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A ()-fractional version of Ito’s formula

Wilfried Grecksch and Christian Roth

Abstract. In this paper we consider a white noise calculus for fractional
Brownian motion with values in a separable Hilbert space, whereby
the covariance operator @ is a kernel operator (Q-fractional Brownian
motion). We prove a Q-fractional version of the Ité’s formula.
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1. Introduction

Extending white noise analysis [9], Biagini and @ksendal [2] introduce frac-
tional white noise calculus. They give the corresponding definition of stochas-
tic integrals, a fractional It6 formula and It6 isometry, fractional differentia-
tion and a fractional Malliavin calculus, using the results of Elliott and van
der Hoek [4].

In [1] Grecksch, Roth and Anh introduce the @Q-fractional Brownian
motion, i.e., a Hilbert space-valued fractional Brownian motion defined by a
kernel operator @), and develop the @Q-fractional Brownian motion framework
for £ < h < 1 as it was done in [9] for the standard Brownian motion
case and in [2] for the fractional Brownian motion case in finite dimensions.
Grecksch, Roth and Anh introduce @Q-fractional test functions spaces and
distribution spaces analogous to the way Hida [7] did and develop the Q-
fractional chaos expansion. The corresponding stochastic integral and the
Hilbert space-valued Wick scalar product are introduced. Furthermore they
proved Q-fractional versions of Girsanov’s theorem and of Clark-Haussmann-
Ocone theorem.

In this paper we give a short overview of the most important notions
and definitions for @Q-fractional Brownian motion, see [1]. In Section 3 we
prove a @Q-fractional version of It6’s formula (see Theorem 3.1).
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2. (Q-fractional Brownian motion setup

Let S(IR') denote the Schwartz space of rapidly decreasing smooth func-
tions on IR! and let 8’'(IR') be its dual, usually called the space of tempered
distributions.
Let K and H be two separable Hilbert spaces with scalar product
(- )k and (-,-)g, and (2, F, P) a complete probability space. We denote
by L(K,H) the set of all linear bounded operators from K to H. Let
Q € L(K,K) be a self-adjoint, non-negative operator on K. We call @ a
kernel operator in K if
(i) there exists a sequence (An)nen C RL = {z € R' : 2 > 0} with A\, — 0
as n — 00;
(ii) there exists a complete orthonormal system (e, )nen € K such that

Q(x) = Z/\n(x»en)en (21)

forallz € K and )~ A, < 0.

Definition 2.1. A K-valued continuous Gaussian process Bh(t)te[O,T] with
Hurst parameter h € (0,1) is called a Q-fractional Brownian motion, if there
exists a kernel operator Q) in K such that
1. Vz,y € K, s,t € [0,T],
1
E((B"(t),2) ¢ (B"(5),9) ) = 5(Q(2), y)i (£*" + ™" = [t = s*"); (2.2)

2
2. Vx € K,

E (B"t),x), =0. (2.3)

Remark 2.2. (i) In view of (2.2) we say that B" has the covariance operator
3Q (2" 4 s — |t — s?").
(i) Eq. (2.3) is equivalent to EB"(t) = 0, i.e., it is the zero element of K.
(iii) The case of long-range dependence, i.e. % < h < 1, is given by

E (B (t).2) . (B"(5),9) o) = (Q(x), 9)x / / " o(u,v) dudo,

where ¢(u,v) := h(2h — 1)|u — v[>" 2.
(iv) The Hilbert space valued Wiener process is obtained for h = 1.
Theorem 2.3. Let

(i) (en)nen be a complete orthonormal system in K ;
(ii) (An)nen CRL, Y07 A, < 005
(iii) (B2(t))ieo,r), m = 1,2, ... be independent real fractional Brownian mo-
tions with

E(B"(1)A(s)) = %gnk (£ 4 2 [t — 521,

where 6py 15 the Kronecker delta function.
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Then (Bh(t)) is a Q-fractional Brownian motion if and only if

t€[0,T)
B"(t) =Y VauBi(ten =D QY (en)Bh(1). (2.4)

Proof. See Grecksch and Anh [6], or Duncan, Maslowski and Pasic-Duncan
(3]

We write B (t) = A, 8(t).

In the following we will discuss (a two-sided) @Q-fractional Brownian
motion with help of fractional white noise calculus. Therefore we assume
that the underlying probability spaces for the independent real fractional
Brownian motions Bf(+), B2(-), ... are Q; = §'(IR!), Qy = S'(R}Y), ..., that
is B"(-) is defined on Q = [[;2, .

We now introduce the fundamental operator My, (t) according to Elliott
and van der Hoek [4].

