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Univariate inequalities based on Sobolev
representations

George A. Anastassiou

Abstract. Here we derive very general univariate tight integral inequal-
ities of Chebyshev-Griiss, Ostrowski types, for comparison of integral
means and Information theory. These are based on well-known Sobolev
integral representations of a function. Our inequalities engage ordinary
and weak derivatives of the involved functions. We give also applica-
tions. On the way to prove our main results we derive important esti-
mates for the averaged Taylor polynomials and remainders of Sobolev
integral representations. Our results expand to all possible directions.
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1. Introduction
This article is greatly motivated by the following theorems:

Theorem 1.1. (Chebychev, 1882, [6]) Let f,g : [a,b] — R absolutely continu-
ous functions. If ', g’ € Lo ([a,b]), then

b—a/f dx‘_a</f ></b9(l’)dw>‘ (1.1)

1

2
<35 0= 1Fll ll9'll

Theorem 1.2. (G. Griss, 1935, [10]) Let f,g integrable functions from
[a,b] — R, such that m < f(z) < M, p < g(z) < o, for all z € [a,b],
where m, M, p,oc € R. Then

b—a/f dw‘_a</f )(/bg(fc)dxﬂ (1.2)
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1
<O —m)(o-p).
In 1938, A. Ostrowski [13] proved

Theorem 1.3. Let f : [a,b] — R be continuous on [a,b] and differentiable on
(a,b) whose derivative f' : (a,b) — R is bounded on (a,b), i.e., ||f'|,. =
sup |f'(t)| < +oo. Then

te(a,b)

b
ey RGN PR

for any x € [a,b]. The constant % is the best possible.

z — otb)?
< l1+(2)1 b-a)[flle, (13)

See also [1], [2], [3] for related works that inspired as well this article.

In this work using the univariate Sobolev type representation formu-
lae, see Theorems 10, 14 and also Corollaries 11, 12, we estimate first their
remainders and then the involved averaged Taylor polynomials.

Based on these estimates we derive lots of very tight inequalities on R:
of Chebyshev-Griiss type, Ostrowski type, for Comparison of integral means
and Csiszar’s f-Divergence with applications. Our results involve ordinary
and weak derivatives and they go to all possible directions using various
norms. All of our tools come from the excellent monograph by V. Burenkov,
[5].

2. Basics

Here we follow [5].

For a measurable non empty set 2 C R", n € N we shall denote by
Lie () (1 < p < o0) - the set of funtions defined on  such that for each
compact K C Q f € L, (K).

Definition 2.1. Let Q C R™ be an open set, a € Z", o # 0 and f, g € L'° ().
The function g is a weak derivative of the function f of order o on Q (briefly
g=DS%f)ifV e C(Q) (i.e. p € C(Q) compactly supported in )

Yodg = (—1)1! . .
/QfD pdr = (—1) /ngd (2.1)

Definition 2.2. W!(Q) (1 € N, 1 < p < o0) - Sobolev space, which is the
Banach space of functions f € L, () such that ¥V o € ZT} where |a| < 1 the
weak derivatives DS f exist on Q and DS f € Ly, (), with the norm

1w ) = DDl 0 - (2:2)

la|<l
Definition 2.3. For [ € N, we define the Sobolev type local space
(loc)
(W)™ (@ = {f: Q=R f € Lj, ()
and all f-distributional partials of orders <1 belong to
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LL ()} = {f € Li°°(Q) : for each open set G compactly embedded into 2,
fewl (@)}

We use Definitions 2.1, 2.2, 2.3 on R. Next we mention Sobolev’s integral
representation from [5].

Definition 2.4. ([5], p. 82) Let —o0o < a < b < o0,

b
w € Ly (a,b), / w(x)dx = 1. (2.3)
Define
B fayw(u)du, a<y<z<bh,
A(z,y) -_{ —f;w(u)du, a<x<y<hb. (2.4)

Proposition 2.5. (5], p. 82) Let f be absolutely continuous on [a,b]. Then V
x € (a,b)

s = [ 1wt [Aen s waw (25)
the simplest case of SobZlev ’s integral repre(;entation.
Remark 2.6. ([5], pp. 82-83) We have that A is bounded:
Va,y€lad], [Azy)l<Iwlr, - (2.6)
and if w > 0, then
Va,y€la,b], |A(z,y)| <AD,Db) =1
at+

If w is symmetric with respect to “E2, then V y € [a, b] we have

a+b 1
A < -.
Examples of w:

w(z) =3,V ae(ab),

also

w(z) = 5= (X(a,a+$) + X(m#,b)) , where x(q,3) denotes the charac-
—1

teristic function of (o, 3), m € Nand m > 2(b—a)

If f e (Wll)loc (a,b), then f is equivalent to a function, which is locally
absolutely continuous on (a,b) (its ordinary derivative, which exists almost
everywhere on (a, b), is a weak derivative f}, of f). Thus (2.5) holds for almost
every z € (a,b) if f’ is replaced by f/,.

In this article sums of the form 22:1 -=0.
We mention

Theorem 2.7. ([5], p. 83) Letl € N, —co<a<a < f<b< oo and

we L (R), (support) suppw C [a, 3],
{ Jpw(z)de =1 2.7)
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Moreover, suppose that the derivative fU—V exists and is locally absolutely
continuous on (a,b). Then V x € (a,b)

-1 b
D= & [ 1P -9 e
k=0 V¢

b
+ﬁ/ (=)' " A,y) f (y) dy, (2.8)

and

1 b -

L / (z— )™ A(2) £O (y) dy, (2.9)
where a, = x, by = 0 for x € (a,a]; ay =, by = 0 for xz € (o, B); a, = «,
by = x for x € [3,0).

