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Perov’s fixed point theorem for multivalued
mappings in generalized Kasahara spaces

Alexandru-Darius Filip

Abstract. In this paper we give some corresponding results to Perov’s
fixed point theorem which was given in a complete generalized metric
space. Our results will be given in a more general space, the so called
generalized Kasahara space. We will also use the case of multivalued
operators and give some fixed point results for multivalued Kannan,
Reich and Caristi operators.
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1. Introduction and preliminaries

The classical Banach contraction principle was extended for contractive
maps on spaces endowed with vector-valued metrics by Perov in 1964 (see
[5]).We recall some notions regarding Perov’s result.
Let X be a nonempty set and m ∈ N, m ≥ 1. A mapping d : X ×X → Rm

is called a vector-valued metric on X if the following statements are satisfied
for all x, y, z ∈ X:
d1) d(x, y) ≥ 0m, where 0m := (0, 0, . . . , 0) ∈ Rm;
d2) d(x, y) = 0m ⇒ x = y;
d3) d(x, y) = d(y, x);
d4) d(x, y) ≤ d(x, z) + d(z, y).

We mention that if α, β ∈ Rm, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm)
and c ∈ R , then by α ≤ β (respectively α < β), we mean that αi ≤ βi

(respectively αi < βi), for all i = 1,m and by α ≤ c we mean that αi ≤ c,
for all i = 1,m.

A set X equipped with a vector-valued metric d is called a generalized
metric space. We will denote such a space with (X, d). For generalized metric
spaces, the notions of convergent sequence, Cauchy sequence, completeness,
open subset and closed subset are similar to those for usual metric spaces.
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Throughout this paper we denote by Mm,m(R+) the set of all m ×m
matrices with positive elements, by Θ the zero m×m matrix and by Im the
identity m ×m matrix. If A ∈ Mm,m(R+), then the symbol Aτ stands for
the transpose matrix of A. Notice also that, for the sake of simplicity, we will
make an identification between row and column vectors in Rm.

A matrix A ∈Mm,m(R+) is said to be convergent to zero if and only if
An → Θ as n → ∞ (see [11]). Regarding this class of matrices we have the
following classical result in matrix analysis (see [1](Lemma 3.3.1, page 55),
[6], [7](page 37), [11](page 12). More considerations can be found in [10].

Theorem 1.1. Let A ∈Mm,m(R+). The following statements are equivalent:

i) An → Θ, as n→∞;
ii) the eigenvalues of A lies in the open unit disc, i.e., |λ| < 1, for all λ ∈ C

with det(A− λIm) = 0;
iii) the matrix Im −A is non-singular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

iv) the matrix (Im − A) is non-singular and (Im − A)−1 has nonnegative
elements;

v) the matrices Aq and qτA converges to zero for each q ∈ Rm.

The main result for self contractions on generalized metric spaces is
Perov’s fixed point theorem (see [5]):

Theorem 1.2 (A.I. Perov). Let (X, d) be a complete generalized metric space
and the mapping f : X → X with the property that there exists a matrix
A ∈ Mm,m(R+) such that d(f(x), f(y)) ≤ Ad(x, y), for all x, y ∈ X. If A is
a matrix convergent to zero, then

p1) there exists a unique x∗ ∈ X such that x∗ = f(x∗), i.e., the mapping f
has a unique fixed point;

p2) the sequence of successive approximations (xn)n∈N ⊂ X, xn = fn(x0)
is convergent and it has the limit x∗, for all x0 ∈ X;

p3) d(xn, x
∗) ≤ An(Im −A)−1d(x0, x1), for all n ∈ N;

p4) if g : X → X satisfies the condition d(f(x), g(x)) ≤ η, for all x ∈ X and
η ∈ Rm, then by considering the sequence (yn)n∈N ⊂ X, yn = gn(x0)
one has d(yn, x

∗) ≤ (Im−A)−1η+An(Im−A)−1d(x0, x1), for all n ∈ N.

In this paper we give some corresponding results to Perov fixed point
theorem. We will use the multivalued operators and we will adapt Perov’s
result to the context of generalized Kasahara spaces. In order to do this, we
recall the following notions and results:

Definition 1.3 (see [8]). Let X be a nonempty set, → be an L-space structure
on X, (G,+,≤, G→) be an L-space ordered semigroup with unity, 0 be the least
element in (G,≤) and dG : X×X → G be an operator. The triple (X,→, dG)
is called a generalized Kasahara space if and only if the following compatibility
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condition between → and dG holds:

for all (xn)n∈N ⊂ X with
∑
n∈N

d(xn, xn+1) < +∞

⇒ (xn)n∈N is convergent in (X,→).

