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The Sălăgean integral operator and strongly
starlike functions
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Abstract. Let A denote the class of analytic functions f(z) defined
in the unit disc U = {z : |z| < 1} and satisfying the conditions
f(0) = f ′(0) − 1 = 0. We introduce some new subclasses of strongly
starlike functions defined by the Sălăgean integral operator and study
their properties.
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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic in the open unit disc U = {z : |z| < 1}. A function
f(z) ∈ A is said to be starlike of order γ if it satisfies

Re

{
zf

′
(z)

f(z)

}
> γ (z ∈ U) (1.2)

for some γ (0 ≤ γ < 1).We denote by S∗(γ) the subclass of A consisting of
functions which are starlike of order γ in U. Also, a function f(z) ∈ A is
said to be convex of order γ if it satisfies

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> γ (z ∈ U) (1.3)

for some γ (0 ≤ γ < 1). We denote by C(γ) the subclass of A consisting of
all functions which are convex of order γ in U.
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It follows from (1.2) and (1.3) that

f(z) ∈ C(γ) ⇐⇒ zf ′(z) ∈ S∗(γ), (1.4)

the classes S∗(γ) and C(γ) were introduced by Robertcen [8].
If f(z) ∈ A satisfies ∣∣∣∣arg(

zf ′(z)
f(z)

− γ)
∣∣∣∣ <

π

2
β (z ∈ U) (1.5)

for some γ (0 ≤ γ < 1) and β(0 < β ≤ 1), then f(z) is said to be strongly
starlike of order β and type γ in U. We denote this by f(z) ∈ S∗(β, γ) .

If f(z) ∈ A satisfies∣∣∣∣∣arg(1 +
zf

′′
(z)

f ′(z)
− γ)

∣∣∣∣∣ <
π

2
β (z ∈ U) (1.6)

for some γ (0 ≤ γ < 1) and β(0 < β ≤ 1), then we say that f(z) is strongly
convex of order β and type γ in U. We denote by C(β, γ) the class of all
such functions (see also Liu [3] and Nurokawa et al. [7]). In particular, the
classes S∗(β, 0) and C(β, 0) have been extensively studied by Mocanu [5] and
Nunokawa [6].

It follows from (1.5) and (1.6) that

f(z) ∈ C(β, γ) ⇐⇒ zf ′(z) ∈ S∗(β, γ). (1.7)

Also, we note that S∗(1, γ) = S∗(γ) and C(1, γ) = C(γ).
For a function f(z) ∈ A , we define the integral operator Inf(z), n ∈

N0 = N ∪ {0}, where N = {1, 2, ....}, by

I0f(z) = f(z), (1.8)

I1f(z) = I f(z) =

z∫
0

f(t) t−1dt , (1.9)

and (in general)
Inf(z) = I(In−1f(z)). (1.10)

It is easy to see that:

(i) Inf(z) = z +
∞∑

k=2

ak

kn
zk (n ∈ N0), (1.11)

and
(ii) z(Inf(z))

′
= In−1f(z). (1.12)

The integral operator Inf(z) (f ∈ A) was introduced by Sălăgean [9] and
studied by Aouf et al. [1]. We call the operator In by Sălăgean integral oper-
ator. The relation (1.12) plays an important and significant role in obtaining
our results.
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Using the Sălăgean integral operator, we introduce and study the prop-
erties of some new classes of analytic functions, defined as follows:

S∗n (β, γ) = { f(z) ∈ A : In f(z) ∈ S∗(β, γ) ,
z(Inf(z))

′

Inf(z)
6= γ for all z ∈ U}

and

Cn(β, γ) = {f(z) ∈ A : Inf(z) ∈ C(β, γ), 1 +
z(Inf(z))

′′

(Inf(z))′ 6= γ for all z ∈ U}.

Clearly,
f(z) ∈ Cn(β, γ) ⇐⇒ zf ′(z) ∈ S∗n(β, γ). (1.13)

We note that:
(i) S∗n(β, γ) = S∗(β, γ) and C∗

0 (β, γ) = C(β, γ);
and

(ii) S∗0 (1, γ) = S∗(γ) and C∗
0 (1, γ) = C(γ).

2. Main Results

In order to give our results, we need the following lemma, which is due to
Nunokawa [6].