If, in particular, —oo < a < b < oo, fU=1V exists and is absolutely
continuous on [a,bl], then (2.8), (2.9) hold V = € [a,b] and for any interval

(o, B) C (a,b).
Corollary 2.8. ([5], p. 85) Suppose that | > 1, condition (2.7) is replaced by

w € C (1-2) (R), sup pw C [0476] ;
{ o e de ) (2.10)

and the derivative w\'=2) is absolutely continuous on [a,b].
Then for the same f as in Theorem 2.7, ¥ x € (a,b)

8 [/l-1 _1\k
=/ (Z ( kl,) (=9 w )] (k)> f(y)dy
@ \g=0 Y

1

b 1
o /a (@—y) " Aw,y) O (y) dy. (2.11)

In particular here
w@=..=w"P (@) =w@) =..=w"DE) =0 (2.12)

Corollary 2.9. ([5], p. 86) Suppose that I,m € N, m < l. Then for the same
f and w as in Corollary 2.8, V z € (a,b)

l—m— 1 yktm "
£ (a / ( Z {ﬂs—y)’“w(y)}(lwr )>f(y)dy (2.13)

Y

ba
- / (e =)' A ay) 1O () dy.

x
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Remark 2.10. ([5], p. 86) The first summand in (2.11) can take the form:

&ﬁ( soasw—yfw“Nw>f@ﬁ@
(—=1)° ~l—-s—1 ( s+k > . (2.14)

where o, 1= *—; s 3

Similarly we have for the first summand of (2.13) the following form

S (S o (@ =) 7w () £ () dy,

et/ stk (2.15)
where o5, 1= = ;)1), Zl ! < 1 ) .

We need

Theorem 2.11. ([5], p. 91) Let l e N, —co < a < a < < b < o0, w satisfy
condition

w € L1 (R),suppw C [ov, G ,/Rw (x)dz =1, (2.16)

and f € (Wl)loc( ,b). Then for almost every x € (a,b)

-1 Jé;
D=3 [ 1669 )
k=0 @

1 ba _
+m/ (@ =)' Az,y) 1 (v) dy, (2.17)
where ay, b, as in Theorem 2.7.

We denote f(o) = f.

Remark 2.12. ([5], p. 92) By Theorem 2.11 it follows that if in Corollaries
28,29 f € (Wll)loc (a,b) then equalities (2.11) and (2.13) hold almost ev-
erywhere on (a,b), if we replace f®, f(m) by the weak derivatives fz(vl), ffvm);
respectively.

Next we estimate the remainders of the above mentioned Sobolev rep-
resentations.
We make

Remark 2.13. Denote by ?( either f*) or ( ) ,where k € N. Let 0 < m < [,
m € Zy. We estimate

B
Roid @)= o=y [ @97 T A @) T ) dn (219

for x € (a, 8), where A as in (2.4), see also (2.6).
So we have

B
Rof (1) 1= —— ) / (- A y) T W) dy. (2.19)

-1/,
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Thus we obtain

l-m—1
B o f (2)] < ||W||L1(a,b)'(ﬁ—@) " /ﬁ
m, =

(l—m-—1)!

Mol @20

7" et
w . . —
_ H HLl(a,b) Hf Li(a,B) (8 )

(l—m—1)! ’

z € (o).

We also have

@llL, @ [P S
|Rinif (2)] < ﬁ/ -y ‘f (y)‘dy = 1.
=)

If f*' € Lo (v, B), then

Il oy |7
I < wL(z_Hf—H 75)(/ y[ " d )

A l—m—1 v l—m—1 A l—m—1
lz =yl dy= [ (z—y) dy+ [ (y— =) dy
« (e} T

B-—2)""+@-a)"
l—m ’

Therefore if ?(l) € Lo (, ), then

But

() i P .
R f ()] < T (B=2)"+@=-a)™), (@21)
€ (a,f).
Letnowp,q>1:% %—1Iff L, (a,3), then

Lp(a,B) .

i
w =
e g ([N a) |7

ﬂ xT ﬁ
/ |JZ — y|q(l—m—1) dy = / (33 _ y)q(l—m—l) dy _|_/ (ZJ _ x)q(l—m—l) dy
(x — Oé)q(l—m—l)-s-l +(8- x)q(l—m—l)-&-l
qg(l—m—1)+1
Hence if 7(1) € L, (a,3), then

’l
el [7°],
(I—m-—1)!

[Bon. 1 f ()] <
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B R G A ¥ (2.22)
gl-m-1)+1 ’ '

v € (0,6).
If sup pw C [, 3], then

Wiz, (@,p) = @l 2, (0,0 - (2.23)
If w e C(R) and suppw C [, ], then
ol gy < 19l gy - (B — ) (2.24)
We make

Remark 2.14. Here we estimate from the Taylor’s averaged polynomial, see
(2.9) and (2.17), tha part

B
Q@) =3 = [ TP ) - p e dy, (2.25)

called also quasi-averaged Taylor polynomial. When [ = 1, then Q°f (z) = 0.
We see that

-1 B,
Q@Y g [ 7Y W)l il wwlay
k=1 "«

l
—2) “l w 2.26
(Z I . W)> P (2:26)

given that [[w]; &) < o0, z € (o, B).

Similarly, when f(k) € Lo (o, 0), k=1,...,1—1, and HwHLOO(R) < 0o we
derive

Q' f (@ inf [’ “(“’[’ et /|x—y| dy

= <lzl ((5 - x)k:klig ) Hf k)HLOC(aﬁ ) ||w||Lm(R), (2.27)

k=1
€ (a,f).
Let p,g > 1:
[wllz, gy < oo. The

=1, ?(k) € Ly(a,B8), k =1,...,01 — 1, and again

—(k
-1 Hf()‘L(am g ke, )
Q' LZ# [ le=alay ) el

+

1
p
n

1
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-1 (kq+1) (kq+1) \ 7(k)’
(B —1) +(x—a) Lp(o,8)
Z kq+1 K HWHLW(R)’

k=1

(2.28)

z € (a, ).

