
1 n
~ Z Were — 1
" k=1

necessary implies X € cs. Then trivially X € ¢ and (1/a,) zp, — 0 (n — 00).
So we have shown a) implies (4.1).
Next we show that b) implies (4.1). Since trivially ¢(C (X\) Dyco C ¢

we have (c, sgf)) C (cﬂ C (\) Dyco, s(ac)). We show that we have

A= AYDy AN € (c, sl(f)) (4.9)
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which implies (4.2) and (4.1) by Lemma 4.1. Now the calculations of
Dy, A (N) and A successively give

A1
PRV 0
H2 H2
Dy, A (M) = o (4.10)
0 An—1 )\7»,7_
Hn Hn
and
1 1 A
M (7 ) s
A 1 1 A
i ~e A2 (r fw) 17 0
_An-1 1 1 _Angi
0 Hn )\n (Mn + Mn+1) Hn+1
(4.11)

Then condition (4.9) means Dy /aﬁ € (¢,¢) and from the characterization of
(¢, ¢) this condition is equivalent to k+ k' € £o and K — k' € ¢ together where
K= (I’in)nzp K = (K;L)n21 with

1 1 1 I e An
mnz{/\n<+ )} and/@;:(l—i—ﬂ).
Qi Hn Hn+1 Qo Hn Hn+1

Then from Lemma 4.2 condition (4.9) is equivalent to (4.5) and (4.6) and as
we have just seen (4.9) implies (4.1). This completes the proof of i).

ii). From Theorem 3.5 vi) we see that (4.1) means that cs C s&”. Since
cs = c¢(¥) = X7t we then have I € (Z_lc, sgf)) and Dl/aE_l = Dyi/A €
(c,¢). We have

]./Oél
0

Dijals = —1/an 1/ap

0
and from the characterization of (¢, c¢) given in Lemma 3.1 iv) we conclude
DyjoA € (c,c) if and only if 1/a € £

iii) We have ¢ C C' () D,co. Indeed from the expression of Dy,,A ()\)
given by (4.10) it follows that (C (\) Du)_l = Di/uA(N) € (c,c) if and
only if the hypotheses of iii) hold. Then (4.1) means that AY € &) for
all Y € ¢ by Lemma 4.1 and A€ (c, s((f)) that is Dl/aﬁ € (¢,¢). Using

the characterization of (¢,c¢) given in Lemma 3.1 and Lemma 4.2 we easily
conclude that Dy, A € (c,c) if and only if (4.5) and (4.6) hold. O

These results lead to the next corollary
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Corollary 4.4. Assume (4.5) and (4.6) hold. Then condition (4.1) holds with
U= LI

Proof. This result is a direct consequence of Lemma 3.1 iv) ¢) and of the
proof of i) b) implies (4.1) in Theorem 4.3. O

Example 4.5. If we put A = ¢ in Theorem 4.3 iii), then for given p € U™ with
sup,, 1/pn, < 0o we have

Zﬂkrk — | implies In Ly (n — o0) for all X € es (4.12)
Qn
k=1

if and only if « satisfies

o ()
supy — { — + < 0.
n Qo Hn Hn41

By Corollary 4.4, since L = 0 we have I’ = 0. Particularly if p,, = n for all n,
(4.12) holds if and only if 1/a;,, = O (n) (n — o0).

In this way we obtain the next result.
Proposition 4.6. Let A € UT and assume sup,, (n/\,) < oo. Then

i) co (C(N\)ZT) =cs.
i1) The condition

1 & T
— I implies — — I’ X 4.13
3 Zrk — 1 implies —= — (n — o) for a €cs (4.13)

is equivalent to 1/a € L.
Proof. 1) is a direct consequence of Theorem 3.5 v) b) since sup,, (n/A,) < co.
ii) is a direct consequence of Theorem 4.3 ii). (]

4.2. Case when \, =n and p,, = n¢ where ¢ is a real

Now we consider the case when A\, = n and p, = n¢ with € real in
condition (4.1), that is

1« n
— E kSrj, — | implies In Ly (n — o0) for all X € cs (4.14)
n Qnp

k=1

for some [, I’ € C. As another consequence of Theorem 4.3 we obtain the
next corollary.

Corollary 4.7. i) Let £ > 1. Then condition (4.14) holds if and only if

3171Lp (1> < oo. (4.15)

n¢lay,

i1) If £ <0, condition (4.14) holds if and only if 1/a € L.
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Proof. 1) is a direct consequence of Theorem 4.3 iii). Indeed for A\, = n and
fin, = n& we have

>\n+An—1 27171_

. = =0(1) (n— ).
We need to verify (4.5). We have
n—1 n+1 1 1 1 2
Fin = + = -—+ ~ (n — o0).

n5 (TL-I— 1)5 B nf*l ng (TL-I— 1)5*1 nf*l
Then
Kn 2

—_—~

an  néla,
and so the condition (4.5) is equivalent to (4.15). To show (4.6), put

b n—1 n 1 n 1 1
n=———+n|— — .
We immediately get

3
by = 21— ("
né n+1

and so there is C' > 0 such that b, /a,, < C/n**1a,, (n — 00). Then by (4.15)
we have 1/a,, < C'n¢1,

