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1. Introduction

The problem of viscous incompressible fluid flow through porous media has
various chemical, biotechnology, and geological applications, concerning: the
treatment of transport and chemical reaction within catalyst particles in fixed
and fluidized beds, the modeling of polymer molecules as porous particles,
immobilization of cells or enzymes and perfusion chromatography for purify-
ing proteins and other bio-molecules, the flow of various kinds of fluids past
porous rocks embedded in porous soil. In [2] Kohr and Sekhar have used
the potential theory, as well as the Brinkman model, in order to obtain the
existence and uniqueness result of the classical solution to a boundary value
problem which describes the flow of an unbounded viscous incompressible
fluid in the presence of a porous body embedded in another porous medium.
Also, in [3] the authors obtained an indirect boundary integral formulation
for the three-dimensional viscous flow problem in a granular material with
one void. The method of matched asymptotic expansions and the method
of boundary integral equations have been used in [4] in order to study the
two-dimensional steady flow of a viscous incompressible fluid at low Reynolds
number past a porous body of arbitrary shape. In this paper we show the
existence and uniqueness result for the classical solution of a boundary value
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problem that describes the two-dimensional flow of an incompressible New-
tonian fluid in a porous medium and in the presence of N ≥ 2 voids by using
the Brinkman model for the external flow, as well as the Stokes model for
the internal flow. We use a boundary integral method that reduces the flow
problem to a system of Fredholm integral equations of the second kind that
has a unique solution in some Banach spaces.

2. The mathematical formulation of the problem

Let us consider an otherwise unbounded homogeneous granular material in
which N ≥ 2 fluid obstacles (voids) are given. The k-th void occupies the
bounded domain Dk ⊂ R2 whose boundary Γk is a closed Lypaunov curve
in the class C1,α, α ∈ (0, 1], k = 1, . . . , N . Let us denote by D0 the set
given by D0 = ∪N

k=1Dk. We denote by De the unbounded domain with the
boundary Γ = ∪N

k=1Γk, and assume that at great distances, i.e., far from the
voids, the fluid flow is uniform with velocity and pressure fields U∞ and p∞,
respectively.

Let us now assume that the flow in the unbounded domain De is de-
scribed by the Brinkman model, i.e., the Brinkman and continuity equations.
Thus, the non-dimensional volume averaged velocity and pressure fields ve

and pe satisfy in De the following equations:

−∇pe + (∇2 − χ2)ve = 0 in De, (2.1)

∇ · ve = 0 in De, (2.2)

where χ > 0 is the constant having the expression χ = a√
κ

√
µf

µeff
, a is a

characteristic length (connected to the sizes of the curves Γk, k = 1, . . . , N)
and k is the permeability of the porous medium. Note that if µf = µeff , then
χ becomes χ = a/

√
κ.

The flow inside each void is assumed to be described by the Stokes
system, i.e., by the Stokes and continuity equations:

−∇pi +∇2vi = 0 in D0, (2.3)

∇ · vi = 0 in D0. (2.4)
Also, we assume that the velocity and boundary traction fields are con-

tinuous across each curve Γk, k = 1, . . . , N , i.e.,

vi = ve, ti = te on Γk. (2.5)

Note that te is the boundary traction corresponding to the external fields ve

and pe, and ti is the boundary traction due to the internal fields vi and pi.
At large distances, the fields vp = ve −U∞ and pp = pe − P∞ vanish

such that

(|vp||∇vp|)(x) = o(|x|−1), (|vp||pp|)(x) = o(|x|−1) as |x| → ∞, (2.6)

where U∞ and P∞ are the non-dimensional undisturbed velocity and pres-
sure fields.
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Therefore, the considered flow problem reduces to the boundary value
problem consisting of the system of equations (2.1)-(2.4) subject to the trans-
mission and far field conditions (2.5)-(2.6) and having as unknowns the fields
ve, pe, vi and pi. We show that this problem has a unique classical solution
((ve, pe), (vi, pi)) ∈ ((C2(De)∩C0(De))×C1(De))× ((C2(D0)∩C0(D0))×
C1(D0)), where D0 = ∪N

k=1Dk.

