
Stud. Univ. Babeş-Bolyai Math. 56(2011), No. 2, 515–526

Approximation methods for second order
nonlinear polylocal problems

Daniel N. Pop and Radu T. Tr̂ımbiţaş

Abstract. Consider the problem:

y
′′(x) + f(x, y) = 0, x ∈ [0, 1]

y(a) = α

y(b) = β, a, b ∈ (0, 1).

This is not a two-point boundary value problem since a, b ∈ (0, 1). It is
possible to solve this problem by dividing it into the three problems: a
two-point boundary value problem (BVP) on [a, b] and two initial-value
problems (IVP), on [0, a] and [b, 1]. The aim of this work is to present
two solution procedures: one based on B-splines of order k + 2 and the
other based on a combination of B-splines (order k + 2) with a (k + 1)-
order Runge-Kutta method. Then, we give two numerical examples and
compare the methods experimentally.
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1. Introduction

Consider the problem (PVP - Polylocal Value Problem):

y′′(x) + f(x, y) = 0, x ∈ [0, 1] (1.1)

y(a) = α (1.2)

y(b) = β, a, b ∈ (0, 1), a < b. (1.3)

where a, b, α, β ∈ R. This is not a two-point boundary value problem, since
a, b ∈ (0, 1).

We try to solve the problem using two methods:

• a collocation method based on B-splines of order k + 2;
• a combined method based on B-splines (order k+2) and a Runge-Kutta

method(order k + 1).
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The methods are new in this context: the conditions are stated at interior
points. Also it is shown that the Runge-Kutta method does not degrade the
accuracy provided by the collocation method for the BVP.

Our choice to use these methods is based on the following reasons :

1. We write the code using the function spcol in MATLAB Spline Toolbox.
2. It is the most suitable method, for a general purpose code, among the

finite element ones. See [2, 17, 21], where complexity comparisons which
support the above claim are made and collocation, when efficiently im-
plemented, is shown to be competitive with finite differences using ex-
trapolation.

3. Theoretical results on the convergence of collocation method are given
in [6, 16].

4. Several representative test problems demonstrate the stability and flex-
ibility [7].

5. For each Newton iteration, the resulting linear algebraic system of equa-
tions (after using Newton method with quasilinearization) is solved us-
ing methods given in [8].

We also consider the BVP :

y′′(x) + f(x, y) = 0, x ∈ [a, b] (1.4)

y(a) = α (1.5)

y(b) = β, (1.6)

To apply the collocation theory, we need to have an isolated solution
y(x) of the problem (1.4)+(1.5)+(1.6), and this occurs if the above linearized
problem for y(x) is uniquely solvable. R.D Russel and L.F.Shampine [22]
study the existence and the uniqueness of the isolated solution.

Theorem 1.1. [22] Suppose that y(x) is a solution of the boundary value prob-
lem (1.4)+(1.5)+(1.6), that the functions

f(x, z) and
∂f(x, z)

∂y

are defined and continuous for a ≤ x ≤ b, and |z − y| ≤ δ, δ > 0, and
the homogeneous equation y′′(x) = 0 subject to the homogeneous boundary
conditions (1.5)+(1.6) has only the trivial solution. If the linear homogeneous
equation

z′′(x) +
∂f(x, y)

∂y
z(x) = 0

has only trivial solution, then this is sufficient to guarantee that there exists
a σ > 0 such y(x) is the unique solution of problem BVP in the sphere:

{w : ‖w − y′′‖ ≤ σ}.

For the existence and uniqueness of an IVP, we recall the following
result.
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Theorem 1.2. [15, pp. 112-113]Suppose that D = {a ≤ x ≤ b,−∞ < y < ∞}
and f(x, y) is continuous on D. If f satisfies a Lipschitz condition on D in
the variable y, then the initial value problem (IVP)















y′ = z,
z′ = −f(x, y), a ≤ x ≤ b,
y(a) = α,
y′(a) = ς,

(1.7)

has a unique solution y(x) for a ≤ x ≤ b.

If the problem BVP has the unique solution, the requirement y(x) ∈
C2[0, 1] ensure the existence and the uniqueness of the solution of PVP.