Example 1.4. Let ρ : X×X → Rm
+ be a generalized complete metric on a set

X. Let x0 ∈ X and λ ∈ Rm
+ with λ 6= 0. Let dλ : X ×X → Rm

+ be defined by

dλ(x, y) =

{
ρ(x, y) , if x 6= x0 and y 6= x0,

λ , if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

In [3], S. Kasahara gives a useful tool which is used in proving the
uniqueness of a fixed point.

Lemma 1.5. Let (X,→, dG) be a generalized Kasahara space. Then

for all x, y ∈ X with dG(x, y) = dG(y, x) = 0 ⇒ x = y.

For more considerations on generalized Kasahara spaces, see [8] and the
references therein.

Through this paper, we consider G = Rm. The functional dG will be
denoted by d, which is not necessary a metric on X. In other words, we will
consider the generalized Kasahara space (X,→, d) where d : X ×X → Rm

+ is
a functional.

Finally, in the above setting, for a multivalued operator F : X ( X,
we shall use the following notations:

m1) P (X) := {Y ⊂ X | Y 6= ∅}, so F : X → P (X);
m2) Fix(F ) := {x∗ ∈ X | x∗ ∈ F (x∗)}, the set of all fixed points for F . For

simplicity, we will use the notation Fx instead of F (x), where x ∈ X;
m3) Graph(F ) = {(x, y) ∈ X ×X | y ∈ Fx}, the graph of F .

We say that F has closed graph, if and only if Graph(F ) is closed in
X × X with respect to →, i.e., if (xn)n∈N ⊂ X and yn ∈ Fxn, for all
n ∈ N with xn → x∗ ∈ X, as n → ∞ and if yn → y∗, as n → ∞ then
y∗ ∈ Fx∗.

2. Main results

Theorem 2.1. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exists A ∈ Mm,m(R+) and for all x, y ∈ X and u ∈ Fx, there
exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y);

ii) Graph(F ) is closed in X ×X with respect to →.
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If A converges to zero, then Fix(F ) 6= ∅. If, in addition, (Im − A) is non-
singular, (Im −A)−1 ∈Mm×m(R+) and

max{d(u, v) | u ∈ Fx, v ∈ Fy} ≤ Ad(x, y), for all x, y ∈ X

then F has a unique fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F ). We assume
that x1 6= x0. Then by i) there exists x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1).

Since x2 ∈ Fx1, if x2 = x1 then x1 ∈ Fix(F ). If we consider x2 6= x1 then
there exists x3 ∈ Fx2 such that

d(x2, x3) ≤ Ad(x1, x2) ≤ A2d(x0, x1).

By induction, we construct the sequence of successive approximations for F
starting from (x0, x1) ∈ Graph(F ). This sequence has the following proper-
ties:

1◦) xn+1 ∈ Fxn, for all n ∈ N;
2◦) d(xn, xn+1) ≤ And(x0, x1), for all n ∈ N.

Next, we have the following estimation:∑
n∈N

d(xn, xn+1) ≤
∑
n∈N

And(x0, x1) = (Im −A)−1d(x0, x1) < +∞.

Since (X,→, d) is a generalized Kasahara space, the sequence (xn)n∈N
is convergent in X with respect to →. Hence there exists x∗ ∈ X such that
xn → x∗ as n→∞. On the other hand, F has closed graph, so x∗ ∈ Fix(F ).

We prove now the uniqueness of the fixed point x∗.
Let x∗, y∗ ∈ Fix(F ) such that x∗ 6= y∗. Since x∗ ∈ Fx∗ and y∗ ∈ Fy∗,

we get that

d(x∗, y∗) ≤ max
u∈Fx∗

v∈Fy∗

d(u, v) ≤ Ad(x∗, y∗) ⇔ (Im −A)d(x∗, y∗) ≤ 0m.

Since Im − A is a non-singular matrix and (Im − A)−1 has non-negative
elements, it follows that d(x∗, y∗) = 0m. By the same way of proof, we get
that d(y∗, x∗) = 0m. By Lemma 1.5, we obtain x∗ = y∗. �

Remark 2.2. Let X be a nonempty set and ρ : X ×X → Rm
+ be a complete

generalized metric on X. Let (xn)n∈N be a sequence in X and let x ∈ X.
Then

xn
ρ→ x ⇔ ρ(xn, x) → 0m, as n→∞.

