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Stochastic Schrödinger equation driven by
cylindrical Wiener process and fractional
Brownian motion
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Abstract. In this paper we study the properties of the solution of a sto-
chastic nonlinear equation of Schrödinger type, which is perturbed by a
cylindrical Wiener process and an additive cylindrical fractional Brow-
nian motion with Hurst parameter in the interval ( 1

2
, 1). The existence

of the solution and the existence of the Malliavin derivative are proved.
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1. Introduction

In physics, specifically in quantum mechanics, the Schrödinger equation is an
equation that describes how the quantum state of a physical system changes
in time.

We describe the Schrödinger equation for a harmonic oscillator subject
to a periodic electric field: a particle of mass m, electric charge Q, is displaced
along the x-axis (x ∈ R) and subject to a force −mω2

0x (for all t > 0) and to
an electric field E sin(ωt) directed along the x-axis

i~
∂

∂t
X(x, t) =

(
− ~2

2m
∇2 +

1
2
mω2

0x2 + QEx sin(ωt)
)
X(x, t), x ∈ R, t > 0,

X(·, 0) = X0

where i is the imaginary unit, − ~2

2m
∇2 is the kinetic energy operator, ~ is

Planck’s constant, the complex valued function X is the wave function at
position x at time t, X0 is the initial condition (see [8], p. 639).
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Many authors investigated stochastic equations of Schrödinger type:
The case of additive noise is considered in [11], [13], while the case of multi-
plicative noise is discussed in [2], [9], [10], [16]. In these papers the existence
of a mild solution is investigated. Different approaches to linear and nonlinear
stochastic Schrödinger equations perturbed by cylindrical Brownian motions
are given in [14] and [15].

In this paper we study the properties of the solution of a stochastic
nonlinear equation of Schrödinger type, which is perturbed by a cylindrical
Wiener process and an additive cylindrical fractional Brownian motion. Con-
sequently, this model respects as well fluctations of a Brownian motion as
additive disturbances with long range dependence. This paper completes the
results about stochastic equations of Schrödinger type given in [5] by consid-
ering also a cylindrical fractional Brownian motion with Hurst parameter in
the interval (1

2 , 1). We use the framework of stochastic evolution equations
driven by fractional noise developed by T.E. Duncan, B. Pasik-Duncan, B.
Maslowski [12] and M. Röckner and Y. Wang [17]. The existence results are
derived by using the properties of Schrödinger type equations developed in
[5]. Smoothness properties such as the existence of the Malliavin derivative
are also proved. The Malliavin derivatives can be used to calculate condi-
tional expectations or chaos decompositions of stochastic processes (see [3],
[7]).

This paper has the following structure: In Section 2 we introduce the
list of assumptions and give the definition of the solution. In Section 3 we
briefly present the two stochastic integrals that appear in the equation which
is investigated. The existence of the solution is derived in Section 4. Section
5 contains results about infinite dimensional Malliavin derivatives and the
existence of the Malliavin derivative of the solution is proved.

2. Assumptions and formulation of the problem

We consider (Ω,F , (Ft)t≥0, P ) to be a filtered complete probability space.
Let (V, (·, ·)V ) and (H, (·, ·)) be separable complex Hilbert spaces, such that
(V,H, V ∗) forms a triplet of rigged Hilbert spaces. Let K be a separable real
Hilbert space. We consider

(
W (t)

)
t≥0

to be a K-valued cylindrical Wiener

process adapted to the filtration (Ft)t≥0 and (Bh(t))t≥0 to be a K-valued
cylindrical fractional Brownian motion with Hurst index h ∈ ( 1

2 , 1) adapted
to the filtration (Ft)t≥0.

We study the properties of the variational solution X of the following
stochastic nonlinear evolution equation of Schrödinger type

(X(t), v) = (X0, v)− i

∫ t

0

〈AX(s), v〉ds + i

∫ t

0

(f(s,X(s)), v)ds (2.1)

+ i(
∫ t

0

g(s,X(s))dW (s), v) + i(
∫ t

0

b(s)dBh(s), v)
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for a.e. ω ∈ Ω and all t ∈ [0, T ], v ∈ V .
We assume that:

[I] X0 is F0-measurable, X0 ∈ L2(Ω; V );
[A] A : V → V ∗ has the following properties:
• A is linear and continuous ‖Au‖V ∗ ≤ cA‖u‖V for all u ∈ V ;
• 〈Au, v〉 = 〈Av, u〉 for all u, v ∈ V ;
• there exists constants α1 ∈ R and α2 > 0, such that for all v ∈ V it holds

〈A(v), v〉 ≥ α1‖v‖2 + α2‖v‖2
V .