2. The collocation method for solving the polylocal problem
using B-splines

2.1. B-splines bases of degree k (order k + 1)

For reason of efficiency, stability, flexibility in order, and continuity, we choose
B-splines as the basis functions. Efficient algorithms for calculating with B-
splines are given by deBoor [9, 10] and Risler[20].

Consider a sequence of knots t0, . . . , tm, such that ti ≤ ti+1 for all i.

Definition 2.1. Let t = (t0, . . . , tm). For x ∈ R, 0 ≤ i ≤ m − k − 1, we define
B-splines of degree k as follows:







Bi,0 =

{

1, if ti ≤ x < ti+1

0, otherwise
Bi,k(x) = wi,k(x)Bi,k−1(x) + (1 − wi+1,k(x))Bi+1,k−1(x),

(2.1)

where

wi,k(x) =

{ x−ti

ti+k−ti
, if ti < ti+k

0, otherwise.
(2.2)

If s(x) =
∑m−k−1

r=0 crBr,k(x), then its derivatives can be found for x ∈
(tj , tj+k) from (see for more details [4, pp. 62]):

s(i)(x) =

j
∑

l=j−k+i−1

cl,i+1Bl,k−i(x), (2.3)

where

cl,i+1 :=

{

cl, if i = 0

(k − i)
cl,i−cl−1,i

tl+k−i−tl
, if i > 0.

(2.4)

To evaluate B
(i)
j,k(x), we take cr = δrj , for r = 0, . . . , m − k − 1, in (2.3) and

(2.4).
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2.2. Principles of the method

First we are interested to a global approach for the solution of problem (1.1)
+ (1.2) + (1.3). Let ∆ be a partition of [0, 1] like

∆ : 0 = x0 < x1 < · · · < xN−1 = 1. (2.5)

We insert the points a and b into the partition. Suppose xl = a and xl+p = b,
0 < l < N + 1, 1 < l + p < N + 1. The multiplicity of each point inner point
is k, and the multiplicity of endpoints is k + 2. Let

Hi := xi+1 − xi, i = 0, . . . , N (2.6)

be the step sizes.

We construct the following collocation points

ξij := xi + Hiρj ; i = 0, 1, . . . , N − 1, j = 1, 2, . . . , k, (2.7)

on each subinterval [xi, xi+1], i = 0, 1, . . . , N − 1, where

0 < ρ1 < ρ2 < · · · < ρk < 1 (2.8)

are the roots of k-th Legendre polynomial (see [5] for more details). We insert
the points a and b into the set of collocation point, so we obtain n = Nk + 2
points.

Remark 2.2. If a or b coincide with one of the previously computed collocation
point, then we increment N .

One renumbers the collocation points, such that the first is ξ0 := x0 +
H0ρ0, and the last is ξn−1 := xN +HNρk, where n = Nk +2. The dimension
of our spline space must be n = Nk + 2. Using notations in section 2.1, we
have m = (N + 1)k + 4. Therefore, the partition of [0, 1] becomes: [23, pp.
65]:

∆ : 0 = x0 ≤ x1 ≤ · · · ≤ xm = 1. (2.9)

Definition 2.3. A function v(x) is in the family L(∆, k, p) if v(x) is a poly-
nomial of degree k on each subinterval of ∆ and v ∈ Cp[0, 1]. The subfamily
L′(∆, k, p) consists of all functions in L(∆, k, p) which satisfy the boundary
conditions (1.5) + (1.6).

Suppose a partition (2.9) of [0, 1] and a sequence of partitions ∆n(n =
1, 2, 3, . . . ) satisfying

lim
n→∞

h(∆n) = 0

are given. If we form a set of points Sn(n = 1, 2, . . . ) like in (2.9), then, for
a large n (see [25] for more details), there is a unique element u ∆n

(x) of

L′(∆n, k + 1, 1) satisfying (1.4) at each point of Sn and
∥

∥u ∆n
(x) − y(x)

∥

∥ ≤ δ. (2.10)
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The approximate solution yn(x) and its derivatives up to order two
converge uniformly to y(x) and to its derivatives of corresponding orders.
Moreover the rate of convergence is bounded by

∥

∥

∥
u ∆n

(x)(k) − y(k)(x)
∥

∥

∥
≤ θFn(u′′), k = 0, 1, (2.11)

where θ is a constant independent of n and Fn(u′′) is the error of the best
uniform approximation to y′′(x) in L(∆n, k − 1, 0).