Assume w € Ly (R) and ?(k) € Lo (o, 8), k=1,....,1 — 1, then
—(k
L L N
Q"1 f (z)| < Z = k’! lwllz, ®) > (2.29)
k=1

v € (@,f).

Assume p,q > 1 : %+% =1, f(k) € Ly(a,p), k=1,.,0l-1Lwe

L, (e, ), then

1) < (S B0 5w 230
Q1 (@) < (H S T W)) oz, (230)
x € (o, B).
Assume p,q,r > 1: %—&— % —l—% =1, ?(k) € Ly(a,0), k=1,..,01—1;
w € Ly (a, ), then
Q71 ()] <
-1 Hf(k)‘ (kr+1) (kr+1)\ 7
3 kL!p(aﬂ) ((ﬁ —z) (kr—:-(f)_ @) ) 9l oy
k=1
(2.31)
x € (o, B).

We also make

Remark 2.15. Here [ > 1, w € CU=2(R), suppw C [a, 3], Jpw (z)de =1,

and the derivative w('~2) is absolutely continuous on [a,b]. Hence we have
that

-1

@ =3 W ([e-vow])rom e

=1

Ve (apf).
And it holds
-1

_ 1 [P
{Ql lf(x>| §Zk'/a

Ve (apf).
Consequently, V = € (o, (),

Q"1 f ()] <

-vrow] il e
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) Wil i € Ly (0, 5),

Y 00

>||f|L (.50 i f € Los (a, ),
Li(e,3)

when p,g>1: =+ = =1, we have

) ”f“Lp(a”B) , if f € Ly (a, ).
(2.34)

v Lg(a,B)

Let I,m € N, m <[, and f,w as above, z € (o, 3).
We consider here

CTDICIS Pl My ([@-nww] ™) rwan @
k=1 o Y

When | = m + 1, then Q' 1 f (z) := 0.
Hence it holds

l—m—1

(k+m)
@@l X 2L (e -vrew] ™Y irwla e
Ve (apf).
Consequently, V z € («, §),
@ f (2)] <
(k+m)
([0 o] YWl 7€ Laas),
. (k+m) _
(22_1 Y l@-wtew) >||f|Lm<a,m, if f € Loo (0, 8),
v Li(e,B)
whenp,q>1:%+%—1 we have
(k+m)
<22:T‘1,3. [CR O )nfLM if f € L, (0, 8).
Y Lg(e,8)

(2.37)
We also need

Remark 2.16. Here again ?(k) means either f*) or f&k), k € N. We rewrite
(2.9), (2.11) and (2.17). For z € («, 3) we get

/ F@)w @) dy + Q7 f (@) + Rouf (). (2.38)

Also for z € (a, 8) we rewrite (2.13) (see also Remark 2.12) as follows:

—+(m) _ (1™ g (m) -1
7™ (@) = (-1) /f(y)w () dy + Q' f (1) + Runaf (x).  (2.39)
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3. Main results

On our way to prove the general Chebyshev-Griiss type inequalities we
establish the general

Theorem 3.1. For f,g under the assumptions of any of Theorem 2.7, Corol-
lary 2.8 and Theorem 2.11 we obtain that

B B B
/w@»ﬂ@ﬂ@&w(/«M@f@ﬂﬂ(/«wmg@mﬁ
;[(/lw Mg (@)Q7f (= mx+/|w IS @) Qg !¢Q
-+</ wcwmﬂmuRmede+/’wcwuﬂx>mwgm>w>].

A(f,g) =

(3.1)
Proof. For x € (o, ) we have
/.f () dy + Q' f (2) + Rouf ().

and

g() /g@ () dy+ Q"9 (x) + Roug (x)
Hence

w(z) f(2)g(z)
B

Therefore

/jw(x)f(a:)g(x)dx: (/jw(x)g(m)dx) (/jf(x)w(x)dx>
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Consequently there hold

B B B
/w(w)f(w)g(w)daf—</ w(w)f(x)dx>< g<x>w<x>dw>

and

B B B
/w(w)f(w)g(w)daf—</ w(x)f(w)dx>< g<x>w<x>dw>

B B
- / (@) f (2) Qg (x) da + / o (@)  (2) Rog («) do.

Adding the last two equalities and divide by two, we get

/jw(w)f(w)g(w)dm— (/ij)m)dx) (/jgu)w(x)dw)

B B
—;K | e@s@a s @ant [ w(x)f(m)Q”g(m)dx>

(e

B8 B
+ ( / w (@) g (x) Rouf () de + / w(2) () Rogg (x) d)] ,

hence proving the claim. 0

General Chebyshev-Griiss inequalities follow.

