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1. Introduction

Consider the two equivalent classical definitions of the real exponential func-
tion
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both convergences being uniform on compact subsets of R.
Their speed of convergence is different. Concerning the Taylor-Maclaurin ap-
proximation (1.1) of the exponential, see D. S. Mitrinovié¢ [3], pp. 268-269.
For the approximation given by (1.2), also in this classical book are given the
following inequalities
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(see [4], [5], [13], [14], [15]).
In [7] we gave some stronger inequalities, namely
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i)If > 0,¢t>0andt> 5% then

z2e® T\? r%e”
<e"— (1 7) < . 1.3
2t + z + max{z, 22} ¢ ( 3 2+ x (1.3)
ii) If 2 >0, ¢t >0 and ¢t > £ then
z2e® T\? z2e®
<o (1-2) < 14
%zt t 2t — 2z 4+ min{x, 22} (14)

and we detailed the proof of (1.3) (for the proof of (1.4) see[12], pp. 258-260).

Also, note en passant, that the previous inequalities give by the simple
particularization = = 1, the characterizations of the "speed” of convergence
of four standard sequences related to the numbers e and %, namely 1)

<o (143) <gry (8 pas 381

2. The main result

Now we will establish the best approximation of e by the family of sequences
of general term (1 + %)nﬂ’, where p is a real parameter; this may suggest
the best approximation of e, z > 0, by some algebraic functions.

Consider the known limited expansion

1 11 7
(1—1—37)% :e<1—2x+24x2—16x3) + O(z%), (2.1)
and also the limited binomial one
—1 —1(p—2
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) Using the notations e, = (1+ %)n, fno= (14 %)n-H, gn = (1- %)n, hy =
(1 - %)n71 and applying the GM-AM inequality for the numbers a1 = a2 = a3 = ... =
an =1+ %, an+1 = 1, we obtain that the sequence (ey),, is strictly increasing (see [9]).
Applying the GM-AM inequality for the numbers by = by = b3 = ... = b, = 1 — 1

n ’
bn+1 = 1, we obtain analogously that the sequence (gn),, is strictly increasing. The iden-
tities fpn, = 1

n

and hy, = ﬁ show us that the sequences (f»),, and (hn),, are strictly

In+1
decreasing. Therefore e, < e < fn, and g, < % < hnp.
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Remark. The formula (2.1) is can be obtained in a classical way, using
the well-known limited expansions In(1 + z) = z= — 2 4 % — % + O(z®) and
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and some standard calculations give (2.1).

Multiplying (2.1) and (2.2), part by part, performing the usual calcula-
tions and replacing = by + (n =1,2,3,...), we obtain
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From (2.3), we see that
1
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For p = 3 it results that the term in + of (2.3) vanishes and we have
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which conducts us to the equality
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Another way to obtain (2.5) consists in a (repeated) use of the
L’Hospital’s rule, but this gives no idea of the provenance of the result.

and so

So, the best approximation of e by the sequences of general term
(1 + %)nﬂ) is the one corresponding to p = %
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3. A two-sided estimate

The equality (2.5) suggests us to search a two sided estimate of the form

€ _<(1+ " <—°
12(n + a)? n °S 2+ p)2

where o and 3 are two real constants.

Professor Toan Gavrea communicated me ([1]) a convenient left part of

(3.1), namely for a = %, we have

(3.1)
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We present here his proof. Let
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1
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We have successively
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where we have denoted n + % =u
Using now the well known expansions
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(uniform convergent in every compact K C (—1,1)) and performing the usual
calculations, we obtain

(S Y LT S [ . I
" 2n 3 (2n)3  5(2n)5 T 1202 8nd T 12n2

(because of n > 0). Therefore (using that e” > 1+ z, for > 0) we have
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and so
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that gives (3.2).

The problem of finding of an adequate constant (3 in (3.1) remains open.

4. Concluding remarks

The previous results, concerning the approximation of the number e by the
sequence (1 + %)nﬂ) conduct to the idea to search a similar approximation
of the exponential. We mention that an approximation of the exponential
using the rational functions was given by J. Karamata (see [2]).
Acknowledgments. I thank Professor Ioan Gavrea for his communication of
the inequality (3.2) and the proof.
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