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Approximation by max-product type
nonlinear operators

Sorin G. Gal

Abstract. The purpose of this survey is to present some approximation
and shape preserving properties of the so-called nonlinear (more exactly
sublinear) and positive, max-product operators, constructed by starting
from any discrete linear approximation operators, obtained in a series
of recent papers jointly written with B. Bede and L. Coroianu. We will
present the main results for the max-product operators of: Bernstein-
type, Favard-Szász-Mirakjan-type, truncated Favard-Szász-Mirakjan-
type, Baskakov-type, truncated Baskakov-type, Meyer-König and Zeller-
type, Bleimann-Butzer-Hahn-type, Hermite-Fejér interpolation-type on
Chebyshev nodes of first kind, Lagrange interpolation-type on Cheby-
shev knots of second kind, Lagrange interpolation-type on arbitrary
knots, generalized sampling-type, sampling sinc-type, Cardaliaguet-
Euvrard neural network-type.
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1. Introduction

The idea of construction of these operators goes back to a paper of Bede,
B., Nobuhara, H., Fodor, J. and Hirota K. [11], where it is applied to the
rational approximation operators of Shepard. How could be applied to any
linear and discrete Bernstein-type operator I have shown in my book Gal [18],
pp. 324-326, Open Problem 5.5.4, where also a general form for the estimate
in terms of the modulus of continuity is obtained.

The construction is based on a simple idea, exemplified for the case of
Bernstein polynomials, as follows.
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Let Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n) be with pn,k(x) =
(
n
k

)
xk(1−x)n−k

and f : [0, 1] → R. If in the obvious formula

Bn(f)(x) =
∑n

k=0 pn,k(x)f(k/n)∑n
k=0 pn,k(x)

, x ∈ [0, 1],

we replace the
∑

operator with the max operator denoted by
∨

, then we
obtain the so-called max-product Bernstein nonlinear (sublinear), piecewise
rational operator by (Gal [18], p. 325)

B(M)
n (f)(x) =

∨n
k=0 pn,k(x)f(k/n)∨n

k=0 pn,k(x)
, x ∈ [0, 1],

where recall
n∨

k=0

pn,k(x)f(k/n) := max
0≤k≤n

{pn,k(x)f(k/n)}.

The same idea of construction can be applied to any discrete linear
Bernstein-type operator or to any discrete linear interpolation operator, ob-
taining thus the corresponding nonlinear max-product operators (well-defined
because the denominators of these new operators always are strictly positive).

Surprisingly, the max-product operators do not lose the approximation
properties of the corresponding linear operators to which they are attached.
Moreover, for large classes of functions, they improve the order of approx-
imation to the Jackson-type order. The most important improvement is in
the case of interpolation (on any arbitrary system of nodes), when for the
whole class of continuous functions the Jackson order ω1(f ; 1/n) is achieved.
Also, the max-product Bernstein-type operators preserve the monotonicity
and the quasi-convexity of the functions.

In this survey we will present the main results for the max-product
operators of: Bernstein-type, Favard-Szász-Mirakjan-type, truncated Favard-
Szász-Mirakjan-type, Baskakov-type, truncated Baskakov-type, Meyer-König
and Zeller-type, Bleimann-Butzer-Hahn-type, Hermite-Fejér interpolation-
type on Chebyshev nodes of first kind, Lagrange interpolation-type on Cheby-
shev knots of second kind, Lagrange interpolation-type on arbitrary knots,
generalized sampling-type, sampling sinc-type, Cardaliaguet-Euvrard neural
network-type.

2. Approximation by max-product operators of Bernstein-type

Denote

C+[0, 1] = {f : [0, 1] → R+; f is continuous on [0, 1]}.

This section contains the approximation and shape preserving properties for
a series of important max-product Bernstein-type operators.



Approximation by max-product type nonlinear operators 343

Theorem 2.1. For f ∈ C+[0, 1], define the max-product Bernstein operator by
(Gal [18], p. 325)

B(M)
n (f)(x) =

∨n
k=0 pn,k(x)f(k/n)∨n

k=0 pn,k(x)
, x ∈ [0, 1].

