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Uniform approximation in weighted spaces
using some positive linear operators

Adrian Holhos

Abstract. We characterize the functions defined on a weighted space,
which are uniformly approximated by the Post-Widder, Gamma, Weier-
strass and Picard operators and we obtain the range of the weights which
can be used for uniform approximation. We give, also, an estimation of
the rate of the approximation in terms of the usual modulus of continu-
ity. Some well-known results are obtained, as limit cases.
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1. Introduction

In the survey paper [2], the authors present some ideas related to the ap-
proximation of functions in weighted spaces and enounced some unsolved
problems in weighted approximation theory. Three such problems are:
1. Let F be a linear subspace of R and A,,: F — C(I) a sequence of positive
linear operators. For which weights p, does A, map C,(I) N F onto C,(I)
with uniformly bounded norms?
2. For which functions f € C,(I) do we have [|4, — f[|, — 0, as n — oo?
3. Which moduli of smoothness are appropriate for weighted approximation?
In [6], we presented a result that give an answer to this questions. Below,
in Theorem 1.1 we recall this result. In the same paper, we analized the
particular cases of Szasz-Mirakjan and Baskakov operators. In this paper, we
continue the applications of the general result in the case of some integral-
type positive linear operators, namely: the Post-Widder, Gamma, Gauss-
Weierstrass and Picard operators. Firstly, we introduce the basic notations.
Let I C R be a noncompact interval and let p: I — [1,00) be an
increasing and differentiable function called weight. Let B,(I) be the space
of all functions f: I — R such that |f(z)] < M - p(z), for all € I, where
M > 0 is a constant depending on f and p, but independent of x. The space
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B,(I) is called weighted space and it is a Banach space endowed with the
p-norm

— o @)
7l =2

Let C,(I) = C(I) N B,(I) be the subspace of B,(I) containing continuous
functions.

Let (A,)n>1 be a sequence of positive linear operators defined on the
weighted space C,(I). It is known (see [4]) that A,, maps C,(I) onto B,([)
if and only if A,p € B,(I).

Theorem 1.1. Let A, : C,(I) — B,(I) be positive linear operators reproducing
constant functions and satisfying the conditions

Sup An(lo(t) = ¢(@)],2) = an — 0, (n — o0) (1.1)
i Anlle®) —p@)2)
T e e .

If A, (f,x) is continuously differentiable and there is a constant K(f,p,n)
such that

Anf)
APV < (1, p,m) - o), for cveryze T, (1.3)
¢'(x)
and p and ¢ are such that there exists a constant o > 0 with the property
p'(z)
<a-p(x), foreveryzel, 14
ey <o la) (14)

then, the following statements are equivalent

(@) N Anf—=fll,— 0 asn— oo.
(i) % oot is uniformly continuous on .J.
Furthermore, we have
[Anf = fll, <bn-|fll, +2-w <Jpc ogpl,an> ,  for everyn > 1.
Remark 1.2. The relation (1.4) give us the connection between the function
o and the weight p. We must have

plz) < Me* 9™ for every z € I,

where M, > 0 are constants independent of z. So, we have obtained the
range of the weights p, for which Theorem 1.1 is valid. In the case of the
maximal class of weights: p(z) = e®?(®) instead of proving the conditions
(1.1) and (1.2) we prove

lim sup An(|o(t) — p(2)]%, 2) = 0. (L5)
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For the estimation of the sequences (ay)nen and (by)neny we use the inequa-
lities

an < SIéII) \/An(IQO(t) - Sp(x)Pa '7;)

«
bp < 5\/\|Anp2llpz + 2| Anpll, +1-sup v/ An(lp(t) — ()2, ).
xzel

2. Main results
The Post-Widder operators.

Lemma 2.1. For I = (0,00) and for p(x) = 1+ z%, for some a > 0, the
Post-Widder operators ([9], [14])

P,(f,x) = ﬁ (Z)n/ooo 67%u”71f(u) du, x>0,

have the property that P, f € C,(0,00) for every f € C,(0,c0).

Proof. Setting t = nu/x, we get

1 N A 2°T(n + )
P, =14 ——- =l () dt=14 "0t
(p,2) =1+ (n—l)!/o ¢ <n> e =1

Using the formula (see [1, formula 6.1.46])

i L+ a)

=1
n—oo nI'(n)

)

we deduce the existence of a constant C' > 0, independent of n, such that
I'(n+ o) < Cn®(n —1)!, for every n > 1. We obtain

P,(p,z) < Cp(z), x>0,
which proves the mapping property of P,. O

Theorem 2.2. For a > 0 and p(x) = 1+ x®, the Post-Widder operators
P,: C,(0,00) — C,(0,00) have the property

|Pnf — fll, =0, whenever n — oo
if and only if
f(e®)e™ " s uniformly continuous on (0, 00).
Moreover, for every f € C,(0,00) and every n > 2, we have
aC 1
P,f— < —_— 2w ete ot >,
122 = £l <51, g 2+ (e,

where C = sup,,cy %\/||Pnp2||p2 +2|[|Pupll, +1 < 00 is a constant depending

only on «.
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Proof. Using the Geometric-Logarithmic-Arithmetic Mean Inequality (see [8,
p. 40])

uU—v u-+v
Vu-v < I —Tno 5 0<v<u, (2.1)
for the function ¢(z) = Inz, we obtain
o(t) — ()] < t,x > 0.

