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Rigid body time-stepping schemes in
a quasi-static setting

Bogdan Gavrea

Abstract. We discuss how linear complementary problems (LCPs) can
be used to simulate rigid-body systems in a quasi-static setting. LCP-
based time-stepping schemes were successfully used in [1] in order to
plan and control meso-scale manipulation tasks.
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1. Introduction

In [1] we considered the canonical problem of assembling a peg into a hole.
Simulation of this quasi-static system was used in order to select the con-
trol parameters. The integration step in the simulator was formulated as a
mixed linear complementarity problem (MLCP). MLCPs should be thought
of as linear complementarity problems(LCPs) coupled with additional linear
equality constraints. A brief description of the linear complementarity prob-
lem and results concerning LCPs with copositive matrices are given in the
following subsections. For a detailed analysis of these problems we refer the
reader to the excellent manuscript [2].

1.1. Linear complementarity problems

In this section we present the definitions for the linear complementarity prob-
lem (LCP) and the mixed linear complementarity problem(MLCP).

Definition 1.1. The problem of finding z ∈ Rn such that

z ≥ 0, Mz + b ≥ 0, and zT (Mz + b) = 0, (1.1)

where b ∈ Rn and M ∈ Rn×n is called a linear complementarity problem.
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In the above definition the inequality z ≥ 0, z ∈ Rn is to be understood com-
ponentwise, i.e., zi ≥ 0, i = 1, n. The non-negativity and complementarity
conditions (1.1) can be also written in the more compact form:

0 ≤ z ⊥ w := Mz + b ≥ 0.

We denote the problem (1.1) by LCP (b, M). If in addition to the comple-
mentarity constraints we add some equality constraints we obtain a mixed
linear complementarity problem (MLCP). To be more precise, we follow the
definition in [2] and consider the matrices A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m

and D ∈ Rm×n. Let a ∈ Rn and b ∈ Rm be given.

Definition 1.2. The mixed linear complementarity problem is the problem of
finding vectors u ∈ Rn and v ∈ Rm such that

a + Au + Cv = 0
b + Du + Bv ≥ 0
v ≥ 0
vT (b + Du + Bv) = 0

(1.2)

We note that if the matrix A in (1.2) is invertible we can write u in terms of
v and use this form to reduce the problem to a standard LCP formulation.

1.2. LCPs with copositive matrices

The matrix of the underlying LCP used in the time-stepping schemes such
as the one used in [1] is a copositive matrix.

Definition 1.3. A matrix M ∈ Rn×n is said to be copositive if

xT Mx ≥ 0 for all x ∈ Rn, x ≥ 0.

In general a linear complementarity problem with a copositive matrix is not
guaranteed to possess a solution. Solvability of such LCPs is discussed in the
following Theorem.

Theorem 1.4 ([2], Th. 3.8.6). Let M ∈ Rn×n be a copositive matrix and let
b ∈ Rn be given. If the implication[

v ≥ 0, Mv ≥ 0, vT Mv = 0
]
⇒

[
vT b ≥ 0

]
holds, then LCP (b, M) has a solution. Lemke’s algorithm with precautions
taken against cycling will always find a solution of LCP (b, M).

Lemke’s algorithm is a pivoting method similar to the simplex method of
linear programming. Cycling here refers to the possibility of using the same
basis twice.
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2. The quasi-static model

The continuous-time model under the rigid body assumption is given by the
following differential complementarity problem (DCP):

q̇(t) = v(t), (2.1)
Ev(t)−Wn(q, u, t)λn(t)−Wt(q, u, t)λt(t) = 0, (2.2)

0 ≤ Ψn(q, u, t) ⊥ λn(t) ≥ 0, (2.3)

ṡ+
tk(t)− ṡ−tk(t) = (Wtk(q, u, t))T

v(t) +
∂Ψtk

∂t
(q, u, t), k = 1, ..., nc, (2.4)

0 ≤ ṡ+
tk(t) ⊥ µkλnk(t) + λtk(t) ≥ 0, k = 1, ..., nc, (2.5)

0 ≤ ṡ−tk(t) ⊥ µkλnk(t)− λtk(t) ≥ 0, k = 1, ..., nc. (2.6)

Here q denotes the generalized system position and v the generalized system
velocity. The control parameters are encoded in the vector u. The quasi-
static assumption is reflected by the equilibrium equation (2.2), where E is
a damping matrix, assumed to be symmetric positive definite. The vectors
λn(t) ∈ Rnc and λt(t) ∈ Rnc represent all normal and tangential forces,
while Wn(q, u, t) and Wt(q, u, t) are the normal and tangential wrench matri-
ces. More precisely, the k-th column of Wn(q, u, t) (Wt(q, u, t)) is the normal
(tangential) wrench vector Wnk(q, u, t) (Wtk(q, u, t)) corresponding to con-
tact k, k = 1, nc, with nc denoting the number of active contacts. The vector
Ψn(q, u, t) contains the normal displacements for configuration q, controls
u and time t. More precisely, Ψn(q, u, t) = [Ψn1(q, u, t), ...,Ψnnc