(i) (Bede-Coroianu-Gal [4]) For any j ∈ {0, 1, ..., n} and x ∈ [ j
n+1 , j+1

n+1 ]
we have

B(M)
n (f)(x) =

n∨
k=0

fk,n,j(x).

where fk,n,j(x) = (n
k)

(n
j)

(
x

1−x

)k−j

f
(

k
n

)
. This form suggested the denomination

of ”max-product” operator for B
(M)
n (that is the maximum of the product of

the values of f on nodes with some rational functions).
(ii) (Bede-Coroianu-Gal [4]) B

(M)
n (f)(x) is a continuous, piecewise con-

vex and piecewise rational function on [0, 1].
(iii) (Bede-Coroianu-Gal [4]) For all x ∈ [0, 1], n ∈ N we have

|B(M)
n (f)(x)− f(x)| ≤ 12ω1

(
f ;

1√
n + 1

)
,

where
ω1(f ; δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(iv) (Coroianu-Gal [15]) There exists f ∈ C+[0, 1] such that the order
in (iii) is exactly 1/

√
n + 1, that is on the whole class C+[0, 1], the order in

(iii) cannot be improved.
(v) (Coroianu-Gal [15]) If f ∈ C+[0, 1] is strictly positive on [0, 1] then

‖B(M)
n (f)− f‖ ≤ Cf

{
n

[
ω1

(
f ;

1
n

)]2
+ ω1

(
f ;

1
n

)}
.

(vi) (Coroianu-Gal [15]) If f ∈ Lip1 then by (v)

‖B(M)
n (f)− f‖ ≤ Cf

n
, n ∈ N.

(vii) (Coroianu-Gal [15]) If f ∈ Lip α, then (v) gives the approximation
order 1/n2α−1, which for α ∈ (2/3, 1] is essentially better than the general
approximation order O[ω1(f ; 1/

√
n)] = O[1/nα/2] given by (iii).

(viii) (Bede-Coroianu-Gal [4]) If f : [0, 1] → R+ is a concave function
then we have the Jackson-type estimate∥∥∥B(M)

n (f)(x)− f(x)
∥∥∥ ≤ 2ω1

(
f ;

1
n

)
, n ∈ N.

(ix) (Coroianu-Gal [15]) If f ∈ C+[0, 1] is strictly positive then the
pointwise estimate holds

|B(M)
n (f)(x)− f(x)| ≤ 24ω1

(
f,

√
x(1− x)

n

)
,
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for all x ∈ [0, 1/(n + 1)] ∪ [n/(n + 1), 1], and∣∣∣B(M)
n (f)(x)− f(x)

∣∣∣ ≤ (nω1(f, 1
n )

mf
+ 4
)

ω1(f,
1
n

),

for all x ∈ [1/(n + 1), n/(n + 1)].
(x) (Bede-Coroianu-Gal [4]) f : [0, 1] → R is called quasi-convex (quasi-

concave) on [0, 1] if it satisfies the inequality (for all x, y, λ ∈ [0, 1])

f(λx + (1− λ)y) ≤ (≥) max{f(x), f(y)}.

B
(M)
n (f), n ∈ N, preserve the quasi-convexity, quasi-concavity and mono-

tonicity of f .
Remarks. 1) Comparing with the approximation by the Bernstein polynomi-
als, clearly for large classes of functions, B

(M)
n gives essentially better esti-

mates.
2) The problem of finding the saturation class for B

(M)
n is still open.

Clearly it is different from the saturation class of the Bernstein polynomials.
For f ∈ C+[0,∞) we define the Bleimann-Butzer-Hahn max-product

operators by (Gal [18], p. 326)

H(M)
n (f)(x) =

n∨
k=0

(
n
k

)
xkf

(
k

n+1−k

)
n∨

k=0

(
n
k

)
xk

.