We have the following Maia type result:

Corollary 2.3. Let X be a nonempty set and ρ : X ×X → Rm
+ be a complete

generalized metric on X. Let d : X ×X → Rm
+ be a functional and F : X →

P (X) be a multivalued operator. We assume that
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i) there exists A ∈ Mm,m(R+) and for all x, y ∈ X and u ∈ Fx, there
exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y);

ii) Graph(F ) is closed in X ×X with respect to
ρ→;

iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).
Then the following statements hold:

1) if A converges to zero, then Fix(F ) 6= ∅. If, in addition, (Im − A) is
non-singular, (Im −A)−1 ∈Mm×m(R+) and

max{d(u, v) | u ∈ Fx, v ∈ Fy} ≤ Ad(x, y), for all x, y ∈ X
then F has a unique fixed point in X.

2) ρ(xn, x
∗) ≤ c ·An(Im−A)−1d(x0, x1), for all n ∈ N, where x∗ ∈ Fix(F )

and (xn)n∈N is the sequence of successive approximations for F starting
from (x0, x1) ∈ Graph(F ).

Proof. By i) and by following the proof of Theorem 2.1, we can construct a
sequence (xn)n∈N of successive approximations for F starting from (x0, x1) ∈
Graph(F ) such that xn+1 ∈ Fxn and d(xn, xn+1) ≤ And(x0, x1), for all
n ∈ N. By iii) there exists c > 0 such that

ρ(xn, xn+1) ≤ c · d(xn, xn+1) ≤ c ·And(x0, x1), for all n ∈ N.

Now let p ∈ N, p > 0. Since ρ is a metric, we have that

ρ(xn, xn+p) ≤ ρ(xn, xn+1) + ρ(xn+1, xn+2) + . . .+ ρ(xn+p−1, xn+p)

≤ c ·And(x0, x1) + c ·An+1d(x0, x1) + . . .+ c ·An+p−1d(x0, x1).

Thus, for all n, p ∈ N with p > 0, the following estimation holds

ρ(xn, xn+p) ≤ c ·An(Im +A+ . . .+Ap−1)d(x0, x1). (2.1)

By letting n → ∞, we get that ρ(xn, xn+p) → 0m, so (xn)n∈N is a
Cauchy sequence in the complete generalized metric space (X, ρ). Therefore
(xn)n∈N is convergent in (X, ρ), so there exists x∗ ∈ X such that xn

ρ→ x.
By ii) it follows that x∗ ∈ Fix(F ). The uniqueness of the fixed point

x∗ follows from Theorem 2.1.
By letting p → ∞ in (2.1), we get the estimation mentioned in the

conclusion 2) of the corollary. �

Corollary 2.4. Let (X,→, d) be a generalized Kasahara space where d satisfies
d(x, x) = 0m, for all x ∈ X. Let F : X → P (X) be a multivalued operator.
We assume that:

i) there exists A ∈ Mm,m(R+), B ∈ Mm,m(R) and for all x, y ∈ X and
u ∈ Fx, there exists v ∈ Fv such that

d(u, v) ≤ Ad(x, y) +Bd(y, u);

ii) Graph(F ) is closed in X ×X with respect to →.
If A converges to zero, then F has at least one fixed point in X.
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Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F ). We assume
that x1 6= x0. Then by i) there exists x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1) +Bd(x1, x1) = Ad(x0, x1).

By following the proof of Theorem 2.1, the conclusion follows. �

As an application of the previous results we present an existence theorem
for a semi-linear inclusion systems.

Theorem 2.5. Let ϕ,ψ : [0, 1]2 →]0, 1
2 ] be two functions and F1, F2 : [0, 1]2 →

P ([0, 1]) be two multivalued operators defined as follows:

F1(x1, x2) =
[
ϕ(x1, x2),

1
2

+ ϕ(x1, x2)
]

and

F2(x1, x2) =
[
ψ(x1, x2),

1
2

+ ψ(x1, x2)
]
.