• Let (hn)n ⊂ H be the eigenvectors of the operator A, for which we assume
that Ahn ∈ H for all n ∈ N and (hn)n is a complete orthonormal system in
H.
[f ] f : Ω× [0, T ]×H → H is a measurable function, which is Ft-adapted for
each t ∈ [0, T ]:
(1) there exists a constant cf > 0 such that for a.e. ω ∈ Ω it holds

‖f(t, u)− f(t, v)‖2 ≤ cf‖u− v‖2 for all t ∈ [0, T ], u, v ∈ H;

(2) for a.e. ω ∈ Ω and all t ∈ [0, T ], u ∈ V we have f(t, u) ∈ V and there
exists kf > 0 such that

‖f(t, u)‖2
V ≤ kf (1 + ‖u‖2

V );

[g] g : Ω × [0, T ] × H → L2(K, H) is a measurable function, which is Ft-
adapted for each t ∈ [0, T ]:
(1) there exists a constant cg > 0 such that for a.e. ω ∈ Ω it holds

‖g(t, u)− g(t, v)‖2
L2(K,H) ≤ cg‖u− v‖2 for all t ∈ [0, T ], u, v ∈ H;

(2) for a.e. ω ∈ Ω and all t ∈ [0, T ], u ∈ V we have g(t, u) ∈ L2(K, V ) and
there exists kg > 0 such that

‖g(t, u)‖2
L2(K,V ) ≤ kg(1 + ‖u‖2

V );

[b] b : [0, T ] → L2(K, V ) and for each u ∈ K we have b(·)u ∈ Lp([0, T ];V ) for
some p > 1

h and it holds

T∫
0

T∫
0

‖b(r)‖L2(K,V )‖b(s)‖L2(K,V )|r − s|2h−2drds < ∞.

3. The stochastic integrals

In this section we briefly present the definitions of the stochastic integrals we
considered in (2.1). Let (en)n be an orthonormal basis in K.

For the K-valued cylindrical Wiener process (W (t))t≥0 and for g :
Ω × [0, T ] × H → L2(K, H) satisfying [g]-(1) the stochastic integral



384 Wilfried Grecksch and Hannelore Lisei

T∫
0

g(s, v)dW (s) (v ∈ H fixed) is defined as a zero mean H-valued Gauss-

ian random variable given by
T∫

0

g(s, v)dW (s) :=
∞∑

n=1

T∫
0

g(s, v)endwn(s),

where the series above converges in L2(Ω;H) and ((wn(t))t≥0)n is a sequence
of mutually independent real-valued Brownian motions. One can prove that

E
∥∥∥ T∫

0

g(s, v)dW (s)
∥∥∥2

=
∞∑

n=1

E
∥∥∥ T∫

0

g(s, v)endwn(s)
∥∥∥2

=
∞∑

n=1

E

T∫
0

‖g(s, v)en‖2ds = E

T∫
0

‖g(s, v)‖2
L2(K,H)ds < ∞.

For 0 < r < 1/(2 − 2h) the function φ : [0, T ] → R defined by φ(u) =
h(2h− 1)|u|2h−2 belongs to the space Lr([0, T ]; R).

If p > 1/h, then by Theorem 3.9.4 in [4], there exists CT > 0 such that
for any function η, ϕ ∈ Lp([0, T ]; R) it holds

T∫
0

T∫
0

|η(u)ϕ(v)φ(u− v)|dudv ≤ CT ‖ϕ‖Lp([0,T ];R)‖η‖Lp([0,T ];R).

If (βh(t))t≥0 is a real-valued fractional Brownian motion with Hurst
index h ∈ ( 1

2 , 1), and ϕ ∈ Lp([0, T ]; R), then the stochastic integral
T∫

0

ϕ(s)dβh(s) ∈ L2(Ω; R) is defined as a zero mean real-valued Gaussian

random variable, such that

E

 T∫
0

ϕ(s)dβh(s)

T∫
0

ϕ(s)dβh(s)

 = E

T∫
0

T∫
0

ϕ(u)ϕ(v)φ(u− v)dudv.