3. Uniqueness of the solution

First, we show the following uniqueness result:

Theorem 3.1. The boundary value problem (2.1)-(2.6) has at most one classi-
cal solution ((ve, pe), (vi, pi)) ∈ ((C2(De)∩C0(De))×C1(De))× ((C2(D0)∩
C0(D0))× C1(D0)).

Proof. Let us assume that the boundary value problem (2.1)-(2.6) has two
classical solutions and let ((ve

0, p
e
0), (v

i
0, p

i
0)) be their difference. Therefore,

the pairs (ve
0, p

e
0) and (vi

0, p
i
0) satisfy the following equations, boundary and

far field conditions:

−∇pi
0 +∇2vi

0 = 0 and ∇ · vi
0 = 0 in D0, (3.1)

−∇pe
0 + (∇2 − χ2)ve

0 = 0 and ∇ · ve
0 = 0 in De, (3.2)

vi
0 = ve

0 and ti
0 = te

0 on Γk, k = 1, . . . , N, (3.3)
(|ve

0||∇ve
0|)(x) = o(|x|−1), (|ve

0||pe
0|)(x) = o(|x|−1) as |x| → ∞. (3.4)

In addition, the fields ve
0 and pe

0 satisfy the energy identity (see e.g. [1],
p.24)

2
∫

De

Ekj(ve
0)Ekj(ve

0)dx = −
N∑

k=1

∫
Γk

ve
0 · te

0dΓk, (3.5)

where

Ekj(ve
0) =

1
2

(
∂ve

0,k

∂xj
+

∂ve
0,j

∂xk

)
and te

0 = (te0,1, t
e
0,2) is the boundary traction due to the fields ve

0 = (ve
0,1, v

e
0,2)

and pe
0, i.e.,

te0,j = Tjk(ve
0)nk = (−pe

0δjk + 2Ejk(ve
0))nk. (3.6)

In the relations (3.5) and (3.6) and in what follows we use Einstein’s
repeated-index summation convention. Also we denote by n = (n1, n2) the
outward unit normal to Γ.

Now, making use of the fact that the fields vi
0 and pi

0 satisfy the equa-
tions (3.2), we get the identity (see e.g. [1], p.15):∫

Dk

(χ2|vi
0|2 + 2Ekj(vi

0)Ekj(vi
0))dx =

∫
Γk

vi
0 · ti

0dΓk, k = 1, . . . , N, (3.7)

where

Ejk(vi
0) =

1
2

(
∂vi

0,j

∂xk
+

∂vi
0,k

∂xj

)
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and ti
0 = (ti0,1, t

i
0,2) is the boundary traction due to the fields vi

0 = (vi
0,1, v

i
0,2)

and pi
0, defined as in (3.6).
Taking into account the boundary conditions (3.3), as well as the iden-

tities (3.5) and (3.7), we obtain the equality

2
∫

De

Ejk(ve
0)Ejk(ve

0)dx = −
N∑

k=1

∫
Dk

(
χ2|vi

0|2 + 2Ejk(vi
0)Ejk(vi

0)
)
dx, (3.8)

where the left-hand side is non-negative and the right-hand side is less than
or equal to zero. Thus, we obtain that∫

De

Ejk(ve
0)Ejk(ve

0)dx = 0,

∫
Dk

(χ2|vi
0|2 + 2Ejk(vi

0)Ejk(vi
0))dx = 0, k = 1, . . . , N.

Therefore, we find that

vi
0 = 0 in Dk, k = 1, . . . , N (3.9)

and, due to (3.4),
ve

0 = 0 in De. (3.10)

In view of (3.1) and (3.10) it follows that pe
0 = ce ∈ R in De. The decay

condition of pe
0 at infinity yields that ce = 0, i.e., pe

0 = 0 in De. Hence we
have

ve
0 = 0 and pe

0 = 0 in De. (3.11)

Using similar arguments, we obtain

vi
0 = 0 and pi

0 = ck ∈ R in Dk, k = 1, . . . , N. (3.12)

On the other hand, the properties (3.11) yield that

te
0 = 0 on Γk, k = 1, . . . , N, (3.13)

and, in view of the second of the conditions (3.3), it follows that ti
0 = −ckn =

0 on Γk, k = 1, . . . , N . Therefore, we get ck = 0, k = 1, . . . , N . Consequently,
we have

vi
0 = 0, pi

0 = 0 in D0. (3.14)

