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Discrete operators associated with certain
integral operators

Ioan Rasa

Abstract. We associate to a given sequence of positive linear integral
operators a sequence of discrete operators and investigate the relation-
ship between the two sequences. Several examples illustrate the general
results.

Mathematics Subject Classification (2010): 41A36.

Keywords: Positive linear operators.

1. Introduction

Let I, : Cla,b] — Cla,b], n > 1, be a sequence of positive linear operators
of the form

L(f;2) =Y hnk(@)Ank(f), f € Clab], x € [a,b],
k=0
where hy, i, € Cla,b], hpr > 0 and

b
Ani(f) = / F ()i i (2)

with p,,  probability Borel measures on [a,b],n > 1,k =0,1,...,n.
Let 2,k € [a,b] be the barycenter of w, , i.e.,

b
Tn,k = / tdﬂn,k(t)-
a
We associate with the sequence (I,,) the sequence of operators
n
Dy (f;z) = Z B (2) f (T k)
k=0

Generally speaking, the operators D,, are simpler than I,,. We investigate the
properties of D,, in relation with those of I,,.
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2. Some examples

Forn>1and k=0,1,...,n let

Pai(z) = <Z)xk(1 — )"z e0,1).

Example 2.1. Let U,, : C[0,1] — C/[0, 1] be the genuine Bernstein-Durrmeyer
operators (see [3] and the references therein) defined by

Un(f;x) = f(O)pmo(l‘) + f(l)pn,n(-r) +
+(n—1) an,k(ﬂf)/ Pn—2,k—1(t) f(t)dt.
k=1 0

It is easy to see that the associated operators are the classical Bernstein

operators
0 =Y pus@) (L),
k=0

Example 2.2. Consider the sequences of real numbers a,, and b,, such that
0 <a, <b, <1,n>1.In [1] the authors introduced and investigated the

operators
k+bp

0= 3 @) (7 [ fo).
k=0 U R

where f € C[0,1] and z € [0, 1].
The associated operators are the Stancu type operators (see [15])

=S st (T

In particular, for a,, = 0 and b, = 1, (C},) becomes the sequence of classical
Kantorovich operators.

Example 2.3. Let a,b > —1 and a > 0. Consider the positive linear functionals
Toi:C[0,1] — R,

f f tck:+a _ t)c(nfk)ﬁ’bdt
B(ck+a+1,c(n—k)+b+1)’

where ¢ := ¢, := [n®] and B is the Beta function.
For f € C[0,1] and = € [0, 1] let

)= Puk(@)Tok(f)in > 1.
k=0

The sequence of positive linear operators (P,) was introduced by D.
Mache (see [5], [6]); it represents a link between the Durrmeyer operators with
Jacobi weights (obtained for o = 0) and the Bernstein operators (obtained as
a limiting case when @ — 00). Concerning the properties of the operators
P,, and their relationship with Durrmeyer, Bernstein, and other operators,

Tn,k(f) =
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see [5], [6], [8], [9], [10], [11]. The semigroup of operators, represented in terms
of iterates of P,, is investigated in [2], [9], [10], [11], [12].
Let e;(z) = ', = € [0,1], ¢ = 0,1,.... Then T, x(eg) = 1 and the
barycenter of the probability Radon measure T, j, is
ck+a+1
en+a+b+2
As in Section 1, we associate with the sequence (P,) the simpler se-

quence of positive linear operators (V,,) defined, for f € C[0,1] and z € [0,1],
by

Tn,k(el) -

ck+a+1 )
ecn+a+b+2/°

Va(fi2) == 3 (@) f(
k=0

When a = b = —1, or when a« — o0, we get the classical Bernstein operators;
when « = 0, the operators V,, reduce to the operators considered by D.D.
Stancu in [15].

In the next sections we investigate the properties of the operators (V)
in connection with the properties of (P, ); see also [7].