If ϕ ∈ Lp([0, T ]; R) with p > 1
h , then the process

( t∫
0

ϕ(s)dβh(s)
)

t≥0

has P -a.s. continuous sample paths (see [18] Lemma 2.0.17).
Let (kn)n be an orthonormal basis in K.
For the K-valued cylindrical fractional Brownian motion (Bh(t))t≥0 and

for b : [0, T ] → L2(K, V ) satisfying assumption [b] the stochastic integral
T∫

0

b(s)dBh(s) is defined as a zero mean V -valued Gaussian random variable
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given by
T∫

0

b(s)dBh(s) :=
∞∑

n=1

T∫
0

b(s)kndβh
n(s),

where the series above converges in L2(Ω;V ) and
(
(βh

n(t))t≥0

)
n

is a sequence
of mutually independent real-valued fractional Brownian motions each with
Hurst parameter h. One can prove that

E
∥∥∥ T∫

0

b(s)dBh(s)
∥∥∥2

V
=

∞∑
n=1

E
∥∥∥ T∫

0

b(s)kndβh
n(s)

∥∥∥2

V

=
∞∑

n=1

T∫
0

T∫
0

(b(r)kn, b(s)kn)V φ(r, s)drds

≤
T∫

0

T∫
0

‖b(r)‖L2(K,V )‖b(s)‖L2(K,V )φ(r, s)drds < ∞.

For more details see for example [12],[18].
For a.e. ω ∈ Ω and for each t ∈ [0, T ] we denote by

Z(t) :=
∫ t

0

b(s)dBh(s),

which is obviously a V -valued process adapted to (Ft)t≥0.

Proposition 3.1. [18, Corollary 2.0.16, Lemma 2.0.17] The process
(Z(t))t∈[0,T ] has a continuous version in V and in H and

E

∫ T

0

‖Z(s)‖2
V ds < ∞.

Remark 3.2. The stochastic integral Z(t) can also be represented by a sto-
chastic integral with respect to the cylindrical Wiener process W (see [3], [6]).
For f : R → C and 1

2 < h < 1 we introduce the operator

(Mhf)(x) = ch

∫
R

f(t)
|t− x|3/2−h

dt,

where ch = [2Γ(h−1/2) cos(1/2π(h−1/2))]−1(Γ(2h+1) sin(πh))1/2 and f is
chosen in such a manner that (Mhf) ∈ L2(R). If f is concentrated on [0, T ],
then we consider [0, T ] instead of R. If

∞∑
n=1

∞∑
j=1

∫ T

0

((
Mh (b(·)kn, hj)

)
(s)
)2

ds < ∞,

then ∫ t

0

b(s)dBh(s) =
∞∑

j=1

∞∑
n=1

∫ t

0

(
Mh (b(·)kn, hj)

)
(s)dwn(s)hj .
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4. Existence of the solution

Theorem 4.1. Assume that [I], [A], [f], [g], [b] are satisfied. Equation (2.1)
admits a unique solution X ∈ L2(Ω× [0, T ];V ) ∩ L2(Ω;C([0, T ];H)).

In order to prove the existence of the solution of (2.1), we first transform
it equivalently into an equation of Schrödinger type studied in [5]. For a.e.
ω ∈ Ω and for each t ∈ [0, T ], v ∈ H we denote by

• U(t) := X(t)− iZ(t).
• F (ω, t, v) := f(ω, t, v + iZ(ω, t)),
• G(ω, t, v) := g(ω, t, v + iZ(ω, t)).

Observe that for a.e. ω ∈ Ω and all t ∈ [0, T ], u, v ∈ H it holds

‖F (t, u)− F (t, v)‖2 ≤ cf‖u− v‖2

‖G(t, u)−G(t, v)‖2
L2(K,H) ≤ cg‖u− v‖2

and for all u ∈ V

‖F (t, u)‖2
V ≤ 2kf (1 + ‖u‖2

V + ‖Z(t)‖2
V );

‖G(t, u)‖2
L2(K,V ) ≤ 2kg(1 + ‖u‖2

V + ‖Z(t)‖2
V ).

We rewrite (2.1) equivalently as

(U(t), v) = (X0, v)− i

∫ t

0

〈AU(s), v〉ds + i

∫ t

0

(F (s, U(s)), v)ds (4.1)

+i(
∫ t

0

G(s, U(s))dW (s), v) + i

∫ t

0

〈AZ(s), v〉ds for all v ∈ V.

(2.1) admits a unique solution X ∈ L2(Ω × [0, T ];V ) ∩ L2(Ω; C([0, T ];H))
if and only if (4.1) admits a unique solution U ∈ L2(Ω × [0, T ];V ) ∩
L2(Ω; C([0, T ];H)).