(n — o0)

§

né+l

~

(n — o)

e-1
b—”SCC”n O<1) (n — o0)

On nétl n2

and b, /o, — 0 (n — o0). We conclude (4.6) holds and the conditions (4.5)
and (4.6) together are equivalent to (4.15).
ii) We only have to apply Theorem 4.3 ii). Indeed for £ = —1 we have

On

7:%2%:0(1) (n — 0).

n

For £ <0 and £ # —1 we have

nétl

kfg/ z8dx <
2 K< v

and we conclude

O

Remark 4.8. As we have seen in the proof of Theorem 4.3 i) for any real &
the condition 1/« € £, trivially implies condition (4.14).
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Example 4.9. Taking £ = 1 in Corollary 4.7 we deduce that for every X € cs
we have
1 n
- Z kry — 1 implies —% — I’ (n — o0) (4.16)
n Qp
k=1
for some [, I’ € C if and only if 1/a € {o.
4.3. A simplification of the previous results.
In this subsection we will characterize (4.1) and then rewrite Theorem
4.3 in each of the cases p € C7 and A € T
Recall the definitions of the sets C; and T' defined in [3],

a:{XeU+; [C(X)X]n:xl<n xk>:O(1) (n—>oo)}
™ \k=1

I = {X eUt: lim (m’”) < 1}.
n— o0 T
It can easily be seen that T' C Cy and note that for @ > 1 we have (a™),>1 € r.

By [3]if X € C) there are M > 0 and v > 1 such that
Ty > MA™ for all n.

and

From [4, Lemma 11, p. 49] we obtain the next lemma.
Lemma 4.10. Let a € U". Then
i) a € Cy if and only if 3 is bijective from s to itself,
i) a € r if and only if ¥ is bijective from s((f) to itself.
Theorem 4.3 can be reduced to the next corollaries.
Corollary 4.11. Let p € Ch.
i) Let X\ € U with \/u € ¢o. Then condition (4.1) holds if and only if
(4.5) and (4.6) hold.

ii) Let X € UT with u/\ € Lo. Then condition (4.1) holds if and only
if 1/ € loo.

Proof. Since p € C the operator ¥ is bijective from sg to itself and
C (A) 52 = DI/AES(; = Dl/)\S?L = 32/)\

Now show i). We have ¢ C sg/A since D)/, € (¢, co) which is equivalent to
A/ € ¢g. By Lemma 4.1 for every Y we have

Y e ch (N 32 = c implies AT Dy, AN Y € sL€)

that is ATDy,, A () € (c7 s((f)>. As we have seen in the proof of Theorem
4.3 iii) this means that (4.5) and (4.6) hold.

ii) By Lemma 1 we have D,/x € (co,c) if and only if pu/A € f
and then Sg/x C c¢. Then (4.1) means that ATD;/,,A(N)Y € s for
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all Y € ¢NC(\)sh = 52/» that is ATDy/,A(N\) € (sg/k,sg)) and
Dy/o AT Dy, A (X) Dyy)a € (co, ¢). Now since
A-"—Dl/#A ()\) DH/A = A-"—Dl/#A (u)

we have
1)1/0¢A+D1/uA (,LL) € (COaC)' (417)
Using the calculation of A explicited in (4.11) with A = p we deduce (3.1) is
equivalent to
1 n— n
Sup{ {/“Jr <1+M> Jrl]} < 0. (4.18)
n Qnp Hn Hn+1

Now since p € 61 implies there is M > 1 such that pu,; ' >3 _, s < M for all
n > 1 and we successively obtain

n n+1
n— n 1
“1+(1+ K )+1S2Hk+ S e+ 1<2M 1,
Mn Hn+1 et Hntl 7
and
2 1 [fin n 1
<[“1+<1+ a >+1]<(2M+1)foralln>1,
Qp Qp | Hn Hn+1 oy,
thus (4.18) is equivalent to 1/a € £s. This concludes the proof. O
Now consider the following conditions,
1 (A
sup { < + “)} < o0, (4.19)
n Qnp, Hn Hn+1
1 A\
sup — — < 00, (4.20)
n aﬂ n
1 (A
lim — < - H) = x for some x € C. (4.21)
n—00 Qp \ Hn Hn+1

We can state the next corollary.

Corollary 4.12. Let )\ € f, w € UT and assume conditions of Theorem 4.3
iii) hold.

Then condition (4.1) holds with I =1(1 —a) x, (@ =lim,; oo Ap—1/An < 1)
if and only if « satisfies (4.20) and (4.21).