3. Approximation properties
By direct computation we get
Vieo = eo,
cney + (a+ 1)eg
ecn+a+b+2
n(n —1)ea + en(c+ 2a + 2)e; + (a + 1)2eg
(ecn+a+b+2)? )

Vn(il =

)

Vne2 =

Let us remark that

lim Vie; = e;, i =0,1,2,
n—oo

uniformly on [0, 1].
From the classical Korovkin Theorem we infer:

Proposition 3.1. For all f € C[0,1],
lim V,,f = f, uniformly on [0, 1].
In the sequel we shall use the inequality
f//
L(F) ~ O] < (Lea) ) I
where L is a probability Radon measure on [0, 1], b = L(e;) is the barycenter

of L, and || - || is the uniform norm. To prove this inequality, it suffices to
apply the barycenter inequality

L(h) > h(b), h € C|0,1] convex,

111
2

fec?o,1],

to the convex functions es+ f.
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Theorem 3.2. Forn > 1, z € [0,1], and f € C?[0,1] we have

|Pu(f52) = Va(f52)| <
An(n—1)z(1—x)+cenb—a)r+cen(a+ 1)+ (a+1)(b+ 1)

1
2(ecn4+a+b+2)%(ecn+a+b+3) 7711
Proof. Since the barycenter of T, , is
ck+a+1
en+a+b+2’
we have
ck+a+1 ck+a+1 N2 |S"]]
Top(f) = F(—— )| < (Tplea) —
I Tnk () f(cn+a+b+2)‘_( w(e2) (cn+a—|—b+2)) 2
 (ckH+a+1)(c(n—k)+b+1) | f"]
(en+a+b+2)2(n+a+b+3) 2
Consequently,
f” (ck+a+1 —k)+b+1

cn+a+b+2) (cn+a+b+3)

_ Il n(n — (1l — z) +cn(b— a)r +cn(a+1)+ (a+1)(b+1)
2 (ecn+a+b+2)%(en+a+b+3) '

O

Let us remark that for « = a = b = 0 the operators P, reduce to the
classical Durrmeyer operators M,,. Consequently, the previous theorem yields

Corollary 3.3. Forn > 1,z € [0,1] and f € C?[0,1] we have

| My (f;2) ank: (ki;)|<

n(n—l) (1— x)+n+1
2(n+2)%(n+ 3)

1711

4. Asymptotic formulae

The moments of the operator V,, are defined by

n

Mn,m(x) = ‘/TL((el - zeo)m;:ﬂ) - Z (

k=0

ck+a+1

ecn+a+b+2 —x) Pk (),

Let us remark that
n
M;, o (x) =
k=0

ck+a+1 m
_— —mM,, g .
(cn+a+b+2 ) p"’k(w) mMn, 1(@)

Since
2(1 = z)py, (2) = (k — n2)py k(2),
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we get

LM () =S (krarl T
xu:wmmw—;%m+mw+2x)% n)pn ()

—mz(l — )My pmo1(x) =

m—+1
- 2)" pas(a)

cn—|—a+b—|—22n:( ck+a+1
C

c P n+a—+b+2
a+1—(a+b+2)z < ( ck+a+1 )m
c kZ:o en+a+b+2 ) Pnk(@)

—ma(l — )M, pmo1(x).
Consequently, the following recurrence formula for the moments of V,, is valid:
Theorem 4.1. For alln >1 and m > 1,

(en+a+b+2)My i1 (z) = cx(l — x)M, ,,(z)+
+(a+1—(a+b+2)x)M, m(x) +cma(l — z) My m_1(z).