We give
Theorem 3.2. Let f,g with f¢, g1 absolutely contmuous on [a b] C R,
l € N; (o, 8) C (a,b). Let also w € Ly (R), suppw C o, ], [pw (x)dx = 1.
Then

IN

/jw(x)f(x)g(x)dfc— (/jwumw)dw) (/jwu)g@)dx)

o || y Dy (B = @)
L Hn oo ey (Z SMECR +
k=1

9P| gy (B— )
110, (Z L =Y 2D +

k=1

-
[(ngnm,m,mHM\LIW) e |97, (ﬁ(l_—al))!IH’(?’oQ)

Proof. By (2.20) and (2.29). O
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Theorem 3.3. Let f,g E Cl ([a b]) [a b] CR,1eN, (o,0) C (a,b). Let also
w € Ly (R), suppw C [ov, 8], [pw (x)dx =1. Then

/jw(m)f(w)g(w)d:v— (/jw(w)f(w)dw> (/jwu)g(x)dx)

FBE o (B )
ol P . {n N (Z (H o, e )) N
k=1
= (g ®) g (B a)f
17110, 5 (Z (” o i +
k=1 '

IN

T ] [0 )]
Wloo,(a N 00, (a + 00, (a .
e e A e P
(3.3)
Proof. By (2.21) and (2.29). O

We further present

Theorem 3.4. Let f,g € (Wl)loc (a,b); a,b € R;(e,8) C (a,b), 1 € N;
w € Ly (R), suppw C [, 8], [pw (z)dx =1. Then

/jw(@m)g@)dx_ (/jmmx)dx) (/jwu)gu)dw)

ol _ (B
% 19112, (0,5) Z THLS’ Li(,8) -
k=1
-1
(8- a)
12, ) (Z (m

k
o))
ng Ll(a,g)>>1

[(ugnh(a,mHMHMW 5000 0], ) fjf‘){l”. (3.4)

Proof. By (2.20) and (2.26). O

<

Theorem 3.5. Let f,g € (Wl)loC (a,b); a,b € R; (e, B) C (a,b), 1 6 N; w e

Lo (R), suppw C [, 5 fR x)dx = 1. Furthermore assume f 7gq(ﬂk)

Lo (o, 0), k=1,...,1 Then

/jw(m)f(w)g(w)d:v— (/jw(w)f(w)dw> (/ij)g(x)dx)

(k) k+1
ol _ SN i R
2= gl sy | 22 e +
k=1

IN




Univariate inequalities based on Sobolev representations 31

(k) k+1
ol 8=
Loo(a,3)
||f||L1(a,ﬁ) Z k!
k=1
I+1
. o], o) T |}
[ngg 90 sy * Wz |2, os)) S
(3.5)
Proof. Asin (2.21) and by (2.27). O

Theorem 3.6. Let f7g € (Wl)loc(a b); a,b € R;(a, ) C (a,b), 1 € N;
w € Ly (R), suppw C la, 4], fR x)dx = 1. Furthermore assume for p > 1

that fw ,gw L,(a,0), k= 1,...,l. Then

/ ﬁw(x)f(fc)g(x)dx - ( / ﬁw(x)f(x)dl) ( / ﬁw(m)g(w)dx> ‘

||w||i (R) -1 (ﬁf&)k-‘rl_%
1ol Ry
<— 1911z, as) | D Kl L P I

k=1

-1 )k+1—
112 o (Z W), o )}
k=1

)t
(Gl el ) 2522
(3.6)

Proof. Working as in (2.22) and from (2.30). O

Remark 3.7. When f,g € C'([a,b]), | € N, the Theorems 3.4, 3.5, 3.6 are
again valid. In this case we replace f&k), gfuk) by f*). ¢(®) in all inequalities
(3.4), (3.5) and (3.6); k =1,...,1.

A(f,g) =

We continue with

Theorem 3.8. Letl € N— {1}, w € C!'~2 (R), suppw C [, B], [w (z)dz =
1, and the derivative w=2) is absolutely continuous on [a bl C R; (a B8) C
(a,b). Here assume f,g € (Wl)loc( b), or f,g € C'([a,b]). Here ?(l) de-
notes either £ or fO, and A(f,g) as in (3.1).

We have the following cases:
1) It holds

1

A(f, g) < Ll 2'”[2|9|L1<a,ﬁ 17122 (Z s || m—y>kw<y>]_§,’“)Hm)

1 €(a,8)

(8-
) ||w||oo] -
(3.7)

—+ —(1)
+ (10 [T, o+ Wlescen 5]
(s sl R Y
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1) Assume further that f,g,f(l),ﬁ(l) € Lo (a0, B). Then

g
A(f:9) < 5= {12 190 20ty + 192 o) 172 ay) -
-1 1
(Zk, sup H w—y)kw(y)} >}+
k=1 Li(a,B)

z€(a,B)
l+1
i 70, ) G
_|_
{(ngnhw)\\f ey e [0, )

= 1; assume further that f,g, f ) €

(k)

Y

C/J

ii) Let p,g > 1 : = +

L, (a,B). Then

.
A(1,9) < 252 (19010 11y s + 1 sy 190 2,0 ) -

(li 1 H [(w —y)'w (y)} v ) } +
Ly(a)

b1 k! z€(a,B) Y

_ o1
{(ngnh(a,m 7] m)%nwnm} |
(39)

Proof. By (3.1), (2.34) and by Theorems 3.4, 3.5, 3.6. O

1.1
P q

1) 7

Lp(a:ﬁ)

Next we give a series of Ostrowski type inequalities.

Theorem 3.9. Letl € N,[a,b] CR,a<a < f <bandw € Ly (R), suppw C
o, f], fpw(@)de = 1. Assume f on [a,b] : fU=Y exists and is absolutely
continuous on [a,b]. Then for any x € (a, B) we get

/f Y dy— Q1 f (x)| <

||w||L1(R) ||f(l)||L1(a)ﬂ) (ﬂ - a)l_l

=]

If additionally we assume |||, ) < oo, then V x € (., 8), we get

|f(g;)/jf(y)w
S O | [T

1ll iy 1F N, gy (B =)™
= >'
Proof. By (2.38), (2.20) and (2.27). O

HM

=B (x). (3.11)
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Theorem 3.10. All as in Theorem 3.9. Assume f € C'([a,b]). Then ¥V z €
(a, ),

‘ L/f yydy - Q7 f ()] <

Jollzao 7O (2= 2)' + (2 = )
Li(R) H H (l! ) =: Ay (z). (3.12)