Proof. By conditions of Theorem 4.3 iii) we have D;;,A()\) € (c,co) and
A(X) e C s) and since C'(A) = A (A)~" we have ¢ € C () 59. So (4.1) means
that
X=A'Dy,ANY €5 forall Y €c,
that is ATDy,,A(X)cC s'. Now by Lemma 4.10 ii) A € T implies Asf\c) =
{9 and
A

A+D1/MA A e= A+D1/“As(;) _ A+D1/Hs(;) — A+85\c/)”.
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Then (4.1) is equivalent to AT € (S&C}#,S&C)) and to (4.19) and (4.21). By
Lemma 4.2 where k, = Ap/anp, and &), = A\pp1/anpint1 we deduce that
At e (SE\C/)M,S&C)) is equivalent to (4.20) and (4.21).

Now show I’ =1(1 —a)x. If X € cs and

X

A+D1/MA ()\) Y == A+D1/MAD)\Y
= A'Dy Dy (Di/xAD))Y = ATD,, (D1)\AD)) Y,

and letting Y = (’y\n)n21 = (Dl/AAD,\) Y, we have

~ >\n—1
Yn A,

Yn—1 + Yn-
Thus in particular if Y = e, then

A
R o

lim g, =
n

And if Y € ¢ then, clearly, ¥ = (D1/xAD,)Y € co. Consequently, if Y € ¢
with I = limy,—c0 Yn, then g, — 1 — —al + 1 — 1 = —al (n — 00). Then by
(4.21), we obtain

L (Dyjal*Dap), (te+ (¥~ 1))
1 (A A 1 /A ~
:(—H)H-(— +1)(yn—l)—>xl—xal (n — 00).
Qn \ Mn Hn+1 Qp \ Hn Hn+1
This concludes the proof. (I

Example 4.13. As a direct application of the preceding we have

In Ly (n—o0) forall X € cs  (4.22)
79

1 n
T k=1

if and only if there is C' > 0 such that a,, > C/n for all n. Indeed conditions
(4.20) and (4.21) mean that sup, {1/ (na,)} < oo and lim,, oo 1/ (R2a,) =
x for some scalar . It can easily be seen that sup,, {1/ (na,)} < oo implies
limy, 00 1/ (n2an) = 0. Since x = 0 we have I’ = 0. This concludes the proof.

Example 4.14. In the same way it can easily be shown that for 1 <a < b
and lim, o, a"/b™a,, = L, we then have

a_”I;bkr;C — [ implies Z— —1 (1 - ) (1 - %) L (n— o0)

n a

for all X € cs if and only if (a"/ (b"ay,)),,>; € ¢



a—tauberian results 109

4.4. Study of the converse of tauberian results
For given o € UT we will determine the set of all \, u € U* such that

1 n
2—" — [ implies = Zﬂkrk — 1" (n— o0) forall X € cs (4.23)

and give a characterization of (4.23).

We get the following theorem
Theorem 4.15. Let A\, u, o € UT. Suppose o € cs. Then the sequences A and
w satisfy condition (4.23) if and only if 1/X € ¢ and

lim ¢, (o) = L for some L € C. (4.24)

n— oo

Proof. First we note that o € c¢s if and only if i)  es. Now condition (4.23)
means that

X €5 (es = s implies (C(A) D,ET) X =C (M) D, (E7X) €c
by Lemma 3.2 which is equivalent to
C(A\)D,X"D, € (c,c). (4.25)
We deduce from the proof of Theorem 3.5 (iv) that if we put C' () D, XD, =
(c”k)n,kZI’ then

o
)\—kak for k < n,

Cnk = n

i—Zak for k > n.
So condition (4.25) is equivalent to 1/\ € ¢, (4.24) and

Sl:bp {bn ()} < 0. (4.26)

We conclude the proof since condition (4.24) implies condition (4.26). O
Now to state the next result recall the following result due to Kizmaz.

Lemma 4.16. ([7]) Let p = (pn),,~, be a strictly increasing sequence. If pX €
cs then (ppTn+1),>, € Co-

Corollary 4.17. Let £ > 0 be a real, o € UT and assume (n*Tay,) € ¢

nz
and (ngozn)n>1 € cs. Then

1 n
Z—: — 1 implies Ekzﬂkgrk -1 (n—00).

for all X € cs and for some scalars 1, I'.
Proof. We only have to apply Theorem 4.15. For this it suffices to show that

1 & 1 =
— E oro — 1 and —oy, E ap — g
n n

k=1 k=n-+1



110 Bruno de Malafosse

for some 1, Iy > 0 with 0, = >__, k%. First we have
1 e+l
n <o < (n+1) 1
§+1 E+1
and then o, ~ n*t1/(64+1) (n — 00). Since n**la, — L (n — o0) we

deduce (o,0),5, € ¢ and (n=t3r Uko‘k)nz1 € c. Then putting p, =
on/n we get

for all n

1 nétt né
Tne+l £+1
and by Lemma 4.16 condition Y o nfa, < co implies

Dn (n — o0)

1 o0
—On Z ap — 0 (n— 00).
k=n-+1
This concludes the proof. ([

Example 4.18. Let v > 2, then "z, — [ impliesn™' >}, kryy — I’ (n — o)
for all X € cs.
Indeed it is enough to put £ =1 and o, =n"7.
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