The univalence and the convexity properties for a new integral operator

Virgil Pescar

Abstract. For analytic functions f in the open unit disk \mathcal{U} , an integral operator $I_{\alpha,\beta}$ is introduced. The object of the paper is to obtain the conditions of the univalence and the convexity of the integral operator $I_{\alpha,\beta}$.

Mathematics Subject Classification (2010): 30C45.

Keywords: Integral operator, univalence, starlike, convexity.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of the functions $f \in \mathcal{A}$, which are univalent in \mathcal{U} . We denote by \mathcal{S}^* the subclass of \mathcal{A} consisting of all starlike functions in \mathcal{U} . Also, we denote by \mathcal{K} the subclass of \mathcal{A} consisting of all convex functions in \mathcal{U} .

We consider $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of all the convex functions f of the order α , satisfying:

$$Re\left(\frac{zf''(z)}{f'(z)}+1\right) > \alpha, \quad (z \in \mathcal{U}),$$
 (1.1)

for some α ($0 \le \alpha < 1$). We have $\mathcal{K}(0) = \mathcal{K}$.

Note that $f \in \mathcal{K}$, if and only if $zf' \in \mathcal{S}^*$.

In this work, we introduce a new integral operator, which is defined by

$$I_{\alpha,\beta}(z) = \int_0^z \left(\frac{f(u)}{u}\right)^\alpha \left(f'(u)\right)^\beta du,\tag{1.2}$$

for α , β be complex numbers, $f \in \mathcal{A}$.

For $\beta = 0$, α be a complex number, $f \in \mathcal{A}$, from (1.2) we have the integral operator Kim-Merkes [2],

$$H_{\alpha}(z) = \int_{0}^{z} \left(\frac{f(u)}{u}\right)^{\alpha} du. \tag{1.3}$$

From (1.2), for $\alpha = 0$, β be a complex number, $f \in \mathcal{A}$, we obtain the integral operator Pfaltzgraff [5],

$$G_{\beta}(z) = \int_{0}^{z} (f'(u))^{\beta} du.$$
 (1.4)

2. Preliminary results

We need the following lemmas.

Lemma 2.1. [1]. If the function f is analytic in \mathcal{U} and

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le 1,$$
 (2.1)

for all $z \in \mathcal{U}$, then the function f is univalent in \mathcal{U} .

Lemma 2.2. (Schwarz [3]). Let f be the function regular in the disk $\mathcal{U}_R = \{z \in \mathbb{C} : |z| < R\}$ with |f(z)| < M, M fixed. If f has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \ (z \in \mathcal{U}_R), \tag{2.2}$$

the equality (in the inequality (2.2) for $z \neq 0$) can hold if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

3. Main results

Theorem 3.1. Let α , β be complex numbers, M, L positive real numbers and $f \in \mathcal{A}$, $f(z) = z + a_2 z^2 + \dots$ If

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le M, \quad (z \in \mathcal{U}), \tag{3.1}$$

$$\left| \frac{zf''(z)}{f'(z)} \right| \le L, \quad (z \in \mathcal{U}), \tag{3.2}$$

and

$$|\alpha|M + |\beta|L \le \frac{3\sqrt{3}}{2},\tag{3.3}$$

then the function

$$I_{\alpha,\beta}(z) = \int_0^z \left(\frac{f(u)}{u}\right)^\alpha \left(f'(u)\right)^\beta du,\tag{3.4}$$

is in the class S.

Proof. The function $I_{\alpha,\beta}(z)$ is regular in \mathcal{U} and $I_{\alpha,\beta}(0) = I'_{\alpha,\beta}(0) - 1 = 0$. We have:

$$\frac{zI_{\alpha,\beta}''(z)}{I_{\alpha,\beta}'(z)} = \alpha \left(\frac{zf'(z)}{f(z)} - 1\right) + \beta \frac{zf''(z)}{f'(z)},\tag{3.5}$$

for all $z \in \mathcal{U}$.

From (3.5) we obtain:

$$\left(1 - |z|^2\right) \left| \frac{zI_{\alpha,\beta}''(z)}{I_{\alpha,\beta}'(z)} \right| \le \left(1 - |z|^2\right) \left[|\alpha| \left| \frac{zf'(z)}{f(z)} - 1 \right| + |\beta| \left| \frac{zf''(z)}{f'(z)} \right| \right], \quad (3.6)$$

for all $z \in \mathcal{U}$. By Lemma 2.2, from (3.1) and (3.2) we get

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le M|z|, \quad (z \in \mathcal{U}), \tag{3.7}$$

$$\left| \frac{zf''(z)}{f'(z)} \right| \le L|z|, \quad (z \in \mathcal{U})$$
(3.8)

and by (3.6) we obtain

$$\left(1 - |z|^2\right) \left| \frac{z I_{\alpha,\beta}^{"}(z)}{I_{\alpha,\beta}^{"}(z)} \right| \le \left(1 - |z|^2\right) |z| \left(|\alpha|M + |\beta|L\right), \tag{3.9}$$

for all $z \in \mathcal{U}$. Since

$$\max_{|z| \le 1} \left[\left(1 - |z|^2 \right) |z| \right] = \frac{2}{3\sqrt{3}},$$

by (3.3) and (3.9) we have

$$\left(1 - |z|^2\right) \left| \frac{z I_{\alpha,\beta}^{"}(z)}{I_{\alpha,\beta}^{'}(z)} \right| \le 1, \quad (z \in \mathcal{U}).$$
(3.10)

By Lemma 2.1, we obtain that the integral operator $I_{\alpha,\beta}$ is in the class \mathcal{S} .