If additionally we assume ||w||;_ @) < o0, then V x € (a, B),

‘f(x)_/jf(y)w(y)dy <
(& (= el i

2z 15Vl (8= 2 + (@ = )
I
Proof. By (2.38), (2.21) and (2.27). 0

HM

=: By (z). (3.13)

We continue with

Theorem 3.11. Let all as in Theorem 3.9 or f € (T/Vll)loc (a,b) and rest as in
Theorem 3.9. Then ¥V = € (o, 8) (or almost every x € (a, 3), respectively),
we get

E() () | WRCICIR SR
0 IRYAS
902 oy Hf(lH oo G (3.14)

Additionaly, if ”W“LOQ(R) < o0, Ve (a,f) (or almost every x € (a,f3),
respectively), we get

8
A(f) (2) = |f(w)—/ fw)w () dy <

-1
(Z " 7 1\L1(aﬁ)> ol

k=1

— . -1
+||w||L1(a,b)Hf(lH_Idl()O;ﬁ)(ﬂ @) . B, (3.15)

Proof. By (2.38), (2.20) and (2.26). O
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Theorem 3.12. Let all as in Theorem 3.9 or f € (Wll)loc (a,b) and rest as in
Theorem 3.9. Assume further?(l) € Lo (a,8). Then ¥ x € (o, B) (or almost
every x € (w, ), respectively), we get

(l l
ol [T,y (B=2)' + (=)
E(f)(z) < 0 =: Ay (z). (3.16)
Additionaly ?(k) € Lo (o, ), k =1,....,1 = 1 and if |[w||,__ ) < oo, then ¥
x € (o, ) (or almost every x € (a, B), respectively), we get

c (-2 + @)

—(k)
ICEPY Gy [ (P P
ol gy | 7 (B—2) + (@ —a)
T PO ) oo
Proof. By (2.38), (2.21) and (2.27). O

Theorem 3.13. Let all as in Theorem 3.9 or f € (Wll)loC (a,b) and rest as in

Theorem 3.9. Let p,q > 1: % + % = 1. Assume fum‘her?(l) €L, («,B). Then
V€ (a,8) (or almost every x € («, 3), respectively), we get

i |7,
E(f)(z) < (-1 ’
_ a1+t 7 — q)iU-D+1 a

Additionally, if 7(k) € L,(a,0), k=1,..,1—1 and HWHLOO(R) < 00,
then V © € (a, B) (or almost every x € («, 3), respectively), we get

A(f) (z) <
li (3= + (@ —a)D) L@ | |
—~ kq+1 k! Loo(R)
+ A5 (z) =: Bs (). (3.19)
Proof. By (2.38), (2.22) and (2.28). O

We further give

Theorem 3.14. Let all as in Theorem 3.12. Here assume w € Ly (R). Then V
x € (o, B8) (or almost every x € (a, B), respectively), we get

B
—/.ﬂww@my<

A(f) (@)=
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— Hf k)HL (a 5) (8- )"
Z u ]l 1, &) + Aa () = Be () . (3.20)
pt !

Proof. By (2.29) and (3.16). O

Theorem 3.15. Let all be as in Theorem 3.13. Here assume w € Ly (o, B),
qg>1. ThenV x € (o, 3) (or almost every x € (o, 3), respectively), we get

A(f)(x)ﬁ(Z (8 o) Hf )> ol 2,
k=1

+A5 (z) =: By (x). (3.21)
Proof. By (2.30) and (3.18). O

Theorem 3.16. Let all as in Theorem 3.9 or f € (Wll)loC (a,b) and rest as in

—(k)
Theorem 3.9. Let p,q, 7 > 1: %+%+% =1, f " €l,(o,0),k=1,..,1-1,
we Ly(a,B). ThenV = € (e, B) (or almost every x € (o, 3), respectively),
we get

‘ / [y y)dy — Ro.f (z)]| <

-1 ‘ f k v (5 l,)(errl) 4 (2 — a)(kr+1) >
I; k! ( (kr+1) ) ||W|‘Lq(a,5) =: O(x).
(3.22)
Proof. By (2.31) and (2.38). O

We also present
Theorem 317. Let N 3 1 > 1 and w € CU2(R), suppw C [a, F],
Jew(@)de = 1, w2 s absolutely continuous on [a,b], o, B] C (a,b);

a,b € R. Here f € C'([a,b]) or f € (W 1)loc (a,b). For every x € (a, 3) (or
almost every x € («, 3), respectively), we get for

A(f) (@) = —/jf(y)w(y)dy
that
1) It holds
gy . (k)
A @) < (ZMH[u—y) )| )nfnmw
k=1 )

*(l)H — o)t

w

| ||L1(R) H‘f Li(o,8) 8 :
(I—=1)

=:C (x). (3.23)
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.. —(1)
w) If f, [ € Lo (a0, B) , then

-1 .
A (@) < (Z,j, v
k=1

Y

(= 9" )]

) 112 sy T
Li(e,8)

(6= +@-a))

—(1)
s = Ca(x).  (3.24)

el ey |7

I
i) Let p,g > 1 : % % = 1. Assume further that f, f L,(a,0).
Then

(Z a e =vtow)”

k=1

) 11z, (o, T+

Lq(a,B)

7 :
ol [T, oy (8= a4 4 (o — a4 b
1 =:C3 (7).