We assume that for each (x1, x2), (y1, y2) ∈ [0, 1]2 and each u1 ∈
F1(x1, x2), u2 ∈ F2(x1, x2), there exist v1 ∈ F1(y1, y2) and v2 ∈ F2(y1, y2)
such that

|u1 − v1| ≤ a|x1 − y1|+ b|x2 − y2|,
|u2 − v2| ≤ c|x1 − y1|+ d|x2 − y2|,

for all a, b, c, d ∈ R+ with |a+ d±
√

(a− d)2 + 4bc| < 2.
Then the system {

x1 ∈ F1(x1, x2)
x2 ∈ F2(x1, x2),

(2.2)

has at least one solution in [0, 1]2.

Proof. Let F := (F1, F2) : [0, 1]2 → P ([0, 1]2). Then the system (2.2) can be
represented as a fixed point problem of the form

x ∈ Fx, where x = (x1, x2) ∈ [0, 1]2.

We consider the generalized Kasahara space ([0, 1]2,
ρe−→, d) where:

i) ρe : [0, 1]2 × [0, 1]2 → R2
+ is defined by

ρe(x, y) = (|x1 − y1|, |x2 − y2|),

for all x = (x1, x2), y = (y1, y2) ∈ [0, 1]2;
ii) d : [0, 1]2 × [0, 1]2 → R2

+ is defined by

d(x, y) =

{
ρe(x, y) , x 6= θ and y 6= θ

(1, 1) , x = θ or y = θ
,

for all x = (x1, x2), y = (y1, y2) ∈ [0, 1]2, where θ = (0, 0).
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For each x = (x1, x2), y = (y1, y2) ∈ [0, 1]2 and u = (u1, u2) ∈ Fx, there
exists v = (v1, v2) ∈ Fy such that

d(u, v) ≤ Ad(x, y),

where A =
(
a b
c d

)
is a matrix convergent to zero, having its eigenvalues in

the open unit disc.
Since Graph(F ) is closed in [0, 1]2 w.r.t.

ρe−→, Theorem 2.1 holds. �

Remark 2.6. Some examples of matrix convergent to zero are:

a) any matrix A =
(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

b) any matrix A =
(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

c) any matrix A =
(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1;

In what follows, we present some results regarding the fixed points for
multivalued Kannan and Reich operators. For our proofs, we will need the
following result:

Lemma 2.7. Let A = (aij)i,j=1,m ∈Mm,m(R+) be a triangular matrix with

max
{
aii | i = 1,m

}
<

1
2
.

Then the matrix Λ = (Im −A)−1A is convergent to zero.

Proof. Suppose that A =


a11 a12 · · · a1m

0 a22 · · · a2m

...
... · · ·

...
0 0 · · · amm

 ∈ Mm,m(R+). Then the

eigenvalues of Λ are λi = aii

1−aii
, for all i = 1,m. Since all of the eigenvalues

of Λ are in the open unit disc, the conclusion follows from Theorem 1.1. �

A result for multivalued Kannan operators is presented bellow:

Theorem 2.8. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exists A = (aij)i,j=1,m ∈ Mm,m(R+) a triangular matrix such
that max

i=1,m
aii <

1
2 and for all x, y ∈ X and u ∈ Fx, there exists v ∈ Fy

such that
d(u, v) ≤ A[d(x, u) + d(y, v)];

ii) Graph(F ) is closed in X ×X with respect to →.

Then F has at least one fixed point in X.
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Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0, then we already have a fixed
point for F (x0 ∈ Fix(F )). Assuming that x1 6= x0, then by i), there exists
x2 ∈ Fx1 such that

d(x1, x2) ≤ A[d(x0, x1) + d(x1, x2)] ⇔ d(x1, x2) ≤ (Im −A)−1Ad(x0, x1).

We denote Λ = (Im −A)−1A and we have

d(x1, x2) ≤ Λd(x0, x1).

By taking into account Lemma 2.7 and by following the proof of Theorem
2.1, replacing A with Λ, the conclusion follows. �

Next we present a result regarding the fixed points for the multivalued
operators of Reich type:

Theorem 2.9. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. We assume that:

i) there exist A = (aij)i,j=1,m, B = (bij)i,j=1,m, C = (cij)i,j=1,m ∈
Mm,m(R+), where

1) C is a triangular matrix with max
i=1,m

cii <
1
2

2) A+B ≤ C, i.e., aij + bij ≤ cij, for all i, j = 1,m
and for all x, y ∈ X and u ∈ Fx, there exists v ∈ Fy such that

d(u, v) ≤ Ad(x, y) +Bd(x, u) + Cd(y, v);

ii) Graph(F ) is closed in X ×X with respect to →.