Lemma 2.1. Let a function p(z) = 1+ c1z + c2z
2 + .... be analytic in U and

p(z) 6= 0 ( z ∈ U). If there exists a point z0 ∈ U such that

|arg f(z)| <
π

2
β, (|z| < |z0|) and |arg p(z0)| =

π

2
β (0 < β ≤ 1),

then we have
z p

′

0(z)
p(z0)

= ikβ, where

k ≥ 1
2

(a +
1
a
) (when arg p(z0) =

π

2
β),

k ≤ −1
2

(a +
1
a
) (when arg p(z0) =

−π

2
β),

and (p(z0))
1
β = ±ia (a > 0).

Theorem 2.2. S∗n(β, γ) ⊂ S∗n+1(β, γ) for each n ∈ N0.

Proof. Let f(z) ∈ S∗n(β, γ) .Then we put

z(In+1f(z))′

In+1f(z)
= γ + (1− γ) p(z), (2.1)

where p(z) = 1+c1z+c2z
2 + ..... is analytic in U and p(z) 6= 0 for all z ∈ U.

Using (1.12) and (2.1),we have

In f(z)
In+1f(z)

= γ + (1− γ) p(z). (2.2)
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Differentiating (2.2) with respect to z logarithmically, we obtain

z(Inf(z))′

Inf(z)
=

z(In+1f(z))′

In+1f(z)
+

(1− γ)zp′(z)
γ + (1− γ)p(z)

= γ + (1− γ)p(z) +
(1− γ)zp′(z)

γ + (1− γ)p(z)
,

or
z(In f(z))

′

Inf(z)
− γ = (1− γ) p(z) +

(1− γ)zp′(z)
γ + (1− γ)p(z)

. (2.3)

Suppose that there exists a point z0 ∈ U such that

|arg f(z)| <
π

2
β (|z| < |z0|) and |arg p(z0)| =

π

2
β.

Then, applying Lemma 2.1, we can write that
z0p

′
(z0)

p(z0)
= ikβ and (p(z0))

1
β = ± ia (a > 0).

Therefore, if arg p(z0) = −π

2
β, then

z0(Inf(z0))′

Inf(z0)
− γ = (1− γ) p(z0)

1 +
zp′(z0)
p(z0)

γ + (1− γ)p(z0)


= (1− γ)aβe−

iΠβ
2

[
1 +

ikβ

γ + (1− γ)aβe−
iΠβ
2

]
.

This implies that

arg
{

z0(Inf(z0))′

Inf(z0)
− γ

}
= − π

2
β + arg

{
1 +

ikβ

γ + (1− γ)aβe−
iΠβ
2

}

=
−π

2
β+

tan−1

{
kβ[γ + (1− γ)aβ cos (Π

2 β)]
γ2 + 2γ(1− γ)aβ cos (Π

2 β) + (1− γ)2a2β − kβ(1− γ)aβ sin(Π
2 β)

}
≤ −π

2
β ( where k ≤ −1

2
(a +

1
a
) ≤ −1),

which contradicts the condition f(z) ∈ S∗n(β, γ).
Similarly, if arg p(z0) = Π

2 β, then we obtain that∣∣∣∣arg
{

z0(Inf(z0))′

Inf(z0)
− γ

}∣∣∣∣ ≥ π

2
β,

which also contradicts the hypothesis that f(z) ∈ S∗n(β, γ).

Thus the function p(z) has to satisfy |arg p(z)| < Π
2 β (z ∈ U). This shows

that ∣∣∣∣arg
{

z (In+1f(z))′

In+1 f(z)
− γ

}∣∣∣∣ <
π

2
β (z ∈ U),

or f(z) ∈ S∗n+1(β, γ).This completes the proof of Theorem 2.2.
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Theorem 2.3. Cn(β, γ) ⊂ Cn+1(β, γ) for each n ∈ N0 .

Proof. f(z) ∈ Cn(β, γ) ⇐⇒ Inf(z) ∈ C(β, γ) ⇐⇒ z(Inf(z))′ ∈ S∗(β, γ)
⇐⇒ In(zf

′
(z)) ∈ S∗ (p, γ) ⇐⇒ zf

′
(z) ∈ S∗n(β, γ)

=⇒ zf
′
(z) ∈ S∗n+1(β, γ) ⇐⇒ In+1(zf

′
(z)) ∈ S∗(β, γ)

⇐⇒ z( In+1f(z))′ ∈ S∗(β, γ) ⇐⇒ In+1f(z) ∈ C (β, γ)
⇐⇒ f(z) ∈ Cn+1(β, γ).