(-1 q(I—1)+
(3.25)

Proof. By (2.34) and Theorems 3.11, 3.12, 3.13. O

We finish Ostrowski type inequalities with

Theorem 318. Let Im € N, m < I; w € CU"2(R), suppw C o, ],
Jpw(@)de = 1, wl- 2) is absolutely continuous on [a,b], [a,B] C (a,b);
a,b € R. Here f € C'([a,b]) or f € (Wl)loc (a,b). For every x € (a, 8) (or
almost every x € («, 3), respectively), we get for

B (f) (@) = 7™ (@) - / F @)™ ) dy - Q' f (@), (3.26)
and
As(f) (@)= I (@) - (- / e (3.27)
that
i) it holds
—() I—m—1
B < Hf(l H_L;;afﬁ Y m G
and

lmll
Ap (Zk'

k=1

(k+m)
[ xr — w (y)]y H ) Hf”Ll(a,g)

+E1 = Gl (!.C) s (329)
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i1) iff(l) € Lo (o, B), then

=0
ool ey [ 7
(I —m)!

By (f) (@) < =B (g-2) ™" 4 (2= @) ) = By (@),

(3.30)
if additionally we assume f € Lo (o, B), then

Ap () (z) <

(k)

) 1L, + B2 (2) = G (2),
(3.31)

Li(a,B)

i) let p,g > 1: Il) + % =1, assume further that ?(Z) €L, (o, f), then
—(1)
el [77], )
By () (@) < — e hele),

(I—m—1)+1 (l—m—1)+1\ 9
((5x)q i (2 — )" " ) B, (332

gl—-m-1)+1
and if additionally f € L, (o, 3) , then

-1

l—m
A (f) () < ( > ifle-vrew] 3 m) 1712, e
k=1 ’ v q\o,
LB () = Gs (2). (3.33)
Proof. By (2.20), (2.21), (2.22), (2.37) and (2.39). O

We make

Remark 3.19. In preparation to present comparison of integral means in-
equalities we consider (aq,01) C («, 3). We consider also a weight function

¥ > 0 which is Lebesgue integrable on R with sup py C [a1, 1] C [a,b], and
Jg ¥ (z) dz = 1. Clearly here ffll W (z)dr = 1.

E.g. for x € (a1, 1), ¢ () == ﬁ, zero elsewhere, etc.

We will apply the following principle: In general a constraint of the form

|F (x) — G| < e, where F is a function and G, ¢ real numbers so that all make
sense, implies that

/RF(x)w(x) do—G|<e. (3.34)

Next we give a series of comparison of integral means inequalities based
on Ostrowski type inequalities presented in this article. We use Remark 3.19.
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Theorem 3.20. All as in Theorem 3.9. Then

B1
u(f) = dl‘—/ fy)w(y)dy — / Qllf(ﬂf)w(x)dﬂf‘ < Ay,
(3.35)
and
51 &)
m(f) = f@)Y(@)de— | fy)w(y)dy| <

-1 k+1
(= G Il bt

-1
wll L, =) Hf ||L1(a,/3) (6 —a)
(1—1)! '
Proof. By Remark 3.19, Theorem 3.9, and the fact that the functions

(B—2)" +(x— )", k=1,..,1— 1 are positive and convex with maxi-
mum (3 — o). O

(3.36)

Theorem 3.21. All as in Theorem 3.10. Then
l
||W||L1(R) ||f(l)||(><> (B—a)

u(f) < 7 : (3.37)
and
-1 )+
01 (S G ) bl
1
w @ B—a)
12, ey Hf“ oo (B =)' 339
Proof. Just maximize Az (z) of (3.12) and By () of (3.13), etc. O
Theorem 3.22. All as in Theorem 3.11. Then
u(f) < As, (3.39)
and
m(f) < Bs. (3.40)
Theorem 3.23. All as in Theorem 3.12. Then
0
Mol T N R
< . , (3.41)
and

-1 k+1
0= (T, ) i

l)H |

w

I HLl(R) Hf Lw(a,ﬁ)( :
I '

(3.42)
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Theorem 3.24. All as in Theorem 3.13. Then

61
u(f) < As (x) ¢ () da, (3.43)
and 5
m(f) < [ B (@) o (x)da. (3.44)
Proof. By the principle: if |F (z) — G| < & (2), then | [ F (z) ¢ (z)dz — G| <
J e (z)4 (z) dz, etc. Here As (x) as in (3.18) and B () as in (3.19). 0O
Theorem 3.25. All as in Theorem 3.14. Then
B1
m(f) < [ Bo@)o (@) de, (3.45)

aq

where Bg () as in (3.20).

Theorem 3.26. All as in Theorem 3.15. Then
B1
m(f) < By (z) v (x) du, (3.46)

a1

where By (x) as in (3.21).
Theorem 3.27. All as in Theorem 3.16. Then

" F @) (@) do - / e - / " (Rouf @) (&) da| <

1

a1

/ O (z) ¢ (x) d, (3.47)
where @ () as in (3.22). "
We continue with
Theorjm 3.28. All as in Theorem 3.17. Then
i

-1y
m(f) < (Z sup

k=1 k!we[alvﬂl]

7 (B—a)
Pliga®=

i) if f, ?(l) € Lo (a0, B), then
B1
m(f) < / Cs (2) () da, (3.49)

1

@ —y)kmy)]:k)Hw) 1 st

||WHL1(R)

i) let p,g>1: =+ = = 1; assume further f, ?(l) €L, (o, f), then

B
m(f) < Cs (2) ¢ (z) da. (3.50)

a1

1,1
P q
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Here Cy (z) as in (3.24) and Cs(z) as in (3.25).
We finish the results about comparison of integral means with