Theorem 3.2. Let α , β be real numbers, with the properties $\alpha \geq 0$, $\beta \geq 0$ and

$$0 < \alpha + \beta < 1 \tag{3.11}$$

We suppose that the functions $f \in S^*$ and $g \in S^*$, where g(z) = zf'(z). Then, the integral operator $I_{\alpha,\beta}$ defined by

$$I_{\alpha,\beta}(z) = \int_0^z \left(\frac{f(u)}{u}\right)^\alpha \left(f'(u)\right)^\beta du,\tag{3.12}$$

is convex by the order $1 - \alpha - \beta$.

Proof. From (3.5) we obtain that:

$$\frac{zI_{\alpha,\beta}''(z)}{I_{\alpha,\beta}'(z)} + 1 = \alpha \frac{zf'(z)}{f(z)} - \alpha + \beta \left(\frac{zf''(z)}{f'(z)} + 1\right) - \beta + 1 \tag{3.13}$$

and hence, we have

$$Re\left(\frac{zI_{\alpha,\beta}''(z)}{I_{\alpha,\beta}'(z)}+1\right) = \alpha Re\frac{zf'(z)}{f(z)} - \alpha + \beta Re\left(\frac{zf''(z)}{f'(z)}+1\right) - \beta + 1, (3.14)$$

for all $z \in \mathcal{U}$.

But $f \in \mathcal{S}^*$ and $g \in \mathcal{S}^*$, where g(z) = zf'(z).

We apply this affirmation in (3.14), we obtain that:

$$Re\left(\frac{zI_{\alpha,\beta}''(z)}{I_{\alpha,\beta}'(z)} + 1\right) > 1 - \alpha - \beta.$$
 (3.15)

Using the hypothesis $\alpha + \beta < 1$, in (3.15), we obtain that $I_{\alpha,\beta}$ is convex function by the order $1 - \alpha - \beta$.

4. Corollaries

Corollary 4.1. Let α be a complex number, $\alpha \neq 0$ and $f \in \mathcal{A}$,

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

If

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le \frac{3\sqrt{3}}{2|\alpha|}, \quad (z \in \mathcal{U}). \tag{4.1}$$

then the integral operator H_{α} , defined by (1.3), belongs to the class S.

Proof. For
$$\beta = 0$$
, from Theorem 3.1 we obtain Corollary 4.1.

Corollary 4.2. Let β be a complex number, $\beta \neq 0$ and $f \in \mathcal{A}$,

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots$$

If

$$\left| \frac{zf''(z)}{f'(z)} \right| \le \frac{3\sqrt{3}}{2|\beta|}, \quad (z \in \mathcal{U}), \tag{4.2}$$

then the integral operator G_{β} , defined by (1.4), is in the class S.

Proof. We take
$$\alpha = 0$$
 in Theorem 3.1.

Corollary 4.3. If α is a real number, $0 < \alpha < 1$ and the function $f \in \mathcal{S}^*$, then the integral operator H_{α} defined in (1.3) is convex by the order $1 - \alpha$.

Proof. For
$$\beta = 0$$
 in Theorem 3.2, we obtain Corollary 4.3.

Corollary 4.4. If β is a real number, $0 < \beta < 1$ and the function $f \in \mathcal{K}$, then the integral operator G_{β} , defined by (1.4), is convex by the order $1 - \beta$.

Proof. We take
$$\alpha = 0$$
 in Theorem 3.2.

References

- [1] Becker, J., Löwnersche Differentialgleichung Und Quasikonform Fortsetzbare Schlichte Functionen, J. Reine Angew. Math., 255(1972), 23-43.
- [2] Kim, Y.J., Merkes, E.P., On an Integral of Powers of a Spirallike Function, Kyungpook Math. J., 12(1972), 249-253.
- [3] Mayer, O., The Functions Theory of One Variable Complex, Bucureşti, 1981.
- [4] Pescar, V., New Univalence Criteria, Monograph, "Transilvania" University of Braşov, 2002, Romania.
- [5] Pfaltzgraff, J., Univalence of the integral of $(f'(z))^{\lambda}$, Bull. London Math. Soc., 7(1975), 254-256.

Virgil Pescar

"Transilvania" University of Braşov Faculty of Mathematics and Computer Sciences 50, Iuliu Maniu 500091 Braşov, Romania

e-mail: virgilpescar@unitbv.ro