Theorem 2.2. (Bede-Coroianu-Gal [8]) (i) If f : [0,∞) → R+ is continuous,
then for any n + 1 ≥ max{1 + 2x, 16x(1 + x)} we have

|H(M)
n (f)(x)− f(x)| ≤ 5ω1

(
f,

(1 + x)
3
2
√

x√
n + 1

)
, x ∈ [0,∞),

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.

(ii) If f : [0,∞) → R+ is a nondecreasing concave function, then for
x ∈ [0,∞), n ≥ 2x,∣∣∣H(M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

(1 + x)2

n

)
.

(iii) H
(M)
n (f), n ∈ N, preserve the monotonicity and the quasi-convexity

of f .
For f ∈ C+[0, 1) we define the Meyer-König and Zeller max-product

operators by (Gal [18], p. 326)

Z(M)
n (f)(x) =

∨∞
k=0

(
n+k

k

)
xkf(k/(n + k))∨∞

k=0

(
n+k

k

)
xk

, x ∈ [0, 1), n ∈ N.



Approximation by max-product type nonlinear operators 345

Theorem 2.3. (Bede-Coroianu-Gal [5]) (i) If f : [0, 1] → R+ is continuous on
[0, 1], then for n ≥ 4 we have

|Z(M)
n (f)(x)− f(x)| ≤ 18ω1

(
f,

(1− x)
√

x√
n

)
, x ∈ [0, 1],

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(ii) If f : [0, 1] → R+ is a continuous, nondecreasing concave function,
then ∣∣∣Z(M)

n (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ;

1
n

)
, x ∈ [0, 1], n ∈ N.

(iii) Z
(M)
n (f), n ∈ N, preserve the monotonicity and the quasi-convexity

of f .
For f ∈ C+[0,∞) and f ∈ C+[0, 1], we define the Favard-Szász-Mirakjan

max-product (Gal [18], p. 326) and the truncated Favard-Szász-Mirakjan
max-product operators (Bede-Coroianu-Gal [7]) by

F (M)
n (f)(x) =

∞∨
k=0

(nx)k

k! f
(

k
n

)
∞∨

k=0

(nx)k

k!

, x ∈ [0,∞), n ∈ N

and

T (M)
n (f)(x) =

n∨
k=0

(nx)k

k! f
(

k
n

)
n∨

k=0

(nx)k

k!

, x ∈ [0, 1], n ∈ N,

respectively.
Theorem 2.4. (Bede-Coroianu-Gal [10], [7]) (i)

|F (M)
n (f)(x)− f(x)| ≤ 8ω1

(
f,

√
x√
n

)
, n ∈ N, x ∈ [0,∞),

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ},

and

|T (M)
n (f)(x)− f(x)| ≤ 6ω1

(
f,

1√
n

)
, n ∈ N, x ∈ [0, 1].

(ii) If f : [0,∞) → R+ is a nondecreasing concave function on [0,∞),
then ∣∣∣F (M)

n (f)(x)− f(x)
∣∣∣ ≤ ω1

(
f ;

1
n

)
, x ∈ [0,∞), n ∈ N.

(iii) If f : [0, 1] → R+ is a nondecreasing concave function on [0, 1],
then

|T (M)
n (f)(x)− f(x)| ≤ 6ω1

(
f,

1
n

)
, n ∈ N, x ∈ [0, 1].
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(iv) F
(M)
n (f) and T

(M)
n (f), n ∈ N, preserve the monotonicity and the

quasi-convexity of f on the corresponding intervals.
For f ∈ C+[0,∞) and f ∈ C+[0, 1], we define Baskakov max-product

(Gal [18], p. 326) and the truncated Baskakov max-product operators (Bede-
Coroianu-Gal [9]) by, respectively

V (M)
n (f)(x) =

∞∨
k=0

bn,k(x)f
(

k
n

)
∞∨

k=0

bn,k(x)
,

and

U (M)
n (f)(x) =

n∨
k=0

bn,k(x)f
(

k
n

)
n∨

k=0

bn,k(x)
, x ∈ [0, 1], n ∈ N, n ≥ 1,

where bn,k(x) =
(
n+k−1

k

)
xk/(1 + x)n+k.