Then F has at least one fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Fx0. If x1 = x0, then we already have a fixed
point for F (x0 ∈ Fix(F )). Assuming that x1 6= x0, then by i), there exists
x2 ∈ Fx1 such that

d(x1, x2) ≤ Ad(x0, x1) +Bd(x0, x1) + Cd(x1, x2)

⇔ d(x1, x2) ≤ (Im − C)−1(A+B)d(x0, x1) ≤ (Im − C)−1Cd(x0, x1).

We denote Λ = (Im − C)−1C. By taking into account Lemma 2.7 and
by following the proof of Theorem 2.1, replacing A with Λ, the conclusion
follows. �

Some other fixed point results can be established for the multivalued
Caristi operators:

Definition 2.10. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued operator. Let ϕ : X → Rm

+ be a functional. We say
that F is a multivalued Caristi operator if for all x ∈ X, there exists y ∈ Fx
such that

d(x, y) ≤ ϕ(x)− ϕ(y).

For more considerations on multivalued Caristi operators see [4] and [2].
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Theorem 2.11. Let (X,→, d) be a generalized Kasahara space and F : X →
P (X) be a multivalued Caristi operator, having closed graph with respect to
→. Then F has at least one fixed point in X.

Proof. Let x0 ∈ X. Then there exists x1 ∈ Fx0. If x1 = x0 then x0 ∈ Fix(F )
and the proof is complete. If x1 6= x0 then

d(x0, x1) ≤ ϕ(x0)− ϕ(x1).

Since x1 ∈ Fx0, there exists x2 ∈ Fx1. If x2 = x1 then x1 ∈ Fix(F )
and the proof is complete. If x2 6= x1 then

d(x1, x2) ≤ ϕ(x1)− ϕ(x2).

By induction, there exists xn+1 ∈ Fxn such that

d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), for all n ∈ N.

We have the following estimations∑
n∈N

d(xn, xn+1) ≤ ϕ(x0)− ϕ(xn+1) ≤ ϕ(x0) < +∞.

Since (X,→, d) is a Kasahara space, the sequence (xn)n∈N is convergent in
(X,→). So there exists x∗ ∈ X such that xn → x∗, as n→∞.

Since Graph(F ) is closed, x∗ ∈ Fix(F ). �

By taking into account the Remark 2.2, we have the following result:

Corollary 2.12. Let X be a nonempty set and ρ : X×X → Rm
+ be a complete

generalized metric on X. Let d : X ×X → Rm
+ be a functional. Let ϕ : X →

Rm
+ be a functional.

Let F : X → P (X) be a multivalued operator such that

i) Graph(F ) is closed in X ×X with respect to
ρ→;

ii) for all x ∈ X, there exists y ∈ Fx such that d(x, y) ≤ ϕ(x)− ϕ(y);
iii) there exists c > 0 such that ρ(x, y) ≤ c · d(x, y).

Then F has at least one fixed point in X.

Proof. By ii) and the proof of the Theorem 2.11, there exists a sequence
(xn)n∈N in X such that

1) xn+1 ∈ Fxn, for all n ∈ N;
2) d(xn, xn+1) ≤ ϕ(xn)− ϕ(xn+1), for all n ∈ N.

By iii) there exists c > 0 such that

ρ(xn, xn+1) ≤ c · d(xn, xn+1) ≤ c · (ϕ(xn)− ϕ(xn+1)), for all n ∈ N.

We will prove that the series
∑
n∈N

ρ(xn, xn+1) is convergent. For this

purpose, we need to show that the sequence of its partial sums is convergent
in Rm

+ .
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Denote by sn =
n∑

k=0

ρ(xk, xk+1). Then sn+1 − sn = ρ(xn+1, xn+2) ≥ 0,

for each n ∈ N. Moreover sn ≤
n∑

k=0

[
cϕ(xk) − cϕ(xk+1)

]
≤ cϕ(x0). Hence

(sn)n∈N is upper bounded and increasing in Rm
+ . So the sequence (sn)n∈N is

convergent in Rm
+ . It follows that the sequence (xn)n∈N is a Cauchy sequence

and, from the completeness of the metric space (X, ρ), convergent to a certain
element x∗ ∈ X. The conclusion follows from i). �

For more considerations on multivalued Kannan, Reich and Caristi op-
erators, see [9] and the references therein.
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