(q, u, t)]T ,
where Ψnk(q, u, t) represents the normal displacement function corresponding
to contact k. In a similar way, one defines the vector of tangential displace-
ments, Ψt(q, u, t) = [Ψt1(q, u, t), ...,Ψtnc

(q, u, t)]T . Equation (2.3) represents
the contact and non-penetration constraints; that is whenever the normal
separation at contact k is strictly positive (Ψnk(q, u, t) > 0), the correspond-
ing normal force is 0 (λnk = 0), while whenever contact k is established
(Ψnk(q, u, t) = 0), the corresponding normal force is nonnegative (λnk ≥ 0).

Equation (2.4) defines the positive, ṡ+
tk(t), and negative, ṡ−tk(t), sliding

velocities at contact k. The right-hand side of (2.4) represents the (overall)

sliding velocity ṡtk(t) := Ψ̇tk(q, u, t) = (Wtk(q, u, t))T
v(t) +

∂Ψtk

∂t
(q, u, t)

at contact k. The last two equations, namely (2.5) and (2.6), represent
Coulomb’s friction law at contact k, with µk ∈ [0, 1] being the friction coef-
ficients.

3. The time-stepping scheme

Let tl denote the time at which one has a solution configuration ql and let
tl+1 = tl + h denote the time at which one would want an estimate of the
solution. We approximate the new configuration ql+1 using a backward Euler
formula, as follows

ql+1 = ql + hvl+1,
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where vl+1 is an estimate for the new velocity and will be found by solving
a mixed linear complementarity problem. At each integration step the un-
knowns

(
hvl+1, hλl+1

n , hλl+1
f , hσl+1

)
may be obtained as the solution of the

following MLCP:

0

ρl+1
n

ρl+1
f

sl+1


=



E −W l
n −W l

f 0

(W l
n)T 0 0 0

(W l
f )T 0 0 Ef

0 Uf −ET
f 0





hvl+1

hλl+1
n

hλl+1
f

hσl+1


+



0

Ψl
n + h∂Ψn

∂t

l

h
∂Ψf

∂t

l

0


(3.1)

with 0 ≤
[
ρl+1

n , ρl+1
f , sl+1

]
⊥

[
hλl+1

n , hλl+1
f , hσl+1

]
≥ 0. Here Uf ∈

Rnc×nc , Ef ∈ R2nc×nc with Uf a diagonal matrix with elements on its diag-
onal equal to µk, k = 1, ..., nc and Ef a block diagonal matrix, with diagonal
blocks given by the vector e (e is a two-dimensional vector of all ones). That
is,

Uf =

 µ1 ... 0
...

...
0 ... µnc

 , Ef =


1 ... 0
1 ... 0
...

...
0 ... 1
0 ... 1

 .

The superscript l used in the MLCP (3.1) indicates that all the corresponding
quantities are calculated with q := ql and t := tl. For each contact k we define
the 3 × 2 matrix Wfk(q, u, t) by joining the column vectors Wtk(q, u, t) and
−Wtk(q, u, t). That is,

Wfk(q, u, t) = [Wtk(q, u, t) −Wtk(q, u, t)] .

If we put all the active contacts together we obtain the ”frictional” wrench
matrix Wf (q, u, t) appearing in formulation (3.1). In a similar way, we get
the vector Ψf (q, u, t).

Solvability and the Friction Cone. For an active contact k, we define the
friction cone corresponding to that contact by

FCk(q, u, t)=
{
z= Wnkλnk + Wfkλfk | λnk ≥ 0, λfk ≥ 0, eT λfk ≤ µkλnk

}
,

(3.2)
where Wnk := Wn,k(q, u, t), Wfk := Wfk(q, u, t) and e = [1, 1]T . The total
friction cone, FC(q, u, t), which accounts for all active contacts is defined by

FC(q, u, t) =
nc∑

k=1

FCk(q, u, t).
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Using the fact that the matrix E in the MLCP (3.1) is positive definite, we
can eliminate the variables hvl+1 and reduce the MLCP to a standard LCP
with a copositive matrix. It can be shown that the resulting LCP, is solvable
whenever the total friction cone FC(ql, u, tl) is pointed. We recall that a cone
is pointed if it doesn’t contain any proper subspace. The lack of pointedness
for the friction cone results in jammed configurations (see [3]) and therefore
this regularity assumption is very realistic and can be successfully used in
devising randomized plans (see [1]).

4. Conclusions

We have discussed an LCP-based time-stepping scheme that can be used
to simulate rigid body systems in a quasi-static setting. The scheme was
introduced and successfully used for a particular case in [1]. Solvability of
the integration step is guaranteed by the pointedness of the friction cone, an
assumption that is common in dynamic settings as well (see [3] and [4] for
example).
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