Theorem 2.5. (Bede-Coroianu-Gal [6], [9]) (i) For n ≥ 3 and x ∈ [0,∞) we
have

|V (M)
n (f)(x)− f(x)| ≤ 12ω1

(
f,

√
x(x + 1)
n− 1

)
,

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0,∞), |x− y| ≤ δ}.

Also, for n ∈ N, n ≥ 2, x ∈ [0, 1] we have

|U (M)
n (f)(x)− f(x)| ≤ 24ω1

(
f,

1√
n + 1

)
,

where
ω1(f, δ) = sup{|f(x)− f(y)|;x, y ∈ [0, 1], |x− y| ≤ δ}.

(ii) If f : [0,∞) → [0,∞) is a nondecreasing concave function on [0,∞),
then for n ≥ 3, x ∈ [0,∞),∣∣∣V (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

x + 1
n− 1

)
.

(iii) If f : [0, 1] → [0,∞) is a nondecreasing concave function on [0, 1],
then ∣∣∣U (M)

n (f)(x)− f(x)
∣∣∣ ≤ 2ω1

(
f ;

1
n

)
, x ∈ [0, 1], n ∈ N.

(iv) V
(M)
n (f) and U

(M)
n (f), n ∈ N, preserve the monotonicity and the

quasi-convexity of f on the corresponding intervals.
Remark. The estimates in Theorems 2.1, (iii), and Theorems 2.2-2.5, (i), were
obtained by using the following general result:
Theorem 2.6. (Gal [18], p. 326, Bede-Gal [3]) Let I ⊂ R be a bounded or
unbounded interval,

CB+(I) = {f : I → R+; f continuous and bounded on I},
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and Ln : CB+(I) → CB+(I), n ∈ N be a sequence of positive homogenous
operators, satisfying in addition the following properties:

(i) (Monotonicity) if f, g ∈ CB+(I) satisfy f ≤ g then Ln(f) ≤ Ln(g)
for all n ∈ N ;

(ii) (Sublinearity) Ln(f + g) ≤ Ln(f) + Ln(g) for all f, g ∈ CB+(I).
Then for all f ∈ CB+(I), n ∈ N and x ∈ I we have

|f(x)− Ln(f)(x)| ≤[
1
δ
Ln(ϕx)(x) + Ln(e0)(x)

]
ω1(f ; δ)I + f(x) · |Ln(e0)(x)− 1|,

where δ > 0, e0(t) = 1 for all t ∈ I, ϕx(t) = |t− x|.
Remarks. 1) The above Theorem 2.6 is a generalization of the classical one for
Positive Linear Operators, because the Positivity + Linearity imply the

Positivity + Sublinearity + Positivehomogeneity

+Monotonicity,

but the converse implication does not hold, taking into account that the max
product operators are counterexamples.

2) The Jackson-type estimates (for subclasses of functions) in Theorems
2.1-2.5, were obtained by direct reasonings.

3) The saturation results for the above max-product Bernstein-type
operators are interesting open questions.

3. Approximation by interpolation max-product operators

In this section we present the approximation properties of a series of max-
product interpolation operators.

Consider the Hermite-Fejér interpolation polynomial of degree ≤ 2n+1
attached to f : [−1, 1] → R and to the Chebyshev knots of first kind, xn,k =

cos
(

2(n−k)+1
2(n+1) π

)
,

H2n+1(f)(x) =
n∑

k=0

hn,k(x)f(xn,k),

with

hn,k(x) = (1− xxn,k) ·
(

Tn+1(x)
(n + 1)(x− xn,k)

)2

,

Tn+1(x) = cos[(n + 1)arccos(x)]-Chebyshev polynomials. Because

H2n+1(f)(x) =
∑n

k=0 hn,k(x)f(xn,k)∑n
k=0 hn,k(x)

,
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by the max-product method the corresponding max-product Hermite-Fejér
interpolation operator is

H
(M)
2n+1(f)(x) =

n∨
k=0

hn,k(x)f (xn,k)

n∨
k=0

hn,k(x)

.

