Stud. Univ. Babes-Bolyai Math. 56(2011), No. 2, 353-357

Rigid body time-stepping schemes in
a quasi-static setting

Bogdan Gavrea

Abstract. We discuss how linear complementary problems (LCPs) can
be used to simulate rigid-body systems in a quasi-static setting. LCP-
based time-stepping schemes were successfully used in [1] in order to
plan and control meso-scale manipulation tasks.
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1. Introduction

In [1] we considered the canonical problem of assembling a peg into a hole.
Simulation of this quasi-static system was used in order to select the con-
trol parameters. The integration step in the simulator was formulated as a
mixed linear complementarity problem (MLCP). MLCPs should be thought
of as linear complementarity problems(LCPs) coupled with additional linear
equality constraints. A brief description of the linear complementarity prob-
lem and results concerning LCPs with copositive matrices are given in the
following subsections. For a detailed analysis of these problems we refer the
reader to the excellent manuscript [2].

1.1. Linear complementarity problems

In this section we present the definitions for the linear complementarity prob-
lem (LCP) and the mixed linear complementarity problem(MLCP).

Definition 1.1. The problem of finding z € R™ such that
2>0, Mz+b>0, and 2/ (Mz+b) =0, (1.1)

where b € R™ and M € R™*" is called a linear complementarity problem.
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In the above definition the inequality z > 0, z € R™ is to be understood com-
ponentwise, i.e., z; > 0, ¢ = 1,n. The non-negativity and complementarity
conditions (1.1) can be also written in the more compact form:

0<zlw:=Mz+b>0.

We denote the problem (1.1) by LCP(b, M). If in addition to the comple-
mentarity constraints we add some equality constraints we obtain a mized
linear complementarity problem (MLCP). To be more precise, we follow the
definition in [2] and consider the matrices A € R™*", B € R™*™ (C e R"*™
and D € R™*™, Let a € R™ and b € R™ be given.

Definition 1.2. The mized linear complementarity problem is the problem of
finding vectors uw € R™ and v € R™ such that

a+ Au+ Cv

b+ Du+ Bv

v

vT (b + Du + Bv)

(1.2)

IV IVl
cocooo

We note that if the matrix A in (1.2) is invertible we can write v in terms of
v and use this form to reduce the problem to a standard LCP formulation.

1.2. LCPs with copositive matrices

The matrix of the underlying LCP used in the time-stepping schemes such
as the one used in [1] is a copositive matrix.

Definition 1.3. A matriz M € R™ "™ is said to be copositive if
2T Mz >0 for all z € R", x> 0.

In general a linear complementarity problem with a copositive matrix is not
guaranteed to possess a solution. Solvability of such LCPs is discussed in the
following Theorem.

Theorem 1.4 (2], Th. 3.8.6). Let M € R™ ™ be a copositive matriz and let
b € R™ be given. If the implication

[vZO, Muv >0, 'UTMU:O] = [UTbZO}

holds, then LCP(b, M) has a solution. Lemke’s algorithm with precautions
taken against cycling will always find a solution of LCP(b, M).

Lemke’s algorithm is a pivoting method similar to the simplex method of
linear programming. Cycling here refers to the possibility of using the same
basis twice.
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2. The quasi-static model

The continuous-time model under the rigid body assumption is given by the
following differential complementarity problem (DCP):

q(t) =v(t), (2.1)

Ev(t) — Wo(q, u, t) A (t) — Wi(q, u, t))\t(t) 0, (2.2)

0< W(q,ut) L Aa(t) >0, (2.3)

§5 (1) — 53,.(8) = (Wir(gq,u, 1) o(t) + 8;:’“ (q,u,t), k=1,...,n (2.4)
0<551) L puda(t) +Ak(t) >0, k=1,..,n., (2.5)

0<5,(t) L peAar(t) = Ak(t) >0, k=1,...,n. (2.6)