Theorem 3.29. All as in Theorem 3.18. Denote by

U”rn (f) =

B
/ 7 @) de — (- m/ fy)wt™ (y)dy — / (Qn ' f (@) ¥()da|,
(3.51)

and

B
o () i 7 () (2) i — ( / F)w™ (y)dyl.  (3.52)
i) it holds

up, (f) < B, (3.53)

where By as in (3.28),
and

I-m—1
1 (k4+m)
pm (f) < ( 71 Sup {(CL' - y)k w (y)} H ) ||f||L1(a’g) + Ey,
1 xE[Cnﬁl] Y 00
(3.54)
it) if?(l) € Lo (o, B), then
=+
Mol [ -
Um (f = (l—m)' (IB_Q) ’ ( . )

and if additionally assume f € Lo (o, 3), then
—m—1

& k+m
: ( kZ:l ’fl!me?o?m {(I_y)kw(y)]:+ | L1(0475)> Mzt
il 4501
" - m)! : (3.56)
iii) let p,q > 1: 1+ 1 =1, assume further J € L, (0, 3) , then
B1
un (f) < | Es(2)¢ (2)dz, (3.57)

where E3 (x) as in (3.32),
and if additionally f € L, (o, B), then

81
pm (f) < G (z) 1 (x) dr, (3.58)

(631

where G (z) as in (3.33).
We need
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Background 3.30. Let f be a convex function from (0, 400) into R which is
strictly convex at 1 with f (1) = 0. Let (X, A4, \) be a measure space, where A
is a finite or a o-finite measure on (X, A). And let u1, us be two probability
measures on (X, A) such that py < A, pa < A (absolutely continuous), e.g.
A= M1 + H2.

Denote by p = %, q= dc% the (densities) Radon-Nikodym derivatives
of 1, pe with respect to A. Here we suppose that

0<a§£§ﬂ,a.e.onXanda§1§ﬂ.
q

The quantity

ry ) = [ a) £ (20 ) anw), (3.59

was introduced by I. Csiszar in 1967, see [8], and is called f-divergence
of the probability measures p; and pe. By Lemma 1.1 of [8], the inte-
gral (3.59) is well-defined and T'f (u1,p2) > 0 with equality only when
p1 = pio. Furthermore I'f (111, p2) does not depend on the choice of A. The
concept of f-divergence was introduced first in [7] as a generalization of
Kullback’s ”information for discrimination” or I-divergence (generalized en-
tropy) [12], [11] and of Rényi’s ”information gain” (I-divergence of order 4)
[14]. In fact the I-divergence of order 1 equals I'y1og, « (1, i£2) . The choice

f(x) = (u—1)% produces again a known measure of difference of distri-
butions that is called y2-divergence. Of course the total variation distance
I — p2| = [x Ip(x) — g ()] dA (x) is equal to T, 1) (p1, p2) -

Here by supposing f(1) = 0 we can consider I'y (u1,p2), the f-
divergence as a measure of the difference between the probability measures
11, pto. The f-divergence is in general asymmetric in g1 and po. But since f
is convex and strictly convex at 1 so is

fr(u) =uf (i) (3.60)

and as in [8] we obtain

Ly (p2, pa) = Tpe (p1, p2) - (3.61)

In Information Theory and Statistics many other divergences are used
which are special cases of the above general Csiszar f-divergence, e.g.
Hellinger distance Dy, a-distance D,, Bhattacharyya distance Dpg, Har-
monic distance Dy, Jeffrey’s distance D, triangular discrimination Da, for
all these see, e.g. [4], [9]. The problem of finding and estimating the proper
distance (or difference or discrimination) of two probability distributions is
one of the major ones in Probability Theory.

Here we provide a general probabilistic representation formula for
I'f (11, p2). Then we present tight estimates for the remainder involving a va-
riety of norms of the engaged functions. Also are implied some direct general
approximations for the Csiszar’s f-divergence. We give some applications.

We make
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Remark 3.31. Here 0 < a < a < pg“’)

a <1 < . Also assume that f(l 1) exists and is absolutely continuous on
[a,b], | € N. Furthermore f is convex from (0 +oo) into R, strictly convex at
1 with f(1) =0. Let w € L; (R), suppw C | fR x)dr = 1.

Then V z € (a, 8) we get by Theorem 2 7 as in (2 38), that

< B <b< 400, ae on X and

/ F () (y)dy+ Q1 f (2) + Rouf ().
Therefore
1(565) = [ s (2) e (5).
a.e. oIrjIjriée
q () f (gé;) =
0@ [ 1@ewarra@@s (28 v ror (29),
a.e.on X.

Therefore we get the representation of f-divergence of py and us,

ry o) = [ oo (25) rio)

_/jf@)w(y)dw/xq(x)czllf(ggg)dw)

+/Xq(x) Ro, f <Zgg) dA (). (3.62)
Call Or = /X () Q" f <1(;Eg> dX (), (3.63)
and N ::/X‘I(”ﬁ) R (;;Eg) X (x). (3.64)

We estimate Qr and Rr.
If lwllf,__ &) < o0, we get by (2.26) that

Qr| < (li Hf(’“)H ) ol e - (3.65)

Notice if [ = 1, then always Qr = 0.
Next if again [lwl|},__ ) < 0o, then (by (2.27))

B _ p@) k+1 () k+1
@rl<| [ o lzf(ﬂ ) (o) Tl Y

Pt (k+1)! Lo (a,0)
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‘ ”wHLOO(R) : (3.66)
Let now p,q > 1: zl) % =1 and again |lw||, gy < oco. Then (by (2.28))
1
o) (Fat+1) - (kq+1)\
[ (5-5) " (8o
@< | [ a0 |S d d :
X el kq +1
LA P
e X [ (3.67)
Next assume w € Ly (R), then (by (2.29))
ey (PR (8-
Lo (a0,
|Qr| < (Z (k:! ) Wil Ry - (3.68)
k=1

pr,q>1:% %flandeL (o, B), then (by (2.30))

1
|Qr| < (
k

1

(]

i

w . 3.69
LM)> lyos - (369

Il
—

Assume p,q,7 > 1: % + % + % =1and w € Ly (a, ), then (by (2.31))
1 )
Ly(a,B
Qrl < (/ a(a) (Z e
X k=1 ’