We wish to find an approximate solution of the problem
(1.1)+(1.2)+(1.3) in L(∆, k + 1, 1), having the following form:

u∆(x) =
n−1
∑

i=0

ciBi,k+1(x), (2.12)

where Bi,k+1(x) is a B-spline of order (k + 2) with knots {xi}m
i=0.

Remark 2.4. Our approximation method is inspired from ([11], chap. 2,5)

Let

J = {0, . . . , n − 1}\{l, l + p}.

We impose the conditions:

(c1) The approximate solution (2.12) satisfies the differential equation
(1.1) at ξj , j ∈ J , where ξj are the collocation points.

(c2) The solution satisfies u∆(ξl) = α, u∆(ξl+p) = β (we recall that
a = ξl, b = ξl+p).

The conditions (c1) and (c2) yield a nonlinear system with n equations:































n−1
∑

i=0

ciBi,k+1(a) = α, j = l,

n−1
∑

i=0

ciB
′′
i,k+1(ξj) + f

(

ξj ,
n−1
∑

i=0

ciBi,k+1(ξj)

)

= 0, j ∈ J,

n−1
∑

i=0

ciBi,k+1(b) = β, j = l + p,

(2.13)

with unknowns (ci)
n−1
i=0 . If F = [F0, F1, . . . , Fn−1]

T
are the functions defined

by the equations of the nonlinear systems, using the quasilinearization of
Newton method [4, pp. 52-55], we find the next approximation by means of

c(k+1) = c(k) − w(k), (2.14)

where c(k) is the vector of unknowns obtained at the k-th step, and w(k) is
the solution of the linear system:

F ′(c(k))w = F (c(k)). (2.15)
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The Jacobian matrix F ′ = (Jij) is banded and it is given by

Jij =















Bj,k+1(a), for i = l
Bj,k+1(b), for i = l + p

B′′
j,k+1(ξi) + ∂f

∂y

(

ξi,
n−1
∑

i=1

ciBj,k+1(ξi)

)

Bj,k+1(ξi), for i ∈ J.

(2.16)
To solve (1.1)+(1.2)+(1.3) we use the method presented in [7, pp. 670-

674] and [24, pp. 771-795]. An initial approximation u(0) ∈ C1 [0, 1] is re-
quired.

The successful stopping criterion [1] is
∥

∥

∥
u(k+1) − u(k)

∥

∥

∥
≤ abstol +

∥

∥

∥
u(k+1)

∥

∥

∥
reltol,

where, abstol and reltol is the absolute and the relative error tolerance, re-
spectively, and the norm is the usual uniform convergence norm. The relia-
bility of the error-estimation procedure being used for stopping criterion was
verified in [3]. Papers on this topics exploit the almost block diagonal struc-
ture of collocation matrix and recommend an LU factorization (see [8, 3]).

3. A combined method using B-splines and Runge-Kutta
methods

Our second method consists of the decomposition of the problem (1.1) +
(1.2) + (1.3) into three problems:

1. A BVP on [a, b] (problem (1.4)+(1.5)+(1.6));
2. Two IVPs on [0, a] and [b, 1].

Also we suppose that the problem (1.4)+(1.5)+(1.6) satisfies hypothesis
of the Theorem 1.1, which ensures a sufficient condition to guarantee that
there exists a σ > 0 such that y(x) is the unique solution of problem BVP in
the sphere

{w : ‖w − y′′‖ ≤ σ}.
Due to conditions in Theorems 1.1 and 1.2, the problem (1.1)+

(1.2)+(1.3) has a unique solution. To solve the problem (1.4)+(1.5)+(1.6),
we use the collocation method presented in Section 2. This time, we consider
a partition of [a, b] as follows

∆ : a = x0 < x1 < · · · < xN = b.

The multiplicity of a and b is k + 2 and the multiplicity of inner points is k.
The dimension of spline space is again Nk + 2, and the nonlinear system is
analogous to (2.13).