For 0 < h < i and f € S(RY),

My f(z) = (zr (h - ;) cos (;T h— ;)))_1 » W dt.(2.5)

For £ <h < 1and f € S(R'),

My f(z) == (2F (h - ;) cos (g <h - ;)))1 /R H_fjj)h dt. (2.6)

For h = 1 we put M, f(z) = f(z), the identity map.
When f(x) = I(0,t)(z) we write

My f(z) = Mp(0,t)(x). (2.7)

Now we want to characterize the Hilbert space valued fractional Brow-
nian motion with white noise calculus. We define

B (t,w) = i VAn < Mp(0,t),wp > e, (2.8)

n=1

with < My(0,t),w, >= f]Rl My (0,t)(s) dBn(s) and S, are independent real
Brownian motions.
Again, By, (t) is a Gaussian random variable with

E [(Bh(t), x) K] =0 (2.9)

and for s < t, we get using the independence of w;

E[(Bu).2) (Bu(s)y) ]

=F Z \/)\7 < Mp(0,t),w; > (as,ei)KZ VA < Mp(0,8),wr > (y, ex)x
i=1 k=1
= Cn (JtP" + s = [t = s*") (Qu, ). (2.10)

The process B"(t) has a continuous version in K, which we denote by B"(t).
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We extend the definition of M} to Hilbert space valued functions f :
IR! — K. Then Mj, is defined by

M f(x Zeth (f,en) g () (2.11)

n=1

for all z € R! and all
feLi(RYK) =

{f IR — K,th = ZMh ((f,ei)K)ei S Lz(lRl,K)}, (2.12)

i=1
where M}, (f, e;) ¢ is defined by applying (2.5) and (2.6) to the real functions
(f(),€)k-

The Hermite functions {&,}5°,, i.e.

z2

=15 ((n= 1)) hy 1 (V20)e T, (2.13)

sH

n —172
where h,(x) = (—1)”6% pr (eT> form a basis of L2(IR},IR'). Define

M(x) = M, &, (2); n=1,2... (2.14)
Then it follows from [4]

oo

=D ciuny(2) (2.15)

Jj=1

that n; is an orthonormal basis of L7 (IR', R'). Consequently 7;(z)e,, (j =
1,2,..., n=1,2..) defines an orthonormal basis of L? (R}, K).

Let H,, »r = 1,2,..., be the Hermite polynomials of order r. Evidently
we have

1 1
(B mjen)) = 5(B" myen) = 5(Bhs) = 3 (VA1)
Furthermore we define
Ha (BZ) = Ha, (BZ (771)) “e s Ha, (B:LL (nj)) )

and o is a multi-index, that is, o = (aq,...,;), o; € N. In particular e
denotes the multi-index with 1 at the place n and 0 else.

Remark 2.4. In view of the representation Theorem 2.3, Eq. (2.4) for Q-
fractional Brownian motions, we have for a deterministic function F' with
values in L?[0,T]

/OT (s)dB"(s) Z/ A F(s)en By (s) (2.16)

in mean square in H.



A Q-fractional version of It&’s formula 373

We can write the expansion of B"(t) as

S VA e =33 / 15(5) dsH.c (BM)en. (217)

j=1n=1

We introduce the notation
B'"(njen) == (B", njen)en =/ n;(x) dB!(z)e,. (2.18)
IRI

Furthermore fo n;(t) dB](t)en is defined by [, Tjo,7)(t)n;(t) dBL(t)en
Therefore we have

2
B me) = [ MDh@)Pd=r. (219
Remark 2.5. (i) Let F'(s) be a deterministic operator function. Then we
get
T
/ (F(S)ena hk) Z CknjV rLH 0 T) 5 ) (220)
0

(ii) Especially, if H = R! and F(s) = y(s) € L3([0,T], K) and ||y(s)|| < C
V s €[0,T]. Then

T
/o (1(s), 4B (s ZZC”JHl (Ijo,71m5))- (2.21)
n=1j=1

(iii) Using the properties of Hermite polynomials the expansion of Exp{b;n;}
(b; € R') is given by
1z m }

Exp{bjn;} = efﬂp{ / VA (1) dBl (1)
[ee) l [ee) [
h h
Eﬁ TJ B 77] Eﬁ TJ B 77] ) (2-22)

(see [7], [8] or [10]).