It is easy to verify that

a+1—(a+b+2)x

Mno(z) =1, Mna(z) = en+a+b+2

By using the recurrence formula we get

Can(l—a:)+(a+1—(a—|—b+2)x)2-

M, 5(z) =
2(@) (cn+a+b+2)2

The same recurrence formula can be used in order to verify that

My, m () :O(n_[ 2 ]), m >0,

uniformly for z € [0,1].
Now the assumptions of Sikkema’s theorem [14] are fulfilled; conse-
quently, we have the following Voronovskaja type formula:

Theorem 4.2.

lim n(V,(f;z)—f(x))=

n—oo

2029 () + (a4 1 - (a+ b+ 2)a)f' (), a=0
229 (), @ > 0,

for all f € C[0,1] such that f"(x) exists and is finite. Moreover, if f €
C?[0,1], the convergence is uniform on [0, 1].

Concerning the (similar) Voronovskaja formula for the operators P,, see
[10] and the references given there.
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5. Iterates of V,

Let r be a non-negative integer, r < n. It is well-known (see, e.g., [4] and the
references given there) that
nn—1)...(n—r+1)

Bpe, = r e, + terms of lower degree,

where B,, are the classical Bernstein operators.
Let
_(cnep 4 (a+1)eg\”
Pr = ( en+a-+b+2 )
Then, for £k =0,1,...,n,

k. ck+a+1 7
SOT(E) B (cn—|—a+b—|—2) ’
so that
cn r
Voe, = B, = (m> B, e, + terms of lower degree

—1...(n— 1
= n(n(cn _i . _'_(7; n ;)J: )crer + terms of lower degree.

It follows that:

Theorem 5.1. The numbers

nn—1)...(n—r+1)
Ap = ¢, r=0,1,...,n
" (cn+a+b+2)r ’ ’ ’
are eigenvalues of Vy,, and the eigenfunction corresponding to A\, can be cho-
sen as a monic polynomial of degree r.

Now let us describe V,, as

n k a+1
Va(fiz) = me(@f(ﬁ)
k=0 c

Under this form we see that V;, coincides with the operator S;=%%7> defined
in [4:(1)], if

a+1 a+b+2
fi= ;= :
c c
Now the above Theorem 5.1 can be considered also as a consequence of The-
orem 1 in [4].
The over-iterates of V,, can be studied by using the results of [4] or [13].
Indeed, let

. Jj+B8  cjta+l
T n4y enta+b+2
From [4;(9), (11), (12)] or from [13; Th. 5.3] we deduce for f € C[0,1] :

lim V™ f = eozn:djf(w),
=0

,7=0,1,...,n.

m—o0 cn+a+b+2
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uniformly on [0, 1], where (dy,dy, . .. ,d,) is the unique solution of the system
DPn,o (ao) e pn,O(an) do do
pn,n (G,()) R pn,n(an) dn dn

satisfying dg > 0,...,d, > 0,dg+---+d, = 1.

6. Shape preserving properties

For each m > 0 consider the function
ent+a+1
o (t) en+a+b+2
Let B, be the classical Bernstein operators on C[0, 1]. Then we have

)m, teo,1].

Vaem = Bpom, n > 1.

Consequently, the technique used in [16, Section 25.2] can be applied; as in
[16, Cor.25.2] we get

Theorem 6.1. If 0 < m < n and f € C[0,1] is convex of order m, then V,, f
is convex of order m.

For convex functions of order 1, i.e., usual convex functions, we have
also

Theorem 6.2. If f € C0,1] is convez, then

P.(f;z) > Va(f;2) Zf( cnx+a+1

_ 0, 1].
cn+a+b+2>’ z€0,1]

Proof. Let f € C[0,1] be convex, and x € [0, 1]. From the barycenter inequal-
ity we know that

Tor(£) = f(
which immediately yields

ck+a+1
—), =0,1,...,n,
ecn+a+b+2

Pu(f;2) > Va(f;2).
On the other hand, consider the probability Radon measure
g — Valg; ), g € C[0,1].
The corresponding barycenter is
cnx+a—+1
en+a+b+2
Again by the barycenter inequality we get
cnr+a+1
Vo(f;z) > (—)
(fiz) 2 f cn+a+b+2
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