The relations (3.11) and (3.14) yield the desired uniqueness result. This
completes the proof of Theorem 3.1. �

4. Potential theory for the Brinkman and Stokes equations

In this section we will present the fundemental solution for the Brimkman
and Stokes equations and the main properties of the potential theory for
the Brinkman system of equations (2.1)-(2.2) and respectively for the Stokes
system (2.3)-(2.4).
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4.1. The fundamental solutions of the Brinkman and Stokes equations

The components of the fundamental Brinkman tensor Gχ2
and those of its

associated pressure vector Πχ2
, which determine the fundamental solution

(Gχ2
,Πχ2

) of the Brinkman system in R2, are given by (see e.g. [1, p. 81]):

Gχ2

jk (x− y) = δjkA1(χ|x− y|) +
(xj − yj)(xk − yk)

|x− y|2
A2(χ|x− y|) and

Πχ2

j (x− y) = 2
xj − yj

|x− y|2
,

(4.1)
where

A1(z) = 2{K0(z) + z−1K1(z)− z−2},
A2(z) = 2{−K0(z)− 2z−1K1(z) + 2z−2}, (4.2)

and and Kν is the modified Bessel function of the second kind and order ν.
The corresponding stress and pressure tensors Sχ2

and Λχ2
have the

following components (see e.g. [1, p. 82, 196]):

Sχ2

ijk(x− y) = −Πχ2

j (x− y)δik +
∂Gχ2

ij (x− y)
∂xk

+
∂Gχ2

kj (x− y)
∂xi

= −2
{

δik
xj − yj

|x− y|2
D1(χ|x− y|) +

(
δkj

xi − yi

|x− y|2
+ δij

xk − yk

|x− y|2

)
D2(χ|x−y|)

+
(xi − yi)(xj − yj)(xk − yk)

|x− y|4
D3(χ|x− y|)

}
, (4.3)

Λχ2

ik (x− y) = 2
δik

|x− y|2
(
− χ2|x− y|2 ln |x− y| − 2

)
+ 8

(xi − yi)(xk − yk)
|x− y|4

,

(4.4)
where

D1(z) = 2K2(z) + 1− 4z−2,
D2(z) = 2K2(z) + zK1(z)− 4z−2,
D3(z) = −8K2(z)− 2zK1(z) + 16z−2.

(4.5)

The components of the fundamental tensor G and those of its associated
pressure vector Π, which determine the fundamental solution (G,Π) of the
Stokes system in R2, are given by (see e.g. [1, p. 38])

Gjk(x− y) = −δjk ln |x− y|+ (xj − yj)(xk − yk)
|x− y|2

, Πj(x− y) = 2
xj − yj

|x− y|2
,

(4.6)
and the stress and pressure tensors S and Λ have the components (see e.g.
[1, p. 39, 132])

Sijk(x− y) = −4
(xi − yi)(xj − yj)(xk − yk)

|x− y|4
,

Λik(x− y) = 4
(
− δik

|x− y|2
+ 2

(xi − yi)(xk − yk)
|x− y|4

)
.

(4.7)
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4.2. Boundary potentials for the Brinkman and Stokes equations

Let C ∈ R2 be a closed Lypaunov curve in the class C1,α, α ∈ (0, 1]. The
single- and double-layer potentials, Vχ2(·,g) and Wχ2(·,h), associated with
the Brinkman system and having the densities g and h, respectively, are
given by

Vχ2(x,g) =
1
4π

∫
C
Gχ2

(x− y) · g(y)dC(y) for x ∈ R2 \ C (4.8)

(
Wχ2

)
k
(x,h) =

1
4π

∫
C

Sχ2

jk`(y − x)n`(y)hj(y)dC(y) for x ∈ R2 \ C, (4.9)

and the corresponding pressure functions P s
χ2(·,g) and P d

χ2(·,h) have the
expressions

P s
χ2(x,g) =

1
4π

∫
C

Πχ2

j (x− y)gj(y)dC(y) for x ∈ R2 \ C (4.10)

P d
χ2(x,h) =

1
4π

∫
C

Λχ2

j` (x− y)n`(y)hj(y)dC(y) for x ∈ R2 \ C. (4.11)

The pairs (Vχ2(·,g), P s
χ2(·,g)) and (Wχ2(·,h), P d

χ2(·,h)) satisfy the
Brinkman system in both domains D0 and De, respectively.