Because P, (1,z) = 1, P,(t,z) = z and P, (},2) = n > 2, we deduce

(n—1)z>

t T 1
_ 2 < — — — =
sup Pa(l(t) = p(@)]*, 2) < sup [Pn (ﬂ) +Pu (509 2] n T

which proves (1.5)
Now, using the equality (see [12])

72

P,((t— l’)z,I) =

and the Cauchy-Schwarz inequality for positive linear operators, we have

Po([t — zlp(t), ) < /Pu((t — )2 >-Pn<p2,x>s%-clp<w>.

Estimating the absolute value of the derivative

oo
TN n\t 1 —nu 1
P @l=25 | [ () e = e = o) du
n
< bt =2l fOL2)l < 5 A, Pallt — 2lo(2), )
< Ifll, Y2 Cupt),
we obtain iy
M < Cap(z), for every x > 0,
¢'(x)
which proves (1.3) The relation (1.4) is true because
p'(x) a o
=az® < a(l+z%) = ap(z).
L (1+2%) = ap(a)
Using the Theorem 1.1, the convergence || P, f — f||p — 0 is true if and only
if the functlon o ¢~ ! is uniformly continuous on (0, 00). The equality
fle®) _ f(e”) oz
JE) I (g
eaw 1+ e (1+e7),

the boundedness of the function 1 < 1+e~** < 2 and the uniform continuity
of the functions 1 + e~ and (1 + e~**)~! prove that % o ¢~ 1 is uniformly

continuous, if and only if f(e is uniformly continuous. O

Remark 2.3. The result of the Theorem 2.2 for the limit case, a = 0, was
obtained in [12] and in [3].
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The Gamma operators.

Lemma 2.4. For I = (0,00) and for p(z) = 1+ x%, for some a > 0 the
Gamma operators ([7])
xn+1

G.(f,x) = " /0 e Ty f (%) du, x>0,n>1,
have the property that G, f € C,(0,00) for every f € C,(0,00) and n > [a].

Proof. Setting xu = t, we get

B L[ . (na\e (nz)*T(n+1— «)
Gn(p,x)—l—i—a/o e 't <?> dt =1+ py .
Using the formula (see [1, formula 6.1.46])

limnI‘(n—l—l—a): ’
n—oo F(n + 1)

we deduce the existence of a constant C' > 0, independent of n, such that
n°T'(n+1— a) < Cnl, for every n > [a]. We obtain

Chxp7x)f§(jp(x% 17>(l
which proves the property of G,, stated in the lemma. (]

Theorem 2.5. For a > 0 and p(z) = 1+ z%, the Gamma operators
Gr: Cp(0,00) — C,(0,00) have the property

|Gnf — f||p — 0, whenever n — 00
if and only if
f(e®)e™** s uniformly continuous on (0, 00).

Moreover, for every f € C,(0,00) and every n > [2a], we have

1G.f = £1, < 171, 5= +2- w(f(e%““,jﬁ)v

where C' = sup,,cy %\/HanZsz +2[|Gnpll, +1 < 0o is a constant depen-

ding only on «.

Proof. As in the proof of the Theorem 2.2, let ¢(x) = Inz. We have

Rl

Because G (eg, ) = 1, G, (t,z) = x and
1 1
(Ll(7x> = ne )
t nT
we deduce

sup Gn(l(t) — (@)%, 2) < sup [Gn (ix) 4G, (L) - 2} _

x>0 z>0

Int —Inz| < t,x > 0.

)

1
n

which proves (1.5).
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Estimating the derivative

(Gt @) = "G (0) = G (1 (257 ) )|

n+1
n -+ 1
< 11, 1Gn(p, ) + Grya(p; @)
n+1
< Hfll Cip(z),
we deduce ,
G,
w < Cap(z), for every x > 0,
¢'(r)
which proves (1.3). The relation (1.4) is true, because
p'(x)
=az® < ol +z%) = ap(z).
¢'(x)
Using the Theorem 1.1, the convergence || P, f — f||p — 0 is true if and only
if the functlon o ¢~ ! is uniformly continuous on (0, 00). The equality
f(e ) — f(e ) .(1_"_6—(11)’

the boundedness of the function 1 < 1+e~** < 2 and the uniform continuity
of the functions 1+ e~ %% and (1 + e~**)~! prove that % o ¢~ is uniformly
continuous, if and only if f(e*)e™®* is uniformly continuous. (I

Remark 2.6. The result of the Theorem 2.5 for the limit case, & = 0, was
obtained in [11].

The Gauss-Weierstrass operators.

Lemma 2.7. For I = R and for p(x) = e**, for some a > 0, the Gauss-
Weierstrass operators ([13])

(74,—.‘17)2
2

W f f(u) du7 HS (700 OO),

)

\/ 27 /
have the property that W, f € C,(R) for f € C,(R).