Example 2.6. Now let us consider the expansion of Fxp{y} for v €
Lg (RI,K) with respect to enn;(t), j = 1,2..., n = 1,2, ... see (2.21). We
can write the exponential of 7 as

Exp{y} = exp {/ml (v(t), dB"(t)) — ;HMh’YH?Lé(]Rl,K)}

oo

o0 o0 1 o0
= exp{ > Y Ve Hi(Br(ny) - 3 DO e IIMun 72wy
j=1

n=1j=1 n=1j=

L) H CanjHa (Br(n;)) (2.23)

acZ n,j=1
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where H, (B") := Hal(BZ(nj)) e Haj(BZ(nj)) and

- (an)m
Canj = H o a=(ag,...,q;).
=1

Here, 7 denotes the set of all multi-indices o, T = {(aq, ..., ) : @1, ..., vy €
INg,n € N}
We obtain for Exp{~(t)}

Exp{~(t)} = Z H canjHa (BE(Tjo.11m;5)) - (2.24)

a€Z n,j=1

Now we want to develop a fractional white noise integration theory for
h € (0,1). Grecksch, Roth and Anh [1] define the Q-fractional version of
the Hida test function space and the Hida distribution space for h € (%, 1).
Inspired by (2.23) we make the definitions as follows:

Let V be a separable Hilbert space with a complete orthonormal system

Definition 2.7. The Q-fractional test function space Sé‘?(V) is the space of all
V -valued random functions with expansion

DI | AR

k=1 |a€Z n,j=1

for which

|@p, = ZZ H al(e anj 2(2IN)" < oo, Vr € IN,

k=1a€Z n,j=1
and (2IN)* := []72,(2))* if @ = (a1, ..., ).
Definition 2.8. The Q-fractional distribution space (Sg(V))* is the space of
all V -valued random functions with expansion

[e )

G(w Z Z H b(ﬂkn)JHﬁ Bh Vg,

k=1 | BELI n,j=1

for which

1G]l

h—q i= ZZ H Bl bgjgj (2IN)~%° < 0o for some q € IN.

k=1B€ZI n,j=1

Remark 2.9. If V = R, then ¥(w) € S (V) (or ¥(w) € (SE(V))*) has the
following representation

w) = Z H CanjH

a€Z n,j=1
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Furthermore if the fractional noise is only one-dimensional, we find the well-

known representation
= Mo (BY).

acl

Consider the following duality relation between S¢ (V) and (S¢(V))*.
For G € (S3(V))* and ¢ € S§(V) C L} (Q) we define

(G, ) : Z 3 H alel) bk (2.25)
k=1a€Z n,j=1
Example 2.10. If G € L}, (Q) and ¢ € S§(V) C L3, (), then we have
((G,v)) = B(G,¢)v = (G, ¥) 2 () (2.26)
Definition 2.11. Let Z : [0,T] — (Sg(V))* with

| 1@®w)ide < oo, vie shv),

Then fo t)dt € (SQ(V))* is uniquely determined by the relation

<</0 Z(t) dt, ) =/0T<<Z(t) ”

We say that Z is (Sg(V))*-mtegmble.

Definition 2.12. (Wick scalar product)
Let F, G € (Sg(K))* with

o0

-y Z H all) Ha(B)| v,

k=1 (xEI n,j=1

o0

F(B")
Gw) = G(Bh)zz Z H bﬁlrnHﬁ Bz Uk, -

k=1 [ BEZl,m=1

We define

8

(F7 G)OV = H aang ﬁn] (BZ)

k::l a,BET n,j=1

(k k
IT o) 05) Hars(B) | . (227)
YEZ a+p=yn,j=1

,_.

Remark 2.13. If V = R! then (-, )ov is the usual Wick product.

Now we introduce a fractional stochastic integral with stochastic inte-
grands.
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Definition 2.14. Y : [0,7] — (Sh (V)* is (dB"—)integrable if

Y (), w ov—Z\/» )y o W (t)

is integrable with respect to t in the sense of Definition 2.11. We define

T T
| . ) = [ oo wh .
0 0

3. A ()-fractional version of It6’s formula

In this section we prove a Q-fractional version of It6’s formula the way Biagini,
(Oksendal and al. presented it for a usual fractional Brownian motion, see [2].

C12([0,T] x K,IR!) denotes the space of all functions f : [0,7] x K —
IR, such that the first Fréchet derivative V f(s, z) with respect to s € [0, T
and the first and second Fréchet derivatives V., f(s,z) and V. f(s,x) exist
continuously.

Theorem 3.1. Let f(s,x) : [0,7] x K — IR belong to C*2([0,T] x K RY).

Furthermore assume that there are constants C > 0 and 0 < A < 4T2h such
that for all (t,x) € [0,T] x K
max { | (£, 2)], [Vef (62)], Vo f o) e,
IVaw Pt @) ac i) < CM (3.1)

Then

fEBR (1) = £(0,0)+ / V. f(s, B"(s)) ds
4 / (Vo f (s, B"(5)), dB"(s))
0

—i—hi /t (me(s, B"(s))e;, ei)K \is?hlds, (3.2)
i=170

whereby
Vsf(s, B"(s))

Vaf (u, B"(s))| .