Sl=

(kr+1) (kr+1)
p(z) p(z)
(ﬁ - q<w>> + (g(w) 0‘)

dX (@) | wllz, (o, - (3:70)

We make

Remark 3 32 (continuation of Remark 3.31) Here [ > 1, w € CU=2) (R),

sup pw C | f]R z)dx =1, and w=2) is absolutely continuous on [a,b] .
Then (by (2 32))

-1 ko3 k (k)
(S e NCE )
QF—/XQ() ; o /a [(q(x) y) (y)L fly)dy | dx(z).
(3.71)

Hence by (2.34) we obtain

|Qr| < min of
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(fx q(x (l:ll 7 [ ) dA (x)) 1L () o
-1 (k) )
fX q Z ki |: q(m) (y):| dA (QC) ||fHLoc(o¢,[3) ;
h=1 1 Y NlLi(a,B)
1- 1

when p, q > =1, we have

(2 - (y)} A (@) | 1711z, o)
v Lg(e,8)

fx q(z) %

(3.72)

We also make

Remark 3.33. (another continuation of Remark 3.31) Here we estimate the
remainder Rr of (3.62). By (2.20), (3.64) we obtain

-1
Wl £, (a,0) Hf(l)HLl(a,B) (8 —a)
(1—1)! '
If f ¢ Ly (a, 3), then (by (2.21)) we obtain

|Rr| < (3.73)

HwHLl(a,b) Hf(l) ||Loo(a,ﬁ) )

|Rr| <

(/X v ((ﬂ L) (- “)l> A <w>> SENERRY

Let now p,q > 1: % + % = 1. Here fU € L, (a, B), then (by (2.22)) we get
Il ey 17N 2 o
Re| < Ly (a,b) I lHL B)
(qU-1)+ 1) (I—1)!
(q(=1)+1) (a=1+1)\ @
p($)> (p(w) )
q(x - — + | —= -« dX (x
/. “(( @) @) ()
(3.75)
Finally we see that
(s i2) / £ (9w (y)dy = Qc + Rr, (3.76)
and
B
Tim |0y o)~ [ S @ )dy < jQr|+Rel. (37T

Then one by the above estimates of |Qr| and | Rr| can estimate T', in a number
of cases.
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4. Applications
Example 4.1. Let V:={z € R: |z — 29| < p}, xo € R, and

(1_ (z=20) ) !
%) (x) = e L , if |.’)3 — LU()| < p, (41)
0, if |z — x| > p.

Call ¢ := [, ¢ (x)dz > 0, then ® (z) := Lo (z) € C5° (R) (space of continu-
ously infinitely many times differentiable functions of compact support) with
supp® =V and [*_ @ (z)dz =1 and max |®| < constant - p~'. We call ®
a cut-off function.

One for this article’s results by choosing w () = ® (x) or w(x) = o=
etc., can give lots of applications. Due to lack of space we avoid it.

Instead, selectively, we give some special cases inequalities. We start
with Chebyshev-Griiss type inequalities.

Corollary 4.2. (to Theorem 3.3) Let f,g e Ct ([a b)), [a,b] C R, (a, B) C
(a,b). Let also w € Lo (R), suppw C [, 8], [pw (z)dz =1. Then

/jw(w)f(:c)g(x)dw </jw(x)f(x)dx> (/jw(x)g(x)dx)

(8—a)?
lwllz. ) llwlloo, (@) =5 (19 lloo, (.8 1/ lloc.(@8) F 1fllow (@819 |0, (a,9))-
(4.2)

<

If f =g, then

f«u(m)ﬁ(m)dm— (/jw(x)f(x)dx>2 <

HwHLl(R) [[wl] ,(a,ﬂ( ) 11l o, ) 1"l oo 00,(a,B) * (4.3)

Corollary 4.3. (to Theorem 3.4) Let f € (W, 1)loc( b); a,b € R; (e, B) C
(a,b), w(x) = ﬁ%a for x € [, 8], and zero elsewhere. Then

3 3 2
ﬁ%a/ f2(m)dx—(ﬁla)2</ f(x)d:v) <

11 ey |55
(B—a)

We continue with an Ostrowski type inequality.

Corollary 4.4. (to Theorem 3.11) All as in Theorem 3.11. Case of I = 1.
Then, for any x € («a,3) (or for almost every x € (a, 3), respectively), we

get
’ / I ()w(y)dy| <

Li(a,8) )

(4.4)

(4.5)

Li(a,8)
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Next comes a comparison of means inequality.

Corollary 4.5. All here as in Corollary 4.4 and Remark 3.19. Then

B1 B —
@@= [ fwewd) < lelue|7], - @
Proof. By (4.5). O

We finish with an application of f-divergence.

Remark 4.6. All here as in Background 3.30 and Remark 3.31. Case of [ = 1.
By (3.62) we get

ﬁ X
o) = [ £ ey [ q(z)Ro,lqu’Em;) @), (A7)

That is here

p(x)
Rp:/qu’f<>d)\x. 4.8
[ 4@ Rort (B ) r@) (4.9
By (3.73) here we get that
1Bl < w2, ) 1£ 12, () - (4.9)
If f' € Lo (o, B), then here we get
Bl < 19l oty 17y (B — ). (4.10)
Let now p,qg > 1: % + % =1 and assume f’ € L, («, 3), then here we obtain
1
Br] < [l 1715 ) (6 — ) (4.11)
Notice also here that
B
K=y (o)~ [ F @) () dy = Br, (412)
[0

(I =1 case).
So the estimates (4.9), (4.10) and (4.11) are also estimates for K.
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