For the solution of the two initial value problems, we use a Runge-Kutta
method of appropriate order. This needs good approximations of y′(a) and
y′(b), which could be obtained with no additional effort during the colloca-
tion. Let u∆(x) be the approximation computed by the combined method.
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Theorem 3.1. If u is an isolated solution of (1.1)+ (1.2)+(1.3), f has con-
tinuous second order partial derivatives and the initial guess is sufficiently
close to u, then the combined method is convergent to u and its accuracy is
O(hk+1), where h is the norm of the partition ∆ given by (2.9).

Proof. For the problem (1.4)+(1.5)+(1.6) we apply Theorem 5.147, page 257
in [4]. We conclude that Newton method, applied to ∆, converges quadrat-
ically to the restriction of u to ∆, and the accuracy for the approximation
and its derivative is O(hk+1), that is

|u(j)

∆
(x) − y(j)(x)| = O(hk+1), x ∈ [a, b], j = 0, 1.

We extend convergence and the accuracy to the whole interval [0, 1] by using
the stability and the convergence of Runge-Kutta methods. A (k + 1)-order
explicit Runge-Kutta method is consistent and stable, so it is convergent,
and its accuracy is O(hk+1). Thus the final solution has the same accuracy.
The stability and convergence of Runge-Kutta method are guaranteed by
Theorems 5.3.1, page 285 and 5.3.2, page 288 in [13]. �

4. Some considerations on complexity

We will give a rough estimation of the complexity of our methods. We start
with the first method. In the sequel, B will be the cost for B-spline evaluation
and f the time for a function evaluation.

The time required to construct the collocation matrix is C0 = 2(Nk +
1)(k + 2)B.

To construct the Jacobian we need Nk(k +2)(B + f). The construction
of the right-hand side requires (Nk + 2)B + NkB + Nkf . So, for the linear
system construction, we obtain

W1 = ((B + f)k2 + (4B + 3f)k)N + B

For a banded linear system with bandwidth w the total cost for solution,

using LU with pivoting is n(w2

2 + w) (see [12, pp. 79-80]). In our case, n =

Nk + 2, and w = 3
2 (k + 2), and the cost for the solution of the linear system

will be

W2 =

(

21

2
k +

9

8
k3 +

15

2
k2

)

N + 15k + 21 +
9k2

4
.

The cost of Newton step is Ws = W1 + W2, that is,

Ws =

[

9k3

8
+

(

f + B +
15

2

)

k2 +

(

3f + 4B +
21

2

)

k

]

N+2B+15k+21+
9k2

4
.

The total cost is IWs + C0, where I is the number of steps required in
Newton methods. Since the convergence is quadratic, if the final tolerance is
ε, assuming δi+1 = cδ2

i , where δi is the error at the ith step, we obtain [18,
pp. 295-297]

I =
1

log 2
log

log |c| + log ε

log |c| + log |δ0|
.
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For the second method, the same analysis works for BVP solution part.
We have an additional amount of work for Runge-Kutta method. If the num-
ber of stages is s and the number of points is p, the cost is O(psf).

5. Implementation and numerical examples

We implemented the ideas from previous sections in MATLAB 2010a. Our
code uses MATLAB Spline Toolbox and sparse matrices (see [26]). The func-
tion spcol allows us to compute easily the collocation matrix. For IVPs the
solver ode45 works fine. To avoid the error propagation, we chose for (BVP)
B-splines of order 4 (degree 3) or order 5 (degree 4).

We implemented two functions: polycollocnelin, global B-spline col-
location, and polycalnlinRK, the combined method (B-spline collocation +
Runge-Kutta).

Consider the following examples:

1. [14] Consider the PVP

y′′(x) + y3(x) +
4 − (x − x2)3

(x + 1)3
= 0; x ∈ (0, 1)

y(1/4) = 3/20; y(1/2) = 1/6

(5.1)

with exact solution

y(x) =
x − x2

x + 1
.

2.
y′′(x) + e−y(x) = 0; x ∈ [0, 1]

y(π/6) = ln(3/2), y(π/4) = ln((2 +
√

2)/2)
(5.2)

with the exact solution

y = ln(sin(x) + 1).