The proof of the existence of a unique solution U for (4.1) is similar
to the proof of Theorem 1 in [5]. For this reason one introduces Galerkin
approximations: For each n ∈ N we consider the finite dimensional spaces
Hn := sp{h1, h2, . . . , hn} (equipped with the norm induced from H) and
Kn := sp{e1, e2, . . . , en} (equipped with the norm induced from K). We
define πn : H → Hn the orthogonal projection of H on Hn by πnh :=

n∑
j=1

(h, hj)hj . Let An : Hn → Hn, Fn : Ω× [0, T ]×Hn → Hn, Gn : Ω× [0, T ]×

Hn → L(Kn,Hn) be defined respectively by

Anu =
n∑

j=1

〈Au, hj〉hj , Fn(t, u) =
n∑

j=1

(F (t, u), hj)hj ,

Gn(t, u)v =
n∑

j=1

(G(t, u)v, hj)hi for v ∈ Kn

Zn(t) =
n∑

j=1

(Z(t), hj)hj
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and we denote X0n = πnX0 and Wn(t) =
n∑

j=1

ejwj(t) ∈ Kn. For a.e. ω ∈ Ω

and all t ∈ [0, T ] and all j = 1, n we consider the finite dimensional equations
corresponding to (4.1)

(Un(t), hj) = (X0n, hj)− i

∫ t

0

(AnUn(s), hj)ds (4.2)

+i

∫ t

0

(Fn(s, Un(s)), hj)ds + i(
∫ t

0

Gn(s, Un(s))dWn(s), hj)

+i

∫ t

0

(An(s)Zn(s), hj)ds.

One can show similar as in the proof of Theorem 1 in [5] (see also
Remark 3 in [5]) that for all t ∈ [0, T ] it holds

lim
n→∞

E‖Un(t)− U(t)‖2 = 0

and

lim
n→∞

E

∫ t

0

‖Un(s)− U(s)‖2ds = 0.

5. The existence of Malliavin derivative of the solution

We briefly present some results about infinite dimensional Malliavin deriva-
tives: We consider the random variable Y with values in a complex Hilbert
space H. Y with E‖Y ‖2 < ∞ is called a smooth random variable and we
denote Y ∈ S, if

Y =
n∑

j=1

fj

(∫ T

0

(γ1,j(s), dW (s))K , . . . ,

∫ T

0

(
γnj ,j(s), dW (s)

)
K

)
hj ,

where γ1,j , . . . , γnj ,j ∈ L2([0, T ];K) for j = 1, . . . n, hj ∈ H, fj ∈ C∞(Rnj )
and fj and all its derivatives have polynomial growth for j = 1, . . . , n.

The Malliavin derivative DtY , (t ∈ [0, T ]) of Y ∈ S is a random variable
with values in L2(K, H) defined by

DtY =
n∑

j=1

nj∑
k=1

∂fj

∂xk

(∫ T

0

(γ1,j(s), dW (s))K , . . . ,

∫ T

0

(
γnj ,j(s), dW (s)

)
K

)
·

·hj ⊗ γk,j(t).

The Malliavin derivative Dt as defined for H-valued smooth random variables
is closable on L2(Ω; L2(K, H)) (see Proposition 5.1 in [7]).

Consequently, if Y is the L2(Ω; H) limit of a sequence (Yn)n ⊂ S so
that the sequence (DtYn)n convergences in L2(Ω;L2(K, H)), we can define
DtY as

DtY = lim
n→∞

DtYn.
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We use the notation H(K) for the subspace of L2(Ω;H), where the derivative
Dt can be defined. This subspace is a separable Hilbert space equipped with
the graph norm

‖Y ‖2
H(K) = E‖Y ‖2 + E‖DtY ‖2

L2(K,H).

The following result is known (see Lemma 5.2 in [7]):

Lemma 5.1. Let Yn → Y in L2(Ω;H) and suppose that there is a constant
C > 0 such that for all n we have

E‖DtY ‖2
L2(K,H) < C.

Then, the random variable Y is in the domain H(K) of the Malliavin deriv-
ative Dt.

By using Proposition 5.2 in [7] the following chain rule holds:

Proposition 5.2. Let M be a further separable Hilbert space. Given a random
variable Y ∈ H(K) and a Fréchet differentiable function η : H → M . Then,

Dtη(Y ) = ∇ηDtY.

We will use the following well-known properties of Dt (see, for example
[7], [3]):

Proposition 5.3. (1) If Y is Fs-measurable and Y ∈ H(K), then DtY = 0
a.e. ω ∈ Ω and for all t > s.

(2) Let a(s), s ∈ [0, T ] an Fs-adapted L2(K, H)-valued process which fulfills
the assumptions of the Skorochod integral definition in [7]. Then, for all
r > t it holds

Dt

∫ r

0

a(s)dW (s) = a(t) +
∫ r

t

Dta(s)dW (s).