Remark. We have H
(M)
2n+1(f)(xn,j) = f(xn,j), for all j ∈ {0, ..., n}.

Theorem 3.1. (Coroianu-Gal [14]) If f : [−1, 1] → R+ is continuous on [−1, 1]
then for all x ∈ [−1, 1] and n ∈ N

‖H(M)
2n+1(f)− f‖ ≤ 14ω1

(
f,

1
n + 1

)
.

Remark. For f ∈ Lip1[−1, 1], we have ‖H(M)
2n+1(f) − f‖ ≤ c

n+1 , while it is

well-known that ‖H2n+1(f)− f‖ ∼ ln(n+1)
n+1 .

Let now xn,k ∈ [−1, 1], k ∈ {1, ..., n}, be arbitrary and consider the
Lagrange interpolation polynomial of degree ≤ n − 1 attached to f and to
the nodes (xn,k)k,

Ln(f)(x) =
n∑

k=1

ln,k(x)f(xn,k),

with
ln,k(x) =

(x− xn,1)...(x− xn,k−1)(x− xn,k+1)...(x− xn,n)
(xn,k − xn,1)...(xn,k − xn,k−1)(xn,k − xn,k+1)...(xn,k − xn,n)

.

Because
∑n

k=1 ln,k(x) = 1, for all x ∈ R, we can write

Ln(f)(x) =
∑n

k=1 ln,k(x)f(xn,k)∑n
k=1 ln,k(x)

, for all x ∈ I.

Therefore, its corresponding max-product interpolation operator will be given
by

L(M)
n (f)(x) =

n∨
k=1

ln,k(x)f (xn,k)

n∨
k=1

ln,k(x)

, x ∈ I.

Remark. We have L
(M)
n (f)(xn,k) = f(xn,k), k = 1, ..., n.

Theorem 3.2. (Coroianu-Gal [12]) If xn,k = cos
(

n−k
n−1π

)
, k = 1, ..., n and

f : [−1, 1] → R+ then

‖L(M)
n (f)− f‖ ≤ 28ω1

(
f,

1
n− 1

)
, n ≥ 3.
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Remarks. 1) For the linear Lagrange polynomials we have the worst estimate

‖Ln(f)− f‖ ≤ Cω1

(
f ;

1
n

)
ln(n), n ∈ N.

2) The case of other kind of nodes (e.g. equidistant, or roots of orthog-
onal polynomials, etc) can be found in the joint paper [17] with L. Coroianu
published in this proceedings.

Now, consider the truncated Whittaker (sinc) series defined by

Wn(f)(x) =
n∑

k=0

sin(nx− kπ)
nx− kπ

· f
(

kπ

n

)
, x ∈ [0, π],

and the truncated max-product Whittaker operator given by

W (M)
n (f)(x) =

∨n
k=0

sin(nx−kπ)
nx−kπ · f

(
kπ
n

)∨n
k=0

sin(nx−kπ)
nx−kπ

, x ∈ [0, π]

Remark. Clearly, W
(M)
n (f)(jπ/n) = f(jπ/n), for all j ∈ {0, ..., n}.

Theorem 3.3. (Coroianu-Gal [16]) If f : [0, π] → R+ is continuous then

|W (M)
n (f)(x)− f(x)| ≤ 4ω1

(
f ;

1
n

)
[0,π]

, n ∈ N, x ∈ [0, π].

Remark. If limn→∞ ω1(f ; 1/n) ln(n) = 0 then Wn(f)(x) → f(x) uniformly
inside of (0, π) and pointwise in [0, π], while it is known that ‖Wn(1)− 1‖ ≥
1
3π , for all n ≥ 2.

4. Approximation by sampling and neural networks max-prod
operators

This section contains approximation results for some max-product sampling
operators and for some max-product neural networks operators.
Definition 4.1. (Bardaro-Butzer-Stens-Vinti [2]) A function ϕ ∈ C(R) is called
a time-limited kernel (for a sampling operator), if:

(i) There exist T0, T1 ∈ R, T0 < T1, such that ϕ(t) = 0 for all t 6∈ [T0, T1];
(ii)

∑∞
k=−∞ ϕ(u− k) = 1, for all u ∈ R.