We applied both methods to each example.
Figure 1 shows the exact solutions and the starting functions. The error

plots for both methods, in semi-logarithmic scale, are given in Figure 2 for
the first example and in Figure 3 for the second example, respectively.

We chose as starting function the Lagrange interpolation polynomial
that takes the values α and β at a and b.

Table 1 gives the residuals e
(j)
∆ ‖y(j) − y

(j)
∆ ‖, for j = 0, 1, 2, for the

global method based on B-splines. For the residuals it holds ‖y(j) − y
(j)
∆ ‖ =

O(|∆‖)k+2−j , for j = 0, 1, 2. To check this experimentally, we plot the resid-
uals versus 1/∆, for various values of N in a log-log scale (see Figure 4, the
left column, for Example (5.1) and Figure 4, the right column, for Example
(5.2)).

In order to compare the costs (run-times) experimentally we used MAT-
LAB functions tic and toc. The results are given in Table 2.

The time for combined method is a bit larger.
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Figure 1. Exact solution and starting approximation
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Figure 2. Error plot for example (5.1)
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(b) Combined method

Figure 3. Error plot for example (5.2)

The next numerical experiment compares the running time of our meth-
ods to the running time of a pseudospectral method (see [19] for implemen-
tation details of the latter). As example, we consider a variant of Bratu’s
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Figure 4. Order estimation for Example (5.1) (left) and

Example (5.2) (right): e
(0)
∆ - up, e

(1)
∆ - middle, and e

(2)
∆ -

bottom

Example (5.1) Example (5.2)
N ‖y−y∆‖ ‖y′−y′

∆‖ ‖y′′−y′′

∆‖ ‖y−y∆‖ ‖y′−y′

∆‖ ‖y′′−y′′

∆‖
5 6e-05 0.000123 0.00229 1.04e-05 2.15e-05 0.000172
6 6e-05 0.000123 0.00229 3.72e-06 8.47e-06 0.000124
7 6e-05 0.000123 0.00229 1.59e-06 3.96e-06 0.000106
8 6e-05 0.000123 0.00229 7.37e-07 2.02e-06 5.65e-05
9 6.9e-06 1.63e-05 0.000769 3.84e-07 1.16e-06 3.61e-05
10 6.9e-06 1.63e-05 0.000769 2.04e-07 6.81e-07 2.42e-05
11 6.9e-06 1.63e-05 0.000769 1.21e-07 4.46e-07 2.14e-05
12 6.9e-06 1.63e-05 0.000769 1.82e-08 2.02e-07 1.81e-05
13 1.4e-06 3.64e-06 0.000346 1.3e-08 1.44e-07 9.77e-06
14 1.4e-06 3.64e-06 0.000346 7.54e-09 1.09e-07 1.51e-05
15 1.4e-06 3.64e-06 0.000346 5.54e-09 8.32e-08 6.08e-06
16 1.4e-06 3.64e-06 0.000346 3.54e-09 6.22e-08 7.92e-06
17 3.99e-07 1.22e-06 0.000148 2.81e-09 4.65e-08 4.65e-06
18 3.99e-07 1.22e-06 0.000148 1.89e-09 3.51e-08 4.76e-06
19 3.99e-07 1.22e-06 0.000148 1.43e-09 2.98e-08 4.14e-06
20 3.99e-07 1.22e-06 0.000148 1.02e-09 2.5e-08 3.7e-06

Table 1. Error table for Examples (5.1) and (5.2)

problem [4, page 491] for λ = 1

y′′ + ey = 0, x ∈ (0, 1)

y(0.2) = y(0.8) = 0.08918993462883.
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Method 1 Method 2
First example 0.017501 0.022751
Second example 0.016387 0.021535

Table 2. Run times

ε PseudoS BS+RK Global BS
10−5 0.054 0.035 0.021
10−6 0.077 0.043 0.023
10−7 0.049 0.025 0.024
10−8 0.055 0.031 0.031
10−9 0.054 0.036 0.030
10−10 0.058 0.026 0.028

Table 3. Running times for Bratu’s problem

We chose 128 collocation points, and as starting function y0(t) = 39
70x(x− 1).

The running times for various tolerances are given in Table 3.
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“Babeş-Bolyai” University
Faculty of Mathematics and Computer Sciences
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