Further in this section we assume:
1. The assumption in Remark 3.2 is valid for the process b.
2. The functions f and g are deterministic.
3. The functions f and g are Fréchet differentiable with respect to x ∈ H

for all t ∈ [0, T ] and the Fréchet derivatives ∇xf(t, x) and ∇xg(t, x) are
bounded in the following sense: There exists a positive constant c such
that

‖∇xf(t, x)‖L(H,H), ‖∇xg(t, x)‖L(H,L2(K,H)) ≤ c

for all t ∈ [0, T ], x ∈ H.
4. The initial condition X0 is deterministic.

Theorem 5.4. There exists DrU(t) as an L2(K, H)-valued random variable
for all r, t ∈ [0, T ].

Proof. We process the proof in two steps:
Step 1: It follows from the above assumption 3 that the functions f and
g are globally Lipschitz continuous. Consequently, we can consider directly
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the Galerkin equations (4.2). Similar to Remark 3 in [5] we have for the
variational solution U

lim
n→∞

E‖Un(t)− U(t)‖2 = 0 and lim
n→∞

E

∫ t

0

‖Un(s)− U(s)‖2ds = 0 (5.1)

for all t ∈ [0, T ]. Equation (4.2) is an Itô equation in Vn and Hn and its
solution can be approximated by the method of successive approximations

Um+1
n (t) = X0n − i

∫ t

0

AnUm
n (s)ds (5.2)

+i

∫ t

0

Fn(s, Um
n (s))ds + i

∫ t

0

Gn(s, Um
n (s))dWn(s)

+i

∫ t

0

An(s)Zn(s)ds.

for m = 0, 1, . . . with U0(s) ≡ X0n.
The finite dimensional theory shows

lim
m→∞

E‖Um
n (t)− Un(t)‖2 = 0. (5.3)

Now we calculate DrU
m+1
n (t). Since Um+1

n is Ft-measurable we get also
the Fr-measurability for r ≥ t. In this case it follows from Proposition 5.3
DrU

m+1
n (t) = 0. We now consider r < t. Then, by Proposition 5.2, Proposi-

tion 5.3 and Remark 3.2 we get

DrU
m+1
n (t) = −i

∫ t

r

AnDrU
m
n (s)ds (5.4)

+i

∫ t

r

∇xFn(s, Um
n (s))DrU

m
n (s)ds

+i

∫ t

r

∇xFn(s, Um
n (s))DrZn(s)ds

+i

∫ t

r

∇xGn(s, Um
n (s))DrU

m
n (s)dWn(s)

+i

∫ t

r

∇xGn(s, Um
n (s))DrZn(s)dWn(s)

+iGn(r, Um
n (r)) + i

∫ t

r

An(s)DrZn(s)ds

where DrZn(t) : Kn → Hn is the linear operator defined by

(DrZn(t)x, y) =
(
Mh (bn(·)x, y)

)
(s).

DrZn(t) has values in L(Kn, Vn) and L(Kn,Hn). Since the spaces are finite
dimensional, the operators are also Hilbert-Schmidt operators. If we use the
energy equality in the space L2(Kn,Hn), then we get by the assumptions of
this section and by Gronwall’s lemma that there is a positive constant C with

E‖DrU
m
n (t)‖2

L2(K,H) ≤ C
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for all m, r, t and fixed n, since from equation (5.3) the boundedness of
E‖Um

n (t)‖2 follows for all m, r, t and fixed n. The constant C does not depend
on n. Then we get by Lemma 5.1, from the last inequality and from equation
(5.3) that DrUn(t) exists and

E‖DrUn(t)‖2
L2(K,H) ≤ C. (5.5)

Step 2: Since the relations (5.5) and (5.1) hold, we can use again Lemma 5.1
and get

E‖DrU(t)‖2
L2(K,H) ≤ C.

�

Theorem 5.5. Consider that the assumptions of this section hold. Then, for
t > r we have

DrX(t) = DrU(t) + i(Mhb(·))(r),
where (Mhb(·))(r) ∈ L2(K, H) is defined by the bilinearform

(Mh(b(·)x, y))(r) for all x ∈ K, x ∈ H.

Proof. Theorem 5.4 shows the existence of DrU(t) and it holds DrX(t) =
DrU(t) + iDrZ(t). Since b is deterministic, we get by Proposition 5.3 and
Remark 3.2 for t > r

DrZ(t) = (Mhb(·))(r).
�

Remark 5.6. The Malliavin derivative is used for example to define Skorochod
integrals [12] and in the optimal control theory [1]. Optimal control problems
for stochastic Schrödinger equations are under preparation.
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