Vaof(s,2) = Vof(s,2)|,_puy»
Vaaf(5,2) = Vaaf(5,2)],_pny:
Proof. Define
g(t,x) = exp{(a,z)x + B(t)}, (3.3)

whereby a € K is a constant, 8 € C*([0,T],IR!) is a deterministic function,
and put

Y(t) = g(t, B"(t)), i.e. x = B"(1). (3.4)
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With

oo

(a, B"(s) Z\//\Taez

we can rewrite

Y (t) = exp {Z \/)\»i(a, €i)Kﬁzh(t>} exp {4(t)}

8

M\H

:eXPO{Z\Fael VBt + Z)\i(a,ei)%(tzh}exp{ﬂ(t)}. (3.5)

i=1
Therefore, by applying Wick calculus, we have

d

Y ()

= exp® {Z Vila,e) g B0 (t) + % Z Ni(a, ei)%{t%} exp {B(t)}
o [(a, Wh(t))K + hi Ai(a, ei)%(tzh_ll

i=1

+exp°{2\faez KB ZA a,e; Ktzh}exp{ﬂ( )} B (t)

= Y(@) B )+ Y () o (a WD)k + Y (1) hZ)\ a, )%t (3.6)

i=1

Hence we have found the following representation
t
Y(t) = Y(0)+/ Y(s).ﬁ’(s)ds—f—h/ ZA (a,e;)%s*h 1 ds
0

+ /t Y (s) o (a, W"(s))x ds. (3.7
0

Remembering (3.3) this can be written as
¢ ¢
ot B"(0) = 0,0) + [ Veg(s, B (s)) ds+ [ (Tugls B (9).dB"(5)
0 0
00t
+h Z/ (Vaag(s, B"(s))es, €i) Nis? 1 ds, (3.8)
i=170
which is (3.2).
Now let f(¢,x) be as demanded above. Every function

fect? ([0, T] x K, IRl) can be approximated by a sequence of linear com-
binations of type (3.3), hence we can find a sequence of linear combinations



378 Wilfried Grecksch and Christian Roth

fn(t, z) of functions g(¢, x) of the form (3.3) such that

fn(t7x) - f(t,x), thn(tvx) - th(t,l'), vmfn(t’x) - me(hl‘),

pointwise dominatedly as n — co. By (3.8) we have for all n

Fult, BR(8)) = £,(0,0) + / (Vs fuls, B (5)), dB"())

[e%e) t t
+h2/ (men(s, Bh(s))ei, ei)k Nis?hlds + / Vs fn(s, Bh(s)) ds (3.9)
i=170 0
Taking the limit of (3.9) in L3 (K,IR") (and therefore also in (S (IR'))*) we
get

f(t,B"(t)) = f(0,0) + lim [ (Vafu(s, B"(s)),dB"(s))

n—oo 0

+hi /t (me(& Bh(S))ei, ei)K /\iSQh—l ds + /t st(s, Bh(s)) ds. (310)
i=170 0

Since the mapping s — V, f(s, B"(s)) is continuous in (Sg (RY))* we get

/0 (Vo fuls, B (5)), dB"(s)) / (Vo fuls, B (5)), Wh(s)) . ds

t
- / (Vaf (s, B"(5)), Wh(s)) . ds
0
for n — oo in (Sg(IRI)*) The last relation and (3.10) show (3.2). O
Example 3.2. Now let f(s,z) :[0,7] x K — IR be defined as follows:
flt,x) :=exp(t+z),
then we have

Vif(t,x) = Vo f(t,x) = Vo f(t,x) = exp (t + z) ,
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and therefore we have by (3.2)
ft,B"t) = 1+ /Ot exp(s + B"(s)) ds
+ /Ot (exp(s + B"(s)), ch(s))K
Jrhi /t (exp(s + B"(s))e;, €i) Mg ds
i*lt 0
= 1+/0 exp(s + B"(s)) ds
-l-/ot (exp(s + Bh(s)), Wh(s))oK ds
—l—hi /Ot (exp(s + B"(s))e;, €i) Nis?h =1 ds.
i=1

Example 3.3. Now let f(s,z): [0,7] x K — IR be defined as follows:
f(t,x) :=1n (1 + :E2) ,

then we have

2 — 222

Vif(t,z) =0, Vif(t,xz)= m’

x
T2 and V., f(t,x) =

and therefore we have by (3.2)

h — t L o 2 " 5 s
ft,B*(t) = 0+ 0 <1+(Bh(s))2’w | )><>Kd
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