Here q denotes the generalized system position and v the generalized system
velocity. The control parameters are encoded in the vector u. The quasi-
static assumption is reflected by the equilibrium equation (2.2), where E is
a damping matrix, assumed to be symmetric positive definite. The vectors
An(t) € R™ and A\(t) € R"™ represent all normal and tangential forces,
while W,, (¢, u,t) and Wi(q, u,t) are the normal and tangential wrench matri-
ces. More precisely, the k-th column of W, (q,u,t) (Wi(g,u,t)) is the normal
(tangential) wrench vector Wy (q,u,t) (Wik(q,u,t)) corresponding to con-
tact k, k = 1, n., with n. denoting the number of active contacts. The vector
U, (q,u,t) contains the normal displacements for configuration ¢, controls
uw and time t. More precisely, ¥, (q,u,t) = [\I/nl(q,u,t),...,\Ilnnc(q,u,t)]T,
where U, (g, u, t) represents the normal displacement function corresponding
to contact k. In a similar way, one defines the vector of tangential displace-
ments, Wy(q,u,t) = [Wy1(q,u,t), ..., U, (¢, u,t)]". Equation (2.3) represents
the contact and non-penetration constraints; that is whenever the normal
separation at contact k is strictly positive (¥U,x(q, u,t) > 0), the correspond-
ing normal force is 0 (A, = 0), while whenever contact k is established
(Uk(g,u,t) = 0), the corresponding normal force is nonnegative (A, > 0).

Equation (2.4) defines the positive, $/, (t), and negative, $;, (), sliding
velocities at contact k. The right-hand side of (2.4) represents the (overall)

sliding velocity $:(t) := \iftk(q,u,t) = (Wtk(q,u,t))Tv(t) th (q,u,t)

at contact k. The last two equations, namely (2.5) and (2.6), represent
Coulomb’s friction law at contact k, with py € [0,1] being the friction coef-
ficients.

3. The time-stepping scheme

Let ¢; denote the time at which one has a solution configuration ¢! and let
ti+1 = t; + h denote the time at which one would want an estimate of the
solution. We approximate the new configuration ¢'*! using a backward Euler
formula, as follows

¢ = ¢ + it
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where v!*! is an estimate for the new velocity and will be found by solving
a mixed linear complementarity problem. At each integration step the un-

knowns (ho'tt, h)\i;H, h)\lfﬂ, hUH'l) may be obtained as the solution of the
following MLCP:

h,UH-l

0 E  -W, -Ww} 0 0
+1
e I UL G B I | B w,
| INT h)\?l * ow, !
Py (Wy) 0 0 E s
I+1
sttt 0 Uy —E? 0 ho 0

(3.1)
with 0 < [pH'l, P, slﬂ L {h)\fj“l, AL, ha”l} > 0. Here Uy €
R"™e*"e B, € R*™*" with U a diagonal matrix with elements on its diag-
onal equal to g, K =1,...,n. and Ef a block diagonal matrix, with diagonal

blocks given by the vector e (e is a two-dimensional vector of all ones). That
is,

1 0

1 0 1 0

Uy = : : » By = : :
0 ... fln, 0 .. 1

0 1

The superscript { used in the MLCP (3.1) indicates that all the corresponding
quantities are calculated with g := ¢' and ¢ := ¢;. For each contact k we define
the 3 x 2 matrix Wy (g, u,t) by joining the column vectors Wy (g, u,t) and
—Wik(q, u,t). That is,

Wfk (qa u, t) = [Wtk (qa U, t) - Wtk (q7 u, t)] .

If we put all the active contacts together we obtain the ”frictional” wrench
matrix Wy (q,u,t) appearing in formulation (3.1). In a similar way, we get
the vector W (g, u,t).

Solvability and the Friction Cone. For an active contact k, we define the
friction cone corresponding to that contact by

FCk q7u t)= {Z— WakAnk + Wik s | Ank >0, A >0, e )\fk<Mk)\nk}
(32)

where Wi = Wy k(q,u,t), Wy := Wyi(g,u,t) and e = [1,1]7. The total

friction cone, FC(q,u,t), which accounts for all active contacts is defined by

FO(q,u,t) =Y FCx(g, u,t).
k=1
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Using the fact that the matrix E in the MLCP (3.1) is positive definite, we
can eliminate the variables hv'™! and reduce the MLCP to a standard LCP
with a copositive matrix. It can be shown that the resulting LCP, is solvable
whenever the total friction cone FC(¢!,u,t;) is pointed. We recall that a cone
is pointed if it doesn’t contain any proper subspace. The lack of pointedness
for the friction cone results in jammed configurations (see [3]) and therefore
this regularity assumption is very realistic and can be successfully used in
devising randomized plans (see [1]).

4. Conclusions

We have discussed an LCP-based time-stepping scheme that can be used
to simulate rigid body systems in a quasi-static setting. The scheme was
introduced and successfully used for a particular case in [1]. Solvability of
the integration step is guaranteed by the pointedness of the friction cone, an
assumption that is common in dynamic settings as well (see [3] and [4] for
example).
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