If ϕ is a time-limited kernel and W > 0, then

SW,ϕ(f)(t) =
∞∑

k=−∞

f

(
k

W

)
ϕ(Wt− k), t ∈ R,

will be called a generalized sampling operator.
Taking into account Definition 4.1, (ii), we can write

SW,ϕ(f)(t) =
∑∞

k=−∞ f
(

k
W

)
ϕ(Wt− k)∑∞

k=−∞ ϕ(Wt− k)
, t ∈ R.

Remark. If e.g. ϕ(t) = sinc(t) = sin(πt)
πt , then SW,ϕ(f)(t) becomes the Whit-

taker cardinal (sinc) series.
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Therefore, applying the max-product method, the corresponding max-
product Whittaker operator will be given by

S
(M)
W,ϕ(f)(t) =

∞∨
k=−∞

ϕ(Wt− k)f
(

k
W

)
∞∨

k=−∞

ϕ(Wt− k)

, t ∈ R.

Theorem 4.2. (Coroianu-Gal [13]) If ϕ(t) = sinc(t) = sin(πt)
πt and f : R → R+

is bounded and continuous on R, then

|S(M)
W,ϕ(f)(t)− f(t)| ≤ 2ω1

(
f ;

1
W

)
R

, for all t ∈ R,

where ω1(f ; δ)R = sup{|f(u)− f(v)|;u, v ∈ R, |u− v| ≤ δ}.
Remarks. 1) If f ∈ Lipα, α ∈ (0, 1], then in Theorem 4.2 we get ‖S(M)

W,ϕ(f)−
f‖ = O

(
1

W α

)
, while it is well-known that for the usual Whitaker cardinal

series, we have the worst estimate

‖SW,ϕ(f)− f‖ = O

(
log(W )

Wα

)
.

2) We get similar results for other kernels ϕ(t) too.
The Cardaliaguet-Euvrard neural network is defined by

Cn,α(f)(x) =
n2∑

k=−n2

f(k/n)
I · n1−α

· b
(

n1−α

(
x− k

n

))
,

where 0 < α < 1, n ∈ N and f : R → R is continuous and bounded or
uniformly continuous on R.

The corresponding max-product Cardaliaguet-Euvrard network opera-
tor is formally given by

C(M)
n,α (f)(x) =

n2∨
k=−n2

b
[
n1−α

(
x− k

n

)]
f
(

k
n

)
n2∨

k=−n2

b
[
n1−α

(
x− k

n

)] , x ∈ R.

Theorem 4.3. (Anastassiou-Coroianu-Gal [1]) Let b(x) be a centered bell-
shaped function, continuous and with compact support [−T, T ], T > 0 and
0 < α < 1. In addition, suppose that the following requirements are fulfilled:

(i) There exist 0 < m1 ≤ M1 < ∞ such that m1(T − x) ≤ b(x) ≤
M1(T − x) for all x ∈ [0, T ];

(ii) There exist 0 < m2 ≤ M2 < ∞ such that m2(x + T ) ≤ b(x) ≤
M2(x + T ) for all x ∈ [−T, 0].
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Then for all f ∈ CB+(R), x ∈ R and for all n ∈ N satisfying n >
max{T + |x| , (2/T )1/α}, we have the estimate

|f(x)− C(M)
n,α (f)(x)| ≤ cω1

(
f ;nα−1

)
R ,

where

c = 2
(

max
{

TM2

2m2
,
TM1

2m1

}
+ 1
)

.

Remark. Let f ∈ Lipα. For 1
2 ≤ α < 1, we get the same order of approx-

imation O
(

1
n1−α

)
for both operators Cn,α(f)(x) and C

(M)
n,α (f)(x), while for

0 < α < 1
2 , the approximation order obtained by the max-product operator

C
(M)
n,α (f)(x) is essentially better than that obtained by the linear operator

Cn,α(f)(x).
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