Proof. We have

Wa(p,z) /
p() \/ 2m
2 a2 ﬁ
2

2
/ e~ 3 (u—a—%) cemdu=e?n <e7T,

which proves the statement from the lemma. ([

a2
—n%+a(u—x) du

Theorem 2.8. For a > 0 and for p(x) = e*® the Gauss-Weierstrass operators
W,: Cp(R) — C,(R) have the property

(W f — f||p — 0, whenever n — oo,
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if and only if
f(@)e™ " is uniformly continuous on R.

Moreover, for every f € C,(R) and for every n > 1, we have

W f — fH<ﬂ|¢+2w(ﬂﬂ6MK%>7

a2 2 cx2 2
where C = e = 1+%(1+67> )

Proof. Set ¢(z) = x. Because Wy, (eg,z) = 1 and W, ((t — z)%,z) = L (see
[10]), we get

Wa(lp(t) — o), 2) = Wa((t — )*,2) =

which proves (1.5). Using the relation

e

Wp(e ) = e . e2n

we deduce
_ at _ oz
b — sup Wallol®) = pl@)a) _ Wi (e = ] )
zel p(x) e
< \/W (e2at 33) _ 2eamW (eat .73) + e2aw

p(x)

20 402 20 o2 20k
20T . ean — 2e2AT . gon + 2% a2 W2
= =\ezm —2ezn +1.
elll‘

Using the equality 2 —2x+1 = (z—1)[(z—1)(x+1)?+2z] and the inequality
—1<tel fort =g,

1/ % \/ezn—l ezn—i—l) —|—2e2n

s 2+—(1+e2)2<§
" 2 NG

The estimation of the derivative
(W f) @)] = nlWa((t = 2) (), 2)] < ||l Wa(lt - 2lo(t), )
<1 fll, VWl = 27 )/ W (2, 2)
— Vallfll, e*% p(e)

proves the relation

|(Wo f) ()|
¢'(z)

we obtain

< Cip(z), forevery z € R.

O

Remark 2.9. The result of the Theorem 2.8 for the limit case, a = 0, was
obtained in [5] and partially in [10].



420 Adrian Holhos

The Picard Operators.

Lemma 2.10. For I = R and for p(z) = e**, for some a > 0, the Picard
operators

Po(f,z) = g/m e~ f(u)du, xeR, n>[a] 42,

— 00

have the property that Pnp € C,(R) for every f € C,(R).

Proof. The evaluation

Pn(p7 l’) — ﬁ /I eozufnernufozx du + g /OO 6au+nm7nu7az du

p(x) 2 ) z
T _ [e%s)
— _pnz—aw 6u(a+n) + ﬁenmfax 6U(a n)
2 a+n |_ 2 a—n |,
T n2—a? — 1+a,
proves the statement from the lemma. O
Theorem 2.11. For o« > 0 and for p(x) = e** the Picard operators

Pn: Co(R) — C,(R), n > [2a] + 2, have the property
[Pnf — fll, =0, whenever n — oo,
if and only if
f(@)e " is uniformly continuous on R.

Furthermore, for every f € C,(R) and for every n > [2a] + 2, it is true the
esttmation

n

IPuf = £l <171, 57 4200 (f(t)eat, ﬂ) ,

where C' > 0 is a constant dependening on «, but independent of n.

Proof. Set p(x) = x. Using the relations P, (eg,x) = 1, Py(e1,z) = x and
Pulez,z) = 2? + 2, we obtain

a0 =51 Pal((0) = pla)].2) < sup /ol — )% 0) = V2

z€R n

which proves (1.1). Using the equality
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obtained in the previous lemma, we get

- t) — , - at _ oz ,
b = o Pal0) =2 P (et~ o] )
z€R p(:Z?) zER e

\/7)71(62o¢t7 J}) _ Qeozx’])n(eat’ .Z‘) I e20w
< sup
z€R p(.’E)

\/ n? 2n? 41 2(n? + 2a2) < aC
= —_ = a —
n? —4a?2 n?-—a? (n? —4a2)(n®—-a?) = n’

2n2(n? + 2a?)
ax :
n>[2a]+2 (n? — 4a2)(n? — a?)

where

C? =

Using the relation

= g / f(u)efn(“%“) du + g/ f(u)efn(“ﬂc) du

we can compute the derivative

2 e’} x
Pl(foe) = L ( [ e [ ggee du)
:7/ flx+1t)— fx—t)]e ™dt

and obtain the estimation

|7>;L<f,x>|gf/ @) — flo—t)]edi

Hf” / |: a(z+t) + ea(z—t) e ™ dt

n3

<e™|fl, RORE

This proves the inequality

PL(f; )]

< Cpap(x), for every x € R.
/(@) :

O

Corollary 2.12. For a continuous and bounded function f: R — R, it is true
the equivalence

I1Pnf — fll = 0, (n — o0) if and only if f is uniformly continuous on R.

IIPnf—f||<2-w<f,\f>7n>2.

Moreover,
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