This completes the proof of Theorem 2.3.

For c > −1 and f(z) ∈ A, we define the integral operator Lc(f) as

Lcf(z) =
c + 1
zc

z∫
0

tc−1f(t)dt. (2.4)

The operator Lc(f) when c ∈ N was studied by Bernardi [2]. For c = 1,
L1(f) was introduced by Libera [4].

Theorem 2.4. Let c > −γ and 0 ≤ γ < 1. If f(z) ∈ S∗n(β, γ) with
z(InLcf(z))

′

InLcf(z)
6= γ for all z ∈ U, then we have Lc(f) ∈ S∗n(β, γ).

Proof. Set
z(InLc f(z))

′

InLcf(z)
= γ + (1− γ) p(z), (2.5)

where p(z) is analytic in U, p(0) = 1, and p(z) 6= 0 (z ∈ U). From (2.4), we
have

z(InLcf(z))
′
= (c + 1) Inf(z)− cInLcf(z). (2.6)

Using (2.5) and (2.6), we have

(c + 1)
Inf(z)

InLcf(z)
= c + γ + (1− γ)p(z). (2.7)

Differentiating both sides of (2.7) with respect to z logarithmically, we obtain

z(Inf(z))′

Inf(z)
− γ = (1− γ)p(z) +

(1− γ)zp′(z)
c + γ + (1− γ)p(z)

.

Suppose that there exists a point z0 ∈ U such that

|arg p(z)| < π

2
β (|z| < |z0|) and |arg p(z0)| =

π

2
β.

Then, applying Lemma 2.1, we can write that

z0p
′
(z0)

p(z0)
= ikβ and (p(z0))

1
β = ±ia (a > 0).

If arg p(z0) = Π
2 β, then

z0(Inf(z0))
′

Inf(z0)
− γ = (1− γ)p(z0)

1 +

z0p
′
(z0)

p(z0)
c + γ + (1− γ)p(z0)


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= (1− γ)aβei Πβ
2

[
1 +

ikβ

c + γ + (1− γ)aβei Πβ
2

]
.

This shows that

arg

{
z0(I

nf(z0))
′

Inf(z0)
− γ

}
=

π

2
β + arg

[
1 +

ikβ

c + γ + (1− γ)aβei Πβ
2

]
=

Π

2
β

+tan−1

{
kβ[c+γ + (1− γ)aβ cos(Πβ

2
)]

(c+γ)2 + 2(c+γ)(1− γ)aβ cos(Πβ
2

) + (1− γ)2a2β + kβ(1− γ)aβ sin(Πβ
2

)

}

≥ π

2
β (where k ≥ 1

2
(a +

1

a
) ≥ 1),

which contradicts the condition f(z) ∈ S∗n(β, γ).
Similarly, we can prove the case arg p(z0) = −Π

2 β. Thus we conclude
that the function p(z) has to satisfy |arg p(z)| < Π

2 β for all z ∈ U. This
gives that ∣∣∣∣arg

{
z(InLcf(z))′

InLcf(z)
− γ

}∣∣∣∣ <
π

2
β (z ∈ U),

or Lcf(z) ∈ S∗n(β, γ). This completes the proof of Theorem 2.4.

Theorem 2.5. Let c > −γ and 0 ≤ γ < 1. If f(z) ∈ Cn(β, γ) and

1 +
z(InLcf(z))

′′

(InLcf(z))′ 6= γ

for all z ∈ U, then we have Lcf(z) ∈ Cn(β, γ).

Proof. f(z) ∈ Cn(β, γ) ⇐⇒ zf ′(z) ∈ S∗n(β, γ) =⇒ Lc(zf ′(z)) ∈
S∗n(β, γ) ⇐⇒ z(Lcf(z))

′ ∈ S∗n(β, γ) ⇐⇒ Lcf(z) ∈ Cn(β, γ).
This completes the proof of Theorem 2.5.
Acknowledgements. The author is thankful to the referee for his comments
and suggestions.
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