The single- and double-layer potentials, V(·,g) and W(·,h), for the
Stokes system and with the densities g and h, respectively, can be obtained
as in (4.8) and (4.9), but with G and Sjk` instead of Gχ2

and Sχ2

jk`. Similarly,
the pressure terms P s(·,g) and P d(·,h) can be obtained as in (4.10) and
(4.11), but with Πj and Λj` instead of Πj

χ2
and Λχ2

j` .
Let us denote by Hχ2(·,g) the normal stress due to the single-layer

potential Vχ2(·,g) and defined in a neighborhood U ⊂ R2 of C by the relation(
Hχ2

)
k
(x,g) = Tk`(Vχ2(g))(x)n`(x̃), x ∈ Ũ \ C,

where x̃ is the orthogonal projection of x ∈ U onto C. On the components,
we have(

Hχ2

)
k
(x,g) =

1
4π

∫
S

Sχ2

kj`(x− y)n`(x̄)gj(y)dC(y), x ∈ U \ C, k = 1, 2.

(4.12)
The stress field due to the single-layer potential V(·,g) is defined in U by
the relation:

tj(V(g))(x) = Tj`(V(g))(x)n`(x̃), x ∈ U \ C, j = 1, 2. (4.13)

Let Kχ2
(y,x) be the kernel of the double-layer potential Wχ2(·,h),

whose components are given by Kχ2

jk (y,x) = Sχ2

jk`(y−x)n`(y). Similarly, the
components of the kernel of the double-layer potential W(·,h) are denoted
by Kjk(y,x), and are given by the relation Kjk(y,x) = Sjk`(y − x)n`(y).
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Let us now consider the following decomposition of the tensors Gχ2
and

Sχ2
:

Gχ2

kj (x− y) = Gkj(x− y) + Gc
kj(x− y),

Sχ2

jk`(y − x)n`(y) = Sjk`(y − x)n`(y) + Sc
jk`(y − x)n`(y),

(4.14)

where the matrix kernel Gc with the components Gc
kj and the matrix kernel

Scn with the components Sc
jk`nl are continuous. Thus, one obtains the fol-

lowing result which shows the continuity behaviour and the jump formulas
for the single- and double-layer potentials associated to the Brinkman system
(for e.g. [4]):

Theorem 4.1. a) Let C be a closed Lyapunov curve in R2, i.e., C ∈ C1,α,
α ∈ (0, 1], and let densities g ∈ C0(C) and h ∈ C0(C) be given. Also let
Vχ2(·,g), Wχ2(·,h) and Hχ2(·,g) be the boundary potentials given by (4.8),
(4.9) and (4.12). Then on C we have:(

Vχ2

)+(·,g) =
(
Vχ2

)−(·,g) = Vχ2(·,g), (4.15)

(
Wχ2

)+(·,h)−
(
Wχ2

)∗(·,h) =
1
2
h =

(
Wχ2

)∗(·,h)−
(
Wχ2

)−(·,h), (4.16)

(
Hχ2

)+(·,g)−
(
Hχ2

)∗(·,g) = −1
2
g =

(
Hχ2

)∗(·,g)−
(
Hχ2

)−(·,g). (4.17)

In addition, if h ∈ C1,β(C), β ∈ (0, α), then there exist the limiting
values of the boundary traction due to the double-layer potential Wχ2(·,h)
on both sides of C, T+(Wχ2(h)) and T−(Wχ2(h)), and they are equal, i.e.,

T+(Wχ2(h)) = T−(Wχ2(h)) ≡ T(Wχ2(h)) on C. (4.18)

The superscript + (−) is used for the limiting value of a field evaluated
from the external side (the internal side) of C, and the symbol ∗ refers to
the principal value of a double-layer integral on C. The relations (4.15)-(4.18)
also hold for the boundary potentials associated with the Stokes system.

The functions Vχ2(·,g), Wχ2(·,h), P s
χ2(·,g), P d

χ2(·,h) satisfy the rela-
tions

Vχ2(x,g) = O(|x|−2), Wχ2(x,h) = O(|x|−1) as |x| → ∞, (4.19)

P s
χ2(x,g) = O(|x|−1), P d

χ2(x,h) = O(ln |x|) as |x| → ∞, (4.20)

and in the case χ = 0, we have:

V(x,g) = O(ln |x|), P s(x,h) = O(|x|−1) as |x| → ∞, (4.21)

W(x,h) = O(|x|−1), P d(x,h) = O(|x|−2) as |x| → ∞. (4.22)
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4.3. Complementary integral operators

For λ ∈ (0, α), let Vχ2 : Cλ(C) → C1,λ(C) and Kχ2 : C1,λ(C) → C1,λ(C) be
the single- and double-layer integral operators for the Brinkman system, i.e.,

Vχ2g = Vχ2(·,g), Kχ2h = W∗
χ2(·,h), ∀ g ∈ Cλ(C), h ∈ C1,λ(C),

Similarly, V : Cλ(C) → C1,λ(C) and K : C1,λ(C) → C1,λ(C) are the corre-
sponding integral operators for the Stokes system.

Also, let Dχ2 : C1,λ(C) → Cλ(C) be the operator given in (4.18), i.e.,(
Dχ2h

)
j
(x) = p.f.

∫
C

Dχ2

j` (x,y)h`(y)dC(y), (4.23)

where
Dχ2

j` (x,y) = −Λχ2

`k (x− y)nk(y)nj(x)

+
( ∂

∂xj
Sχ2

`ik(y − x) +
∂

∂xi
Sχ2

`jk(y − x)
)
ni(x)nk(y).

The corresponding operator for the Stokes system is denoted by D0. The
operators Dχ2 and D0 belong to the class of hypersingular operators.

Let us introduce the notations

Λc
`k(x−y) = Λχ2

`k (x−y)−Λ`k(x−y), Kc
jk(y,x) = Kχ2

jk (y,x)−Kjk(y,x),
(4.24)

in view of which we are now able to define the complementary integral oper-
ators for the Stokes-Brinkman-coupled system.

The complementary single- and double-layer operators Vχ2,0 : Cλ(C) →
C1,λ(C) and Kχ2,0 : C1,λ(C) → C1,λ(C) are given by

Vχ2,0 = Vχ2 − V, Kχ2,0 = Kχ2 −K, (4.25)

and the adjoint of the complementary double-layer operator K
′

χ2,0 : Cλ(C) →
Cλ(C) has the expression K

′

χ2,0 = K
′

χ2 −K
′
, where K

′

χ2 is the adjoint oper-
ators of Kχ2 .

In addition, the complementary hypersingular operator

Dχ2,0 : C1,λ(C) → Cλ(C)

is given by Dχ2,0 = Dχ2 −D0.
We have following compactness result whose proof can be consulted in

[4]:

Theorem 4.2. If C is a closed Lyapunov curve in R2, i.e., C ∈ C1,α, α ∈ (0, 1],
and λ ∈ (0, α), then the complementary boundary integral operators

Vχ2,0 : Cλ(C) → C1,λ(C), Kχ2,0 : C1,λ(C) → C1,λ(C),

K′
χ2,0 : Cλ(C) → Cλ(C), Dχ2,0 : C1,λ(C) → Cλ(C)

are compact.
In addition, if h ∈ C1,λ(C), then T+(Wχ2,0(h)) and T−(Wχ2,0(h))

exist everywhere on C and they are equal.



The problem of 2D Brinkman flow past several voids 187

5. The boundary integral formulation of the problem

In order to prove that the boundary value problem (2.1)-(2.6) has a unique
classical solution, we consider the following boundary integral representa-
tions:

ve
k(x) = U∞

k +
1
4π

N∑
l=1

∫
Γl

Kχ2

jk (y,x)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gχ2

kj (x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ De (5.1)

pe(x) = P∞(x) +
1
4π

N∑
l=1

∫
Γl

Λχ2

jk (x− y)nk(y)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πχ2

j (x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ De, (5.2)

and

vi
k(x) =

1
4π

N∑
l=1

∫
Γl

Kjk(y,x)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gkj(x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y)

−
∫

Γm

hj(y)dΓm(y), x ∈ Dm,m = 1, . . . , N (5.3)

pi(x) =
1
4π

N∑
l=1

∫
Γl

Λjk(x− y)nk(y)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πj(x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ D0, (5.4)

where Φ = (φ1, φ2) ∈ C1,λ(Γ) and h = (h1, h2) ∈ Cλ(Γ) are unknown
densities, λ ∈ (1, α), and |Γk| =

∫
Γk

dΓk is the length of Γk, k = 1, . . . , N .
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Let us observe that the boundary integral representations (5.1)-(5.4)
satisfy the system of equations (2.1)-(2.4), as well as far field conditions
(2.5)-(2.6).

Now, imposing the transmission condition (2.5), we obtain the equations

φk(x0) +
1
4π

N∑
l=1

∫
Γl

Kc
jk(y,x0)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gc
kj(x0 − y)

(
hj(y)− 1

|Γm|

∫
Γm

hj(y)dΓm(y)
)

dΓl(y)

+
∫

Γm

hj(y)dΓm(y) = −U∞
k , x0 ∈ Γm, m = 1, . . . , N. (5.5)

Taking into account the second of the boundary conditions (2.5), we
obtain the boundary integral equations

−hk(x0) +
1
4π

N∑
l=1

∫
Γl

Kc
kj(x0,y)

(
hj(y)− 1

|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y)

+ Tkj(Wc(Φ))(x0)nj(x0) = −t∞k (x0), x0 ∈ Γm, m = 1, . . . , N,
(5.6)

where t∞k are the components of the stress field associated to the velocity
field U∞ , i.e.,

t∞k (x) = p∞nk(x).

We mention that the integrals on Γm who appears in (5.5) and (5.6) are
understood in the sense of principal value.

Therefore, the boundary value problem (2.1)-(2.6) reduces to the system
of boundary integral equations (5.5) and (5.6). In view of Theorem 4.2 it
follows that all operators that appear in the boundary integral equations
(5.5) and (5.6) are compact, as mappings into one of the spaces C1,λ(Γ),
Cλ(Γ). Thus, these equations are Fredholm integral equations of the second
kind with the unknowns (Φ,h) ∈ C1,λ(Γ)× Cλ(Γ).

We have the following existence and uniqueness result (see also [2]):

Theorem 5.1. Let Γk be closed Lyapunov curves of class C1,α in R2, α ∈ (0, 1],
k = 1, . . . , N , Γ = ∪N

k=1Γk , and let λ ∈ (0, α). Then the system of Fredholm
integral equations of the second kind (5.5) and (5.6) has a unique solution
(Φ,h) ∈ C1,λ(Γ)×Cλ(Γ). In addition, the boundary integral representations
(5.1)-(5.4), obtained with the densities Φ and h, determine the unique classi-
cal solution ((ve, pe), (vi, pi)) ∈ ((C2(De)∩C1(De))× (C1(De)∩C0(De)))×
((C2(D0)∩C1(D0))×(C1(D0)∩C0(D0))) to the boundary value problem con-
sisting of the equations (2.1)-(2.4) and the boundary and far field conditions
(2.5)-(2.6).
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Proof. Let us consider the following homogeneous system of integral equa-
tions

φ0
k(x0) +

1
4π

N∑
l=1

∫
Γl

Kc
jk(y,x0)φ0

j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γk

Gc
kj(x0 − y)

(
h0

j (y)− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y)

+
∫

Γm

h0
j (y)dΓm(y) = 0, x0 ∈ Γm, m = 1, . . . , N, (5.7)

−h0
k(x0) +

1
4π

N∑
l=1

∫
Γl

Kc
kj(x0,y)

(
h0

j (y)− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y)

+ Tkj(Wc(Φ0))(x0)nj(x0) = 0, x0 ∈ Γm, m = 1, . . . , N. (5.8)

Also let (Φ0,h0) ∈ C1,λ(Γ)×Cλ(Γ) be an arbitrary solution to this system,
and let (ue, qe) and (ui, qi) be the fields given by the following boundary
integral representations:

ue
k(x) =

1
4π

N∑
l=1

∫
Γl

Kχ2

jk (y,x)φ0
j (y)dΓl(y) +

1
4π

N∑
l=1

∫
Γl

Gχ2

kj (x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.9)

qe(x) =
1
4π

N∑
l=1

∫
Γl

Λχ2

jk (x− y)φ0
j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πχ2

j (x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.10)

and

ui
k(x) =

1
4π

∫
Γm

Kjk(y,x)φ0
j (y)dΓm(y) +

1
4π

∫
Γm

Gkj(x− y)
(
h0

j (y)

− 1
|Γm|

∫
Γm

h0
j (z)dΓm(z)

)
dΓm(y)

−
∫

Γm

h0
j (y)dΓm(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.11)
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qi(x) =
1
4π

N∑
l=1

∫
Γl

Λjk(x− y)nk(y)φ0
j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πj(x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N. (5.12)

Because the pairs (Vχ2(·,g), P s
χ2(·,g)) and (Wχ2(·,h), P d

χ2(·,h)) satisfy the
Brinkman system in both domains D0 and De, respectively, and the pairs
(V(·,g), P s(·,g)) and (W(·,h), P d(·,h)) satisfy the Stokes system in both
domains D0 and De, respectively, we obtain that:

∇ · ue = 0, −∇qe + (∇2 − χ2)ue = 0 in R2 \ Γ, (5.13)

∇ · ui = 0, −∇qi +∇2ue = 0 in R2 \ Γ. (5.14)
Taking into account the relations (4.21) we have that:

(|ue||∇ue|)(x) = o(|x|−1), (|ue||qe|)(x) = o(|x|−1) as |x| → ∞. (5.15)

Therefore, the fields ue and qe satisfy the identity∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −
N∑

l=1

∫
Γl

ue+
k (x)t+k (ue)(x)dΓl(x),

(5.16)
where t±k (ue) = T±kj(u

e)nj , and

Tkj(ue) = −qeδkj + 2Ekj(ue), Ejk(ue) =
1
2

(
∂ue

j

∂xk
+

∂ue
k

∂xj

)
.

Similarly, the fields ui and qi satisfy the identity (see e.g. [1], p. 15)

2
∫

D0

Ejk(ui)Ejk(ui)dx =
N∑

l=1

∫
Γl

ui−
k (x)t−k (ui)(x)dΓl(x), (5.17)

where t±k (ui) = T±kj(u
i)nj , and

Tkj(ui) = −qiδkj + 2Ekj(ui), Ejk(ui) =
1
2

(
∂ui

j

∂xk
+

∂ui
k

∂xj

)
.

Now, taking into account the formulas (4.15)-(4.17), we obtain the properties

ue+
k = ui−

k , t+k (ue) = t−k (ui) on Γl, l = 1 . . . , N (5.18)

which yield the equality
N∑

l=1

∫
Γl

ue+
k (x)t+k (ue)(x)dΓl =

N∑
k=1

∫
Γl

ui−
k (x)t−k (ui)(x)dΓl. (5.19)

From the properties (5.16), (5.17) and (5.19) we deduce that∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −2
∫

D0

Ejk(ui)Ejk(ui)dx, (5.20)
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and hence
ue = 0 in De, (5.21)

Ejk(ui) = 0 in Dm, j, k = 1, 2, m = 1, . . . , N. (5.22)
Using Killing’s theorem, we deduce that there exists some real constants ak

0

and bk
0 such that

ui = am
0 + bm

0 × x in Dm, m = 1, . . . , N. (5.23)

But,
0 = ue+ = ui− on Γm m = 1, . . . , N

thus we obtain that
am
0 = bm

0 = 0.

Then , we have:
ui = 0 in Dm,m = 1, . . . , N. (5.24)

In addition, in view of the second of equations (5.13) and from the fact that
the pressure field qe vanishes at infinity, we obtain

qe = 0 in De. (5.25)

Similarly, we deduce that qi = c0
m ∈ R in Dm. On the other hand, from the

relations (5.18), (5.21) and (5.25) we get

t−k (ui) = t+k (ue) = 0 on Γm, m = 1, . . . , N (5.26)

and hence the constant c0
m must be equal to zero, i.e.,

ui = 0, qi = 0 in D0. (5.27)

Now, using the jump formula

ue+ − ue− = Φ0 on Γm, m = 1, . . . , N

(see the properties (4.15) and (4.16)) as well as the result (5.21), we deduce
that

ue− = −Φ0 on Γm, m = 1, . . . , N. (5.28)
Similarly, from the jump formula

ui+ − ui− = Φ0 on Γm, m = 1, . . . , N

as well as the result (5.27), we find that

ui+ = Φ0 on Γm, m = 1, . . . , N. (5.29)

On the other hand, from the relations (4.17) we deduce that the bound-
ary traction due to the fields ue and qe has a jump across every curve Γk

given by the formula

t+(ue)− t−(ue) = −
(
h0 − 1

|Γm|

∫
Γm

h0dΓm

)
on Γm, m = 1, . . . , N.

(5.30)
But t+(ue) = 0 on Γk and hence

t−(ue) = h0 − 1
|Γm|

∫
Γm

h0dΓm on Γm, m = 1, . . . , N. (5.31)
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With similar kind of arguments as before, we get the relation

t+(ui) = −
(
h0 −

∫
Γm

h0dΓm

)
on Γm, m = 1, . . . , N. (5.32)

In addition, the fields (ue, qe) satisfy the identity∫
D0

(2Ejk(ue)Ejk(ue)+χ2|ue|2)dx =
N∑

l=1

∫
Γl

ue−
k (x)t−k (ue)(x)dΓl(x) (5.33)

and, in view of the properties (5.28) and (5.31), this identity takes the form∫
D0

(2Ejk(ue)Ejk(ue)+χ2|ue|2)dx = −
N∑

l=1

∫
Γk

Φ0 ·
(
h0− 1

|Γl|

∫
Γl

h0dΓl

)
dΓl.

(5.34)
Since ∫

Γl

(
h0 − 1

Γl

∫
Γl

h0dΓl

)
dΓl = 0, (5.35)

we deduce that

V
(
x,h0 − 1

|Γl|

∫
Γl

h0dΓl

)
= O(|x|−1) as |x| → ∞, (5.36)

the fields ui and qi behave at infinity as follows (see also the relations (4.21)):

∇sui(x) = O(|x|−1−s), qi(x) = O(|x|−1) as |x| → ∞, s = 0, 1, (5.37)

and hence they satisfy the far field conditions (2.6). Consequently, we get the
following identity:

2
∫

De

Ejk(ui)Ejk(ui)dx = −
N∑

l=1

∫
Γl

ui+
k (x)t+k (ui)(x)dΓl(x), (5.38)

which, in view of the properties (5.29) and (5.32), becomes

2
∫

De

Ejk(ui)Ejk(ui)dx =
N∑

l=1

∫
Γl

Φ0 ·
(
h0 − 1

|Γl|

∫
Γl

h0dΓl

)
dΓl. (5.39)

Therefore, from the identities (5.34) and (5.39) we obtain that

ue = 0 in D0 (5.40)

and
ui = 0 in De. (5.41)

The property (5.41), the equation −∇qi + (∇2 − χ2)ui = 0 in De, and
the fact that the pressure field qi vanishes at infinity lead to the additional
result

qi = 0 in De. (5.42)
From the relation (5.40), we get that

ue− = 0 on Γl, l = 1, . . . , N.

Using the above relation and (5.28), we obtain that:

Φ0 = 0 on Γl, l = 1, . . . , N. (5.43)
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In addition, according to the relations (5.32), (5.41) and (5.42) we find that

t+(ui) = 0 on Γl, l = 1, . . . , N, (5.44)

i.e.,

h =
1
|Γl|

∫
Γl

hdΓl := cl ∈ R2 on Γl, l = 1, . . . , N. (5.45)

So, we obtain that

0 = ui = −
∫

Γl

hdΓlinDl, l = 1, . . . , N (5.46)

and hence ∫
Γl

hdΓl = 0, l = 1, . . . , N. (5.47)

Finally, from the relations(5.45) and (5.46) we find that

h0 = 0 on Γl, l = 1, . . . , N. (5.48)

The relations (5.43) and (5.48) shows that the homogeneous system of
equations (5.7) and (5.8) has only the trivial solution in the space C1,λ(Γ)×
Cλ(Γ). Consequently, in view of Fedholm’s alternative [5] we deduce that the
non-homogeneous system of Fredholm integral equations of the second kind
(5.5) and (5.6) has a unique solution(Φ,h) ∈ C1,λ(Γ)×Cλ